50
FESA-RT-2016 FEASIBILITY OF RECYCLING LAUNDRY WASTEWATERS AT MILITARY QUARTERMASTER LAUNDRIES 1LT Scott W. Ford US Army Facilities Engineering Support Agency Research and Technology Division Fovt Belvoir, VA 22060 March 1977 Final Report * APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED -

Feasibility of Recycling Laundry Wastewaters at Military ...infohouse.p2ric.org/ref/12/11793.pdf · feasibility of recycling laundry wastewaters at military quartermaster laundries

  • Upload
    hatruc

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

i c I

. __-.."..L.. I

C [b FESA-RT-2016

00 c(3 0 e FEASIBILITY OF RECYCLING LAUNDRY WASTEWATERS AT MILITARY QUARTERMASTER

LAUNDRIES

1 L T S c o t t W . Ford US Army F a c i l i t i e s E n g i n e e r i n g Support Agency Research and Technology D i v i s i o n Fovt B e l v o i r , VA 22060

March 1977

F i n a l Repor t

I * APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED , a - I

I Ir

i

UNCLASSIFIED - 5 C C U R I T V C L A S S I Y I C ~ T 1 0 N O C THIS P A C E p h m P r r r Pnfr r -e i ) --

H E< A [) IN S TKUC TI O N S I I E F COMPI-ETING FORM REPORTDOCUMENTATION PAGE

' r ( E P O Z 1 NUMBER I G O V T ACCFSSIOH NO. 3 W F C I P I F N T ' S C A T A L O G N U M B E R .

+AFF A - R - 6 __ - - - / ._ C . .h - L e . d U I I . L . - - - - . - - . 5 T Y P F OF U F P O R T h P E R I O D C O V E R E D

*Recycling a t M i l i t a r y Quar termaster Laundry Laundr ies, Wastewaters

--- -. __._

-

9 P E R F O S M I N C O R G A N I I A T I O N NAME A N 0 A O O R E S S - US Army Fac i 1 i t i e s Eng ineer ing Suppor t Agency Research and Technology D i v i s i o n F ? r t B e l v o i r , VA 22060 /

---I-- I C O N T R O L L I N G O F F I C E HAME A N 0 AOORESS

Ma rQe09 7 7 I

. . I ApCroved f o r p u b l i c re lease ; d i s t r i b u t i o n u n l i m i t e d .

7 D l S T R l B U T l O N S T A T E M E N T (01 Ihe mbolrocl mnI8r.d In Block 20. I / L ' I f I . r m l trom R e p o r ~ j

I S U P P L C M E N T A R Y N O T E S -

Water, water recyc le , wa te r reuse, l aundry water recove ry

An economic a n a l y s i s o f r e c y c l i n g Army i n s t a l l a t i o n l aundry wastewater i s

w t a i l w:th ment t o renova te c o s t e f f e c t i v e

and assumptions a r e p resen ted i n f i n d i n g s a r e t h a t t h e c o s t f o r t r e a t -

q u a l i t y t o p e r m i t i t s reuse i s n o t

I

-- TABLE OF CONTEKTS

-- SECTION

1 . o INTRODUCTION 1 . 1 Subject 1 . 2 Scope 1 . 3 Background and Previous I n v e s t i g a t i o n

2.0 ECONOMIC ANALYSIS 2 . 1

2 . 2 Pre l iminary Design 2 . 3 Cost Analysis

Laundry Water Usage & Cost a t Major Army I n s t a ? l a t i o n s i n CONUS

3 . c DISCUSSION 3.1 Comparison

4 . 0 CONCLUSION 4 . 1 Conclusion

i

PAGE NO.

1 1 1 1

8

8 12 29

35 35

37 37

Number

1-1

1-2

1-3

1-4

1-5

2- 1

2-2

2- 3

2-4

2-5

2-6

2- 7

TABLES

-- T i ' t l e Page

Opera t i ng R e s u l t s f rom F l o t a t i o n Process

Opera t ing Resu l t s f r o m Us ing Aluminum S u l f a t e and

Opera t i ng R e s u l t s f r o m Us ing Aluminum S u l f a t e as

Opera t i ng Resu l t s f r o m Coagu la t i on o f Wastewater

?

3 Pondered Carbon as Coagulants

a Coagulant

by Powdered Carbon and a P o l y e l e c t r o l y t e

Osmosis, Coagu la t ion , and Diatomaceouc E a r t h F i 1 t r a t i o n

4

6

Sumnary o f Wastewater C h a r a c t e r i s t i c s Us ing Reverse 7

Est imates f o r Laundry Water Consumption a t Army 10 I n s t a l l a t l o n s

Es t imated Cost and Consumption Rates f o r Wdter 11

Average Q u a l i t y o f Laundry Wastes 1 3

Tank Loading 1 4

Es t imated Equipment Costs f o r Laundry Wastewater 30

Used a t I n s t a l l a t i o n Q u a r t e r Master Laundr ies

System

Est imated Costs of Chemicals f o r Laundry Wastewater

S m r y of Costs f o r 70,000 gpd Wastewater Treatment

33 Recovery

Facf 11 ty 34

ii

I

FIGURES

Number T i t l e Page

1-1 Flow Diagram f o r A i r F l o t a t i o n 2

1-2 Flow Diagram Us ing Aluminum S u l f a t e and Powdered 3

1-3 Flow Diagram f o r Wastewater Treatment Using 5

A c t i v a t e d Carbon as t h e Coagulant

Powdered A c t i v a t e d Carbon and a P o l y e l e c t r o l y t e as t h e Coagulant and Diatomaceous E a r t h f o r F i 1 t r a t i o n

i n R e c y c l i n g Laundry Wastes

F a d 11 ty

P l a n t Capac i t y

Sewage Charge

t h e Use o f I o n Exchange Equipment

2-1 Flow Dlagram o f P o s s i b l e Process Eqgipment Used 12

2-2 Water Balance on 70,000 ga l /day Wastewater T r e a w n t 26

2- 3 Es t ima ted Laundry Waste Treatment P l a n t C o s t Versus 32

2-4 Breakeven L i n e f o r P l a n t Capac i t y Versus Water a r d 34

3- 1 Flow Diagram f o r Laundry Wastewater Recyc l i ng Wi thout 36

iii

FEASIBILITY OF R E C Y C L I N G L A U N D R Y WASTEWATERS A T

M I L I T A R Y QUARTERKASTER L A U N D R I E S

1 . 0 INTRODUCTION

1 . 1 Subject.

-

The purpose o f th i s study . .z '--I determine the economic pract ical i ty

of reclaiming quartermaster law :ry wastes a t major instal lz t ions for

recycle.

1 . 2 Scope.

Using l i t e ra ture data from previous studies i n recycling and treating

laundry wastewaters, a tentative design for a recycling process will be

made. Capital investment, and operating costs o f the design will be

compared agalnst current water and sewage treatment rates a t major

instal la t ions using a breakeven analysis.

laundry wastes will be discussed.

1 . 3 Backsround and Prevlous lnvestigatloil.

Laund-y water waste extractlon has been extensively looked a t for a

The basic concern in laundry waste treatment bas been

The practicali ty of recycling

number o f years.

removal o f laundry detergents a n d phcsphates.

synthetic detergent used i n laundry soaps was alklbenzenesulfonate, or

ABS. ABS and I t s complexes were only biologically oxidated oL/er a n extended

period of time. Consequently synthetic detergent build-up i n certain highly

populated areas became a serlous problem.

imparted t o the water dfsagreeable tas tes , odors, a n d high turbidi t ies .

Chemical and physical. methods of extracting the synthetic detergents from

Prior t o 1965 the most comnon

Concentrations higher t h a n 1 2 m g / l

1

A1 umi num Su 1 f a t e

I Ho ld ing

-+

A i d

4- * l u d g e

F i q u r e 1-1.

F l o w Diagram f o r P . i r F l o t a t i o n . '

Table 1-1.

Opera t i ng R e s u l t s from F l o t a t i o n Process.'

I n f 1 uen t E f f 1 uen t Percent Removal

Ph 8.96* ABS ( m g / l i t ) 58.2 Suspended s o l i d s

(mg/ 1 I t ) 167 D isso lved s o l i d s

(mg / l i t ) 1044 COD ( m g / l i t ) 591 Phosphates

( m g / l l t) 123

5.06 -- 35.8 38

111 33

1383 374

-- 37

39.2 6d

*Eleven (11) samples taken f r o m p f l o i : p l a n t hav ing 8,000 ,o 10.000 gpd

f l o w r a t e . Fami l y l a u n d r y CaTprised m a j o r i t y of wash.

2

I . ....

b

Chemical dosages f o r a i r f l o t a t i o n were 200 m g / l i t o f s u l p h u r i c a c i d ,

400 m g / l f t o f aluminum s u l f a t e . 50 m g / l i t soda ash and 7 5 m g / l i t o f t a l l o w .

The d e t e n t i o n p e r i o d w i t h i n t h e f l o t a t i o n chamber was apprcx ima te l y n i n e

minutes. E x t r a c t i o n of l a u n d r y wastes by a i r f i o t a t i o n was unacceptable.

As seen i n Table 1-1 t h e p e r c e n t removal o f wastes was g e n e r a l l y poor

Other ma jo r problems a s s o c i a t e d w i t h t h e orocedure were e r r a t i c waste

r e m v a l and t h e hiqh percentaqe o f water r e t e n t i o n i n t n e s ludqe .

Carbon A1 k a l i n i t

Aluminum S u l f a t e

l------ Discharge

Upf 1 ow C l a r i f i e r -w

I + Sludge

F i g u r e 1-2.

F low Diagram Us ing Aluminum S u l f a t e and

Tab le 1-2.

Powdered A c t i v a t e d Carbon as t h e Coagulant.

Opera t i ng R e s u l t s f r o m UL. i ng Aluminum S u l f a t e 6 Powdered Carbon as coagulant^.^

I n f 1 uen t E f f l u e n t Percent Remova 1

Ph 7 .62 ABS ( m g / l f t ) 31 .S Suspended s o l i d s

( m g / l l t ) 216 D i s s o l v e d s o l f d s

(mg/l1 t) 669 COD ( m g i l l t ) 403.2 Phosphates ( m g / l i t ) 190

9.0 14

1 2

1109 140

4

3

. . . .

Upf low c l a r i f i c a t i o n u s i n g aluminum s u l f a t e a s a coaqu!ant and powdered

a c t i v a t e d carbon f o r a d s o r p t i o n and c o a g u l a t i o n p r o v i d e d b e t t e r r e s u l t :

t han a i r f l o t a t i o n . Chemical dosages f o r aluminum s u l f a t e and powdered

a i d was used i n t r a c e af"untS. Problems OcCIJrt-ed i n the upf low c l a r i f i e r

o p e r a t i o n due t o t h e temperature f l u c t u a t i o n s i n t h e e n t e r i n g l aundry

wastewaters. Temperature g r a d i e n t s w i t h i n the c l a r i f i e r from the c y c l i c

n a t u r e of t h e washers decreased t h e s e t t l e a b i l i t y o f t h e f l o c , increased

t h e d e t e n t i o n t i m e r e q u i r e d , and decreased thp . . . I C tewater f l o w s . S a l t

b u i l d - u p would e v e n t u a l l y become a problem if the l aundry wastewaters

were con t inued t o be recyc led . Powdered a c t i v a t e d carbon gave qood

r e s u l t s by adsorb ing odors and ABS de te rgen ts , b u t c r e a t e d hand1 i n g and

f e e d i n g problems due t o i t s l o w d e n s i t y and s p e c i a l m i x i n g reqgi rements.

Tab le 1-3.

Opera t i ng R e s u l t s from Us ing Aluminum S u l f a t e a s Coagulant.

I n f l u e n t

Ph 11 V o l a t i l e suspended

s o l I d s (mg/ l1 t ) 1170 Suspended s o l i d s 860 T o t a l s o l i d s 1943 C O D 2496 Phosphates 4.42

E f f l u e n t Percent Rerova 1

5.4 --

190 83.8

2 92 88.6 .3 93.2

160 83.4 1130 - -

S i m i l a r r e s u l t s seen i n Table 1 - 3 were determined u s i n g a h i g h chemical

dosage o f aluminum S u l f a t e versus aluminum s u l f a t e and poweered carbon.

Approximate chemical dosage o f aluminum s u l f a t e was 1000 m g l l i t f o l l o w e d by

a two hour d e t e n t i o n p e r i o d , The ma jo r drawbacks t o u s i n g aluminum s u l f a t e

a lone were t h e increased. r a t e o f s a l t b u i l d - u p w i t h i n the wastewater r e c y c l i n g

4

Process , a n d t. d t g r a d i e n t s d f f e c t i n g the 5 e t t d b i l 1 t y c f tk8e f ;o t . w i t h i n

the c l a r i f i e r .

Powdered C a r b o n 3 v d Polymer - r-- T , Holding

T a n k +

V

-Discharge

I

S1 udge

Figure 1-3 .

Flow Diagram f o r Wastewater Treatment U s i n g Pohdered Act ivated (a rbon A Polye lec t ro ly 'e as the Cozgulant a n d C;atomaceous Earth f o r F i ' t r a t i o n .

S a n i t a r y Sciences j i v i s i o n s f MERADCOM used the s tandard n i l i !ary

water p u r i f i c a t l o n u n i t ( E R R L A T O R ) t o reclaiir! laundry wastewater .6 The

process i n i t i a l l y lrsed an upflow c l a r i i i e r followed by f i l t r a t i o n t h r q u g h

a diatomaceous e a r t h p r e s s u r e f i l t e r . Coaqu;ation was produced by powdered

a c t i v a t e d carbon and a c a t l o n i c p o l y e l e c t r o l y t e .

dosage was 1000 m g / l i t w i t h t r a c e s o l u t i o n s of the polymer.

The powdered carbon

s

Tab le 1-4.

Opera t i ng From Coaqul a t i on o f !+‘as t ewa te r Ey Powdered Carbon and a P o l y e l e c t r o l y t e .

C h a r a c t e r i s t i c s * Tap Sof tened Raw Product Percent Water Water k‘astewater Water Removal

I

Turbf d i ty .13 Ph 8.1 BOD ( m g / l i t ) N o t Repor ted TOC, T o t a l ( m g / l i t TOC, D i s s o l v e d

Detergents LAS

Conduet i v i ty

Suspended s o l i d s

Hexane So lub les

Hardness as CaC03

( m g / l i t) 21

(mg/l i t) .04

(mho/cm) 234

(mg/l i t) 3

( m g / l i t ) 0.0

h g / l i t) 102

. I O 8 . 2

21

.02

234

3

0.0

4

1 06 2.04 10.3 10.1

152 14 183 20

103 2 2

2.98 .34

1024 1177

116 9

52 18

Rot Reported

98 -- ?. 1 09

79

89

97

65

--

* F i f t y - f o u r (54 ) samp;es taken ove r a 5 month p e r i c d .

As seen i n Table 4 t h e p e r c e n t removal f rom raw wastewater u s i n g

powdered carbon was s i m i l a r t o p rev ious methods d iscussed. Use o f

powdered carbon i n s t e a d o f aluminum s u l f a t e had some advantages.

Coagu la t i on by powdered carbon d i d n o t form t h e l a r g e f l o c c u l a n t

p a r t i c l e s alum formed.

as much by h e a t f l u c t u a t i o n s o f t h e water .

s i m l l f a r s i z e d equipment c o u l d be used w i t h powdered carbon us t ’ :e

coagulant. The d e t e n t i o n t ime f o r powdered carbon was twenty n i n u t e s

versus two hours f o r alumlnum s u l f a t e .

r e s u l t e d i n h a n d l i n g and f e e d i n g problems.

t o e x t r a c t phosphates f rov t h e wastewater.

Consequent ly powder-ed cdrbon was n o t a f f e c t e d

Fas te r f l o w r a t e s f o r

The use o f powdered carbon

Powdered carbon via5 t,nablr

6

I

The problem o f e x t r a c t i n g phosphates and o t h e r s a l t s w 3 s p a r t i a l l y

s o l v e d by S a n i t a r y Sciences D i v i s i u n us ing reverse O S I N J Z ~ S a f t e r f i l t r a t i o n

by diatomaceous e a r t h . Table 1-5 i s a summary o f the r e s u l t s .

Table 1 - 5 .

Summary of Wastewater C h a r a c t e r i s t i c s Using Reverse O s m o s i s , Coagulat ion, and Diatomaceous E a r t h F i 1 t r a t i c n

C h a r a c t e r i s tl cs

T u r b i d l t y , JTU

PH

LAS

T o t a l Hardness

T o t a l A l k a l i n i t y

COD

TO<

Suspended s o l 1 ds

Conduct i v i t y m l cromhos/cn!

Equal i z a t i a n Product '20 Product Tank Tank Tank

Range Average Range Average Range Average

25.6

8.9

39

71.3

336

422

95.8

39

1022

.5-55

8.2-9.5

6-: 08

44-1 20

50-520

206-1 025

51 -1 80

1-61

480 - 2200

1 . 5

e. 3.

1 . 7 4

60.2

203

1 7 3

54

9.6

94 0

. 2 - 4 . E

4.2-9.2

1-40

32-1 22

178-420

44-326

17-112

0-29

56 - 1390

.2

5.3

--

56

-- 55

25

-- 271

. O F . 6

2 . 9 - 8 . 7

--

56

-- 32-92

9-47

-- 64 -

1050

A l l u n l t s m g / l l t excep t as noted.

Disadvantages t o u s l n g r e v e r s e osmosis were: h i g h c o s t o f equipment,

s h o r t membrane l i f e , and a h i g h b r i n e t o p roduc t wa te r r a t i o .

A f t e r 1965 LAS, l l n e a r a l k y l a t e su1fonate.a b iodegradable detergent ,

r e p l a c e d t h e ABS d e t e r g e n t complexes.

d e t e r g e n t removal were d i s c o n t i n u e d a f t e r LAS gained market acceptance.

Thls was because LAS complexes b roke down r a p i d l y enough n o t t o pose a

b u l l d - u p o r p o l l u t f o n / s o u r c e problem.

c o n t l n u e d I n t h e removal and/or replacement o f phosphorus coilipounds i n

The m a j o r i t y o f i n v e s t i g a t i o n s i n t o

Laundry wastewater i nves t i ga t . i ons

7

laundry soap mixes. Phosphorus removal from deterqents continued t o be

considered because phosphorus stimulated a l g d l growths a v d under some

circumstances could produce nuisance condi tibns.

for a while was considered the most promising subst i tute for phosphorus

and i t s compounds, b u t was la te r dropped."

the property of making many heavy metal ions more soluble in water.

This interfered in the formation o f insolable s a l t s used t c coagulate

heally metal ions.

more serious problem, t h a t of heavy metal b u i l d - u p in ground waters.

o f the problems encountered from using phosphorus i p detergent mixes have

been solved by modern methods of sewage treatment.

processes a re now able to remove u p to 99 percent of the phosphorus in

the wastewater .

NTA (n i r i l o t r i ace t i c acid)

NTA, a chelating agent had

Replacement o f phosphorus by NTA would have caused a

Much

Current sewage treatment

Consequently further study using NTA or other chemicals t o subst i tute for

Because the problem o f l a u n d r y wastewater phosphorus have been discontinued..

pollution h a s effectively been solved i t i s doubtful t h a t any further study

will be made in detergent removal unless the cost of water, a n d sewage

charges become high enough t o make recycling of ldundry waters profitabled

2.0 ECONOMIC ANALYSIS

2.1 laundry Water Usage and Costs a t Major Army Installations in CONUS

Laundry water usage a t mili tary instal la t ions depicted in Table 2-1

were estimated by examining the Scnedule X ' s from the instal la t ion quartermaster

laundries.

d u r i n g the year for use in a manpower survey.

The Schedule X i s used to record the amount o f work conducted

8

I

Work l e v e l s a r e recorded by t h e number o f laundry pieces kiashed each

month.

c o r r e l a t i o n o f three ga l lons water required f o r each piece o f laundry

washed.%

k t e r usage was est lmated from pieces of laundry washed by the

Comparing the i n s t a l l a t i o n ' s t o t a l water consumption during the

year t o t h e estirnated laundry water usage f o r the s i x i n s t a l l a t i o n s

in Table 2-1, would i n d i c a t e t h a t approximately 1.03$ o f t h e t c t a l water

consumed a t the i n s t a l l a t i o n i s used by the i n s t a l l a t i o n quartermaster

1 a undry .

9

I

a2 co

E

LC

O

aJ 0-

m

m

a2 W

co m

N

ru zr 0

Id

7

h

‘f ru ru m

0

c

e

W

ID

m

‘f h

In

ID

3

h

ID

m

0

c

e

W

ID

m

In

3

h

N

h

cn - L

4

al b

L

4

U c

aJ n .r L)

- 4

U

ul W

L

t

m L

c,

Q

m

Ln

h

h

>

>

* lA

. LL

h

LL L

01 U

- 0 0

t

4

c, 4

U

%

4l C

0

C

0

0

0

0

v)

0

w

L

0

L

4

I

m

V

0,

3

U

aJ t

V

m

c

c, c,

c,

LL LL

LL

CI

c, LL

lA.

c,

LL

10

I

I -0

I

N I

N

0)

7

n m

c

\

L E

U 3

m

.d

I

01 c, v)

m

11 I

0)

U I

a a 0

c

0

c, 9

.r

- m

c, v) E

U

- a

g, v) 3

I

aJ U

2 L

0

Y-

v1 aJ e, m

a

c

0

U

3

v1 C

0

u

.r

e ? m

VI c, v)

0 u

U

aJ c, iz c c, v)

W

UL

)

I

000000000000

mo

3w

-Y

he

hh

hln

OO

m-

a

hh

ww

03

co

wW

we

me

m

88 000000000000

?%:?\%"1?939%? 0300

a"

m

c

L

0,

0, c

m

C

W

v)

aJ +

.r

.r

c

.r

c

.r

U

m LL

In

h

>

LL

W r

w

rc 0

23 m

W

c,

v)

t

.- In

W

n m

c

Y

m

c

0

c, I

c

- .- 3 U

-n

t 0

U

.^

c 0

v)

L

V

m

w.

L

wl

C

LO

0 'r

rcc

c,

m

v)

L

Wa

J

3n

-0

>L

m

5

0

11

I l s i t i g 1 .D3..” as a n i n d i c a t o r o f laundry w t e r cons~~np t io r i , Table 2-2 represents

the water consumed by the i n s t a l l a t i o n quartermaster l a u n d r y f o r the I 7

l a rges t I n s t a l l a t i o n s by population. Water and LwacJe charges a r e the

FY75 p r i ce paid by the i n s t a l l a t i o n a n d suppliec‘ by outs ide u t i l i t i e s .

The assumption was made t h a t any decrease i n water consumption o r sewaqe

t reatment f o r laundry wastewater recycl inq w o u l d be subtracted f r o i n the

more expensive serv ices supplied by o f f p o s t u t i l i t i e s .

i n Table 2 - 2 , the t o t a l estimated cos t per year f o r purchased water a n d

sewage treatment used by the quartermaster laundry i s the breakeven point

for the i n s t a l l a t i o n ’ s laundry recycle p l an t .

operat ion a n d amort lzat lon o f equipment cos t s of a laundry wastewater

recycl ing p l a n t mus t be unde r those estimated i n s t a l l d t i o n cos t s t o be

economically feasfble.

i.? Prelimlmpy Design.

The l a s t column

The t o t a l year ly c o s t o f

Figure 2-1 represents thc majcr process a reas t h a t woli ld be involved

in laundry waste treatment p l a n t indicated by the l l t e r a t u r e previously

discussed.

H i x i n g / S e t t u

1 Upflow c l a r i f i e r Retention r-

Chamber i r F loa ta t ion

Retenti on Disinfect ion

Fi 1 tra t i on

.Sand o r o ther medium- usinq qravi ty o r pres sure J S d r iv ina force

Diatcmaceous Earth . Polishinq -1

Chlorine as Reverse Osmosis bo t t led gas ,

Hypochloride I o n Exchange Figure 2 - 1 .

Used in Recycling Laundry Wastes. Flow Dfagram of Posslble Process Equipment

1 2

I

Estimated equipment cos ts were made using Figure 2-1 as a guide

for the possible process equipment t h a t would be used i n recycling waste-

water.

representative of the laundry water consumption a t i n s t a l l a t ions where reuse

of laundry water was feas ib le .

completed fo r coagulation by alum, a n d powdered carbon w i t h a polyelectrolyte

t o determine i f coagulation by e i t h e r process amounted t o any savings.

The lowest value between the two was used t o determine the to t a l cost of

equipment.

cost proposal by a pr ivate contractor f o r a laundry waste treatment plant t o

have been located a t F t . Jackson.

chemicals using l i t e r a t u r e dosages a n d the cost of a n operator maintaining

the equipment two t o four hours da i ly o r $5,000 per year.

A p lant capacity of 70,000 gpd of wastewatr'r was chosen as being

Equipment s iz ing and cost estimation was

Ins t a l l a t ion costs f o r the equipment wer'e determined by using a

Operating costs include the cost o f

Electr ical

charges L other maintenance expenses were n o t added i n t o the operating charge.

2.2.1 Mass Balance.

The basis f o r the treatment f a c i l i t y i s 70,000 gallons o f wastewater

per operating day. Table 2-3 i s representative of the typ ica l qua l i ty o f

laundry water wastes found in 1 i t e ra ture .

Table 2-3.

Average Qual f t y o f Laundry Wastes.

Process F1 ow Parameter Average (mg/l i t ) Range (mg/l i t ) (Average 1 b s / h r )

P h BOD COD ABS TDS Phosphate (PO-34)

Acidity a s C a C 0 3 Alkal ini ty as C a C 0 3

7.13 120 31 5 33 7 00 146

5.0-7.6 -- 50-1 85 8.75 136-455 22.98 15-144 2 .4 290-1 450 51.07 84-1 99 10.67

91 368

73-1 24 340-420

6.6 26.8

Process f l o w s a r e d e t e r m i n e d f r o m t h e b a s i s .

t o be o p e r a t e d 8 hours p e r dzy.

2.2.2 Mi x i n g / S e t t l i n g .

The sys tem i s e x p e c t e d

A i r f l o t a t l o n because o f t h e p o o r r e l i a b i l i t y i . e . , t h e l a r g e

amount o f l i q u i d e n t r a p m e n t w i t h i n t h e f o a n o v e r f l o w and p o o r s e p a r a t i o n ,

w i l l n o t be . o n s i d e r e d as a s u i t a b l e method o f was tewa te r r e c o v e r y .

A s s m p t l o n s used i n t h e p r e l i m i n a r y d e s i g n o f t h e u p f l o w c l a r i f i e r and

s e d i m e n t a t i o n chamber a r e l i s t e d below.

2.2.2.1

2.2.2.1.1

Assumpt ions f o r d e s i g n o f u p f l o w c l a r i f i e r and s e d i m e n t a t i o n chasber .

A p p r o x i m a t e l o a d i n g s f o r a luminum f l o c a r e shown i n T a b l e 2 - 4 .

T a b l e 2-4.

Tank Load ing .12

N a t u r e o f S p e c f f i c S e t t l i n g Sur face D e t e n t i o n P e r i o d S o l i d s G r a v i ty Vel oc i t y Load ing* ( f o r 10 f t t a n k )

Sand, s l i t

A lum inun

( C P S ) (gpd p e r f t2 j

6 c l a y 2.65 7 x 10-3 146 12.3

f l o c 1.002 8.2 X l o m 2 1800 1

*gFd I s f o r 24 h o u r p e r i o d .

2.2.2.1.2 Po,: jered a c t i v a t e d c a r b o n abso rbs w i t h i n 15 t o 20 m i n u t e s

a p p r o x i m a t e l y 95% of t h e removab le COD.

remove the o t h e r 5%.l3

2.2.2.1.3 Powdered c a r b o n has a r i s e r a t e o f 1.1 g a l / m i n / f t 2 and a d e t e n t i o n

time o f 20 minutes.14

2.2.2.1.4 Average d e p t h o f u p f l o w c l a r i f i e r i s f rom 8 t o 12 f e e t . I S

i n o r d i n a t e t i m e s a r e r e q u i r e d t o

1 4

2.2.2.1.5 Sedimentation tanks are desjgned w i t h l eng th t o w id th r a t i o s

O f 3 : l t o 5:1, a r e almost tw ice a s !ong as the est in lated s e t t l i n g v e l o c i t y

woulu r e q u i r e and have a depth o f approximately 8 f e e t . I 6

2.2.2.1.6 Average t l a r l f i e r diameters range f r D m 3 5 t o 200 fee t , 100 f e e t

beino the averaoe.

Cost e s t l m t e s a re f rom 1972.’’

2.2.2.1.7 Aluminum f l o c will remove by c l a r l f i c a t i o n 75% ABS and 94%

phosphates a t a pH between 4 and 5.

used i s 1000 mg/lit.le

2.2.2.1.8 NomencloLure.

Cost of c l a r i f i e r s ranae f rom $28,000 t o S470,OOU.

Concentrat ion of A 1 ( S O ) * 18 H20 2 4 3

Q: Volumetr ic f low r a t e

C:

to: Detent lon p e r l o d

Vo: h: Height of s e t t l l n g zone

W: Width o f s e t t l i n g zone

L: Length o f s e t t l i n g zone

A: Scrface Area

Volumetr ic capac i t y o f the s e t t l i n g zone

S e t t l i n g v e l o c i t y o r surface loadlng

2.2.2.2 C a l c u l a t i o n f o r Upflow C l a r i f i e r .

2.2.2.2.1 Using A l u m a s t he coagulant.

Surface loading: 1800 gpd / f t 2

Tank height : 10 f e e t

Surface l m d l o g 1800 gpd / f t2 = 10.025 f t 3 / h r / f t 2

(a) A * Q/Vo = (l170/10.025) 2 117 ft2

1 5

I

( b ) D e t e n t i o n t i m e =

( C ) Do lJb l i ng S i z e t o

q i v e a t a n k whose s u r f a c e

i s 10 f t .

2 . 2 . 2 . 2 . 2 U s i n g powdered

V / Q = ( 117 ,,,;)f/!yhzt) f: = 1 h o u r

a c c a u n t f o r e n t r a n c e and r a o i d m i x i n ? P r f e c t s

a r e a i s 234 f t ' , d i a m e t e r i s 18 f t , and h e i g h t

c a r b o n as t h e c o a s u l a n t .

S u r f a c e l o a d i n g : 1.: : a l / r i n / f t '

Tank h e i g h t : 1 0 f e e t

S u r f a c e l o a d i n g 1.: g a l / m i n / f t 2 = 8 . 8 f t ' / b r / f t -

( a ) A = O / V ( l 1 7 @ i R m 8 ) = 132.9 = 1 3 3 f t .

( b ) D e t e n t i o n t i m e = V/Q = = 1.1 h o u r

( c ) D o u b l i n g s i z e t o a c c o u n t f o r e n t r a n c e , and r a p i d m i x i n g e f f e c t s ,

7 i v e s a t a n k whose s d r f a c e i s 266 f t2, d i a m e t e r i s 1 s f t , and h e i g h t i s

10 f e e t .

2 . 2 . 2 . 3 C o s t o f c l a r i f i e r s .

C l c r i f i e r s range i n p r i c e f r o m 528,000 t o 5470,000 f o r c l a r i f i e r s

w i t h d i a m e t e r s f r o m 35 t o 200 ft. Chemical feed systems f o r c l a r i f i e r s

h a v i n g d i a m e t e r s be low 35 f t a r e t h e m a j o r c c s t .

w i t h d i a m e t e r s o f 18 t o 19 f e e t would c c s t a p p r o x i m a t e l y t h e same o r

Consequen t l y c l a r ' f i e r s

$28,000. U s i n g e c o n o n l c i n d i c a t o r s f rom Chemical E n g i n e e r i n g , c o s t o f

c l a r i f i e r s bough t I n Dec 1975 w o u l d be as f o l l o w s :

2.2.2.4 C a l c u l a t i o n s f o r S e d i m e n t a t i o n Lnamber u s i n g kluminum b u l f a t e

a s F l o c c u l a t e Aid.

16

I

Le t h = 8 f t and L = 4W.

S e t t l i n g v e l o c i t y =

V o = h/t.,: to = 8 f t / 9 . 8 f t / h r = .81 h r de ten t i on t ime 4W2/h/Q

to = C / Q

117015 (9.B)l = 5 5 f t

L = 22 ft.

Doubling sedimentat ion vo l une t o account f o r freeboard, and entrance

e f f e c t s ( j ives a tank w id th 6 ft, l eng th 40 f t , and he igh t o f 8 f t.

C o s t of sedimentation tank

Cur ren t p r i c e s f o r sedimentat ion tanks cou ld n o t be found i n

l i t e r a t u r e a t t h i s w r i t i n g . Chemical feed and mix ing systems f o r c l a r i f i e r s

would be s i m i l a r t o sedimentat ion u n i t s .

bas in of a sedimentat ion tank should be s i m i l a r bu t less expensive than

an upflow c l a r i f i e r because of i t s shape. The p r i c e should then be some-

Const ruc t ion o f the s e t t l i n g

where l ess than a c l a r i f i e r of s i m i l a r capac i ty o r $38,000. Without

knowing the degree d i f fe rence f o r es t imat ion purposes the cost o f the

sedimentation basfn i s $38,000.

7.2.5 Fi 1 t r a t i o n .

2.2.5.1 Sand o r Mixed Media F i l t e r .

2.2.5.1.1 Assumptions.

( a ) Hydrau l i c l oad ing on surface of sand bed i s 24.07 f t 3 / h r / f t 2 . ’ 9

(b ) Backwash when loss o f head i s 5 ps i . Backwash a t r a t e s hetween

12-15 ga l / f t 2 /m in fop sand f i l t r a t i o n . Continue backwashing f o r 5-10 minu tes .20

Bed depth i s - between 2 t o 3 fee t deep.21

Bed can con ta in between + LO 4 cubic fee t of suspended s o l i d s

backwashing. 2 2

17

( e ) A p p r o x i n a t e c o s t o f sand f i l t e r i s :,!:O I ) e r <quClr-p Cr,ot ; o a d i r , g

a rer l . ' ?

2 . 2 . 5.1.2 C a l c u l a t i o n s .

( a ) S u r f a i 2 a r e a o f f i l t e r .

S u r f a c e a r e a = V o l u m e t r i c f l o w r a t e 1170 f t ' / h r = 12.6 ;+- - 5 r ! t t ' ,bd 20.07ftVhrft'

( b ) C o s t 1 s t hen ; ( 5 0 f t ' ) ( S 8 0 / f t 2 ) = 54000 f o r 1970 k; i tho i i : p ~ - j

( c ) t i p d a t i n g

f o r sand f i l t e r .

( d ) Pump s i z

Backwash

the c o s t t o Gecember 1975 i s (S4000) 186.6

(m 1970

675 g a l / m i n .

( 7 . 5 m i n ) = 5100 g a l .

o f 1 5 p s i ( 3 4 f t o f w a t e r ) . U s i n g c h a r t i q Re fe rence 1'. c o s t o f I! c a s *

i r o n c e n t r i f u g a l I n l i n e pump w i t h m o t o r i s 9650 f o r 1971 costino. Cp-

T o t a l w a t e r r e q u i r e m e n t f o r backwzsh ing is (675 Qal, '?ip)

Backwashing r e q u i r e s pui'p w i t h S u c t i o n r l r P s S L l r e

d a t i n q c o s t t o Dec 1975; $650 186.6 = S X C -# ~ ~ ~ 1 1 9 7 5

( e ) T o t a l c o s t o f sand f i l t e r i s t h e n ; 56000 + $900 = 56,900.

2.2. 5.2 Diatomaceous E a r t h F i l t r a t i o n .

2.2. 5.2.1 Assumpt ions.

( a )

( b )

( c )

( d )

Bndy feed a t c o n s t a n t r z t e o f 29 m q / l i t . 2 ' '

P r e c c a t f i l t e r a r e a t r a t e o f .1 l b / f t 2 . 2 5

H y d r a u l i c l o a d i n g of f i l t e r a r e a i s 4.16 g a l l f t ? / m i n . ' E

Head l o s s a t end o f r u n between 35-100 p s i . Eackwash a t 50 m i .?:

2.2. 3.2.2 C d l c u l a t i o n s .

( a ) F l l t e r area

Q = i 1 7 0 f t 3 / h r = 8753 g a l / h r .

18

t

Lo = 4.16 gal/ft2/min (60 m i n / h r ) = 249.6 g a l / f t 2 / h r

Q,’Lo = A : 8753 = 35 f t 2 o f f i l t e r area.

( 5 )

m6

Cost u s i n g Figure 19-108 in Perry’s tiandbook f o r a continous vacuum

precoat f i l t e r Is $9,000 f o r 1968. Cost includes pumping charges,

( c ) Updating cos t t o Dec 1 ‘75 t o t a l cost of uni,.stalled diatomaceous

ear th

2.2.6

2.2. G.

i l t e r i s $9000 = 814,800

1968 Polishing.

Reverse Osmosis.

2.2.6.1.1 Assumptions.

( a ) Membranc l i f e is 6 t o 9 months. This membrane l i f e i s currently

longer than the actual l i f e expectitncy o f the current model b u t membrane

l i f e can be expected t o increase a s technology improves.

wil l a l s o vary due t o the following: construction of membrane, percent

i n f luen t recovered t o brine exhausted, a n d i n i t i a l c l a r i t y of inf;uent.

waste.28

Membrane l i f e

(b) Using a sp i r a l wound RO un i t and 90% recovery o f ?retreated waste-

water, the power requirement i s 9.8 kw-hr/1000 g a l a n d the f l u x i s 1 2 g p d / f t 2

of membrane a t 530 p s i and 7OOF.29

( c l Membrane cos t i s between $3 and $8 ‘Jet- s q tt. Cost o f eqLiownt

i s $30/ft2 3 f i n s t a l led membrane. 30

2 .2 . 6 1 . 2 Calculations.

( a ) Membrane size.

Q/Lo = A 70,000 g p d / f t 2 = 5,833 f t 2

19

I

€ t o il monthr depending

. ? ) - 532,081 = 5142,909.

on

f o r a reverse u s r w s i s Gnit i s $143,000 ( d ) Total c o s t

P’i

EC

os

2.

2.

each 6 t r , 9 months fcjr merrbrane replacement.

t o u o d a t c tbc unit c o s t s ince reverse

us an operat

.onomic i n d i c a

mos i s rop in pr ice cventii

demineral izdtion w

d l l y .

2 .6 ,2

2.6.2.

i t h sodium hydroxide a n d

*. 1 f u r i c s u

Exhaus t ion ’ and regeneration reactions a r e a s follcws

+ 2HC1 H2R

AOH + H20

+ ?lqS04

+ N a C L

El :g

A C 1

Keger,era t? on

*R&A a re cation and anfon exchanm resins respectively.

re f o o t of bed area i s between 8 a n d ( c

17 g a l

) Hydra

l o m per

20

( d ) Average bed depth i s between 2 t c 8 f ee t . 32

( e ) Cation has a resin l i f e expectancy of 10 years. Anion resins have

a l i f e expectancy between 2 and 8 years.33

( f ) Resins a re regenerated every 4 hours.34

( 9 ) Cation res in can adsorb 1 t o 3 pounds of ions per cubic foot gf

bed. A n i o n res in can adsorb 1.5 t o 2.5 pounds of ion per cubic foot of bed.35

( h ) Between 2 and 5 lbs of H SO are required t o regenerate each cubic 2 4 f o o t of cation resin. Approximately 4 lbs of NaOH a re required t o regenerate

each cubic foot on anion resin.36

(i) Rinsing and backwashing of res in beds requires 40 t o 60 gallons

per cubic foo t of bed.3'

( J ) Chemical regenerate consumption (percent of s t o i c h i c r e t r i c ) i s

between 120 and 200 percent.30

( k ) Resin costs are $20 per cubic foot fo r c a t i m resin and $60 t o

$100 per cubic foo t for anion res in a t 1970

( 1 ) The s o l u b i l i t y of A1(OH)3 i n solution i s very low (2.62 X

mole/ l i t a t 2 5 O C ) . For design purposes A10H3 does n o t add t o s a l t build-up.

2.2.6.2.2 Calculations.

2.2.6.2.2.1 Surface area of res in bed (tanks a re cy l ind r i ca l ) .

Q/Lo = A

Q = 70,000 gpd = 146 gal/min

Lo = 10 gal/ft2/min

A = 146/10 - 14.6 ft2 bed

2 1

I

..-

2.2.6.2.2.2 Resin Volume.

( a ) Cation res in .

I )

2 )

Cation resfn adsorbs 2 lbs i on / f t3 res in/4 hr.

From Teble 2-3, 26.8 lbs a l k a l i n i t y as CaC03/hr i s 107.2 lbs

of a l k a l i n i t y a s CaC03 added each four hour period t o the wastewater

system.

3 ) Required cat ion resin i s then; (107.2 lbs as CaCO3)/(2 lbs as

CaC03/f t3 / res i n ) . ( b ) Anion Resin.

1 ) Anion resin adsorbs 2 lbs i o n / f t 3 res in .

2 ) From Table 2-3, 6.6 lbs ac id i ty as CaCU3/hr/4 h r i s 26.4 lbs o f

ac id i ty as CaCO added each four hour period t o the wastewater system. 3 3) Powdered act ivated carbon i f added t o the system w i l l not increase

the i o n content. Aluminum su l f a t e wil l add the s u l f a t e ion t o the

wastewater m i x . If 1000 m g / l i t of aluminum su l f a t e (AIZ(SO )

is used, 250 lbs of SOg ion will be added each day.

18 H20) 4 3

4 ) Required anion resin when us ing alumlnum s u l f a t e as coagulant

i s t h e n (151.4 lbs a c i d i t y a s CaC03) (2 l b s as CaC03/ft3' r e s in ) = 76 f t 3

o f anion resin.

5) Required anion resin using powdered carbon i s (26.4/2) = 13 f t 3

anion resin.

2.2.6.2.2.3 Tank Volume.

Freeboard i s 70% of bed volume.

22

I

(a ) Cat ion res ln .

1) 1.7 (54 ft3 r e s i n ) = 92 ft3 volume.

2) Dimension o f tank. . Heiqht ’ Volume/Surface area = 9U14.6 = 6 . 3 ( h e i g h t of tank i s

then 6 . 3 f t and diameter i s 4.3 ft).

(b ) Anion res in .

1) Aluminum s u l f a t e as coagulant.

Volume = (1.7) (76 ft3) = 129 f t 3

Dlmensfon o f tank. h t = 129/14.6 = 8.8 f t anc diameter i s 4.3 f t

2) Powdered carbon as coagulant.

Volume = (1.7) (13 ft3) = 22.1 ft3

Dlmensfon o f tank.

Height i s then 22 f t 3 / 7 ft3 = 3 ft.

2.2.6.2.2.4 Chemical dosage for regenerat ion.

L e t diameter be 3 f t due t o small volume.

( a ) Cat ion res in .

I ) 3.5 l b s ti SO / f t 3 r e s i n a r e requ i red fo r regenerat ion.

2) The pounds o f HpSOq r e q u i r e d t o regenerate c a t i o n bed i s ; 2 4 .

( 3 . 5 ) (54) = 189 Ibs o f H SO r e q u i r e d f o r regenerat ion every f o u r hours. 2 4

3 ) S u l f u r i c a c l d 4s t ranspor ted a t 66% s t rength i n 55 g a l l o n drums.

The amount used I n one regenerat ion c y c l e I s ;

(1.842 sp.g.) (62.4 l b / f t 3 H20) 35.31 ft2 = 15 .36 lb/gal (189 l b s ) (1 /15 .36 =4*2 g a r

l b s / g a l ) (1/.66) - 18.6 ga l o f s tock s o l u t l o n .

23

a

(h) Anion Resin

1 )

2 )

4 lbs NaOH/ft3 r e s in a r e required fo r regeneration.

Pounds of NaOH required f o r regeneration using aluminum s u l f a t e

i s ( 4 l b s / f t 3 ) (76 f t 3 ) -- 304 l b s o f NaOH every four hours for regeneratlon.

Using Powdered Carbon; ( 4 l b s / f t 3 ) (13 f t 3 ) = 52 lbs of NaOH every four

hours fo r regeneration.

3 ) Sodium hydroxide i s transported a t 50% strength i n 55 gallon

drum. The amount used i n one regeneration cycle is then:

(2, .13 sp.g.) (62.4 l b s / f t 3 H20) 35.31 f t 3 = 17.76 lbs/gal 264.2 gal

Using Aluminum Sulfate:

(304 l b s ) (1/17.76 lbs /ga l ) (1/.5) = 5.8 gal of solut ion

2.2. 62 .2 .5 Regenerant usage during day.

Assume t h a t the l a s t half o f the regenerant volume i s saved fo r next

backwash (concentration is 200 percent of theoret ical ). Daily chemical usage

of regenerate chemicals would then be amounts calculated i n 2.2.4.2.2.4.

2.2. 6.2.2.6 Water required fo r backwash a n d r inse.

( a ) Half o f regeneration cycle water i s supplied from previous wash.

I f two backwashings are reqgired each day, the da i ly water requirement

i s the water used f o r one regeneration cycle.

( b ) Rinse and backwash requires 50 gallons per cubic foot of res in

bed.

( c ) Cation resin rfnse and water requirements are:

(50 g a l / f t 3 ) (54 f t3) 5 2700 gal.

( d ) Anion resin rinse and water requirements are:

1 ) Using Aluminum a s coagulant:

2 ) Using Powdered Carbon a s coagulant: (50 g a l / f t 3 ) (13 f t 3 ) = 650 gal .

(50 g a l / f t 3 ) ( 7 6 f t 3 ) = 3000 ga l

24

\

I

t

2.2.6.2.2.7 Resin bed cost.

(a) Cat ion res in .

1) Resin c o s t i s $ 2 0 / f t 3 i n 1970.

2) Cost u s i n g economic i n d i c a t o r s f o r Dec 1975 i s ;

(b) Anion r e s i n

1) Resin c o s t i s $80/ f t3 i n 1970.

2) Costs u s i n g economic i n d i c a t o r s f o r Dec 1975 i s ; us ing aluminum

Using Pondered Carbon as coagulant: ( $ 8 0 / f t 3 ) (13 f t 3 ) 186.6 75 I970

= $1,550.

2.2.6.2.2.8 System Cost. - Using t a b l e i n Reference 1, c o s t f o r i o n exchanger system i s $23,000 i n

1972. Cost o f i o n exchanger system by Dec 1975 i s then;

2 . 2 - 7 Chlor ine D i s i n f e c t i o n

2.2. 7.1 Assumptions.

2.2.7.1.1 S o l u t i o n feed equipment costs a re $500 if c y l i n d e r mounted.

I f us ing ca lc ium hypochlor i te , c o s t o f equipment i s between 5100 and Slnnn

f o r 1970

2.2. 7.1.2 Free a v a i l a b l e c h l o r i n e requ i red f o r d i s i n f e c t i o n i s .2 m g / l i t

a t pH o f 6 t o 8.4s

2.2. 7.1.3 To produce r e s i d u a l of . 2 m g / l i t , feed c h l o r i n e i s r a t e o f . 5

mg/l i t . 4 2

25

m B

Y

26

2.2.7.2 Calculations.

2.2.7.2.1 Chlorine bot t led gas required: (.0005 g r / l i t ) (3.785 l i t / g a l )

(lbs/454 g r ) = 4.1685 X loo6 l b s / l l t / g a l ) 70,000 gal/day (4.1685 X

l b s C12/gal) = . 3 l b chlorine required each day.

2.2.7.2.2 Calciun hypochlorfte rsquired:

(normal comnercial form) For 100% dissociat ion (.3 lbC1) lb-mole =

.0084 lb-mole Cl, or ( .a423 1b-mole ClZ) (215 lb/lb-mole) (.00423 lb-mole)

= 9 l b calciun hypochlorite required each day.

Ca(OC1)2. 4 H20 = 215 lb/lb-mole

m b

2.2.7.3 Cost o f system.

2.2.!.3.1 Chlorine gas $500

2.2.7.3.2 Calcium Hypochlor

f)eg;;975 = $750

t e $700 186.6 Dec 1975 $1,OOO , $...f1970

2.2.8 Wastewater and Clear Holding lanks.

2.2 .8. 1 Assumpti ons . 2.2.8.1.1 Total volume of tanks and process equipment should be ab le t o

retain t h e water used during the day over periods when laundry i s not

i n use.

2.2.8.1.2 Wastewater holding tank should be ab le t o r e t a in Inf luent waste

during heavfest loading period.

2.2.8.1.3 Wartr'rter holding t a n k should be la rge enough so t h a t the waste-

water from d i f f e r e n t cycles a re well mixed. This i s required so t h a t influent

waste concentrations are constant and temperatures a r e constant t o

heat gradi .nts within the c l a r i f i e r and chemical feed f luctuat ions.

2.2.8.2 Calculations.

2.2.8.2.1 The average washing cycle including both wash and rinse cycles

takes approximately one hour. During an e igh t hour day no more than e igh t

lnimize

3 27 i

washing cyc les cou ld be done on each p i e c e o f equipment.

account the a n u n t of t ime r e q u i r e d t o l oad and prepare a cyc le , t.he minimum

number of cyc les w i t h i n a day would he a p p r o x i m t e l y f i ve .

1/5 t o 1/8 of a day’s water supply i s be ing used a t any one t ime.

conse rva t i ve es t ima te each tank should be ab le t o r e t a i n 1 / 5 o f the d a i l y water

supply o r 15,000 g a l capac i ty .

Mould be about 1.5 hours, l o n g enough t o mix t h e i n f l u e n t w,\stes.

2.2.8.2.2 Using Means Handbook, c o s t data fo r 1975, a pyecasC 15,000 g a l l o n

cement s e p t i c tank c o s t s about $A350.43 1-c ta l cos t o f h o l d i n g tanks i s

then $8,700.

2.2.9 P i p i n g Estlmate.

Tak ing i n t o

Consequently o n l y

As a

Deten t ion t ime i n wastewater h o l d i n g tank

Using a sca le drawing, t he amount o f p i p i n g i s es t imated as fo l l ows ;

186 f e e t 6 I n c h d iameter cas t i r o n p i p i n g f o r process f l ow and 90 f e e t o f

4 i n c h p i p i n g for secondary f l ows o f s l u r r i e d sludges.

us ing Means Handbook, f o r 1975 i s $1700 and $480 r e s p e c t i v e l y .

f o r p i p i n g i s then $2,180.44

1 . 2 4 0 Pumping Estimate.

Cstimated cos ts

To ta l cos t

Volumetr ic f l o w i s 146 gpm. Assumed pressure head should range between

The c o s t o f a cast. i r o n c e n t r i f u g a l I n l i n e pump 20 and 100 f e e t o f water.

w i t h motor i s between $300 and $600 f o r conparable pressures us ing t h e

Chemical Engineer fng Deskbook from October 1971. For e s t i m a t i o n purposes

t h e average pump f o r a laundry wastewater system w i l l c o s t 6400 each.

t o t a l o f s f x major pumps a r e requ f red f o r process f low.

i s then 6(400) = $2400.

p r i c e i n December 1975 I s then: $2400 209.1 ec 1975 = $3,800.

A

The c o s t f o r 1971

Using Chemlcal Engineer ing economic i n d i c a t o r s ,

w g 7 2

28

2.2.11 Building Si te .

Floor space f o r wastewater system i s estimated a t 60 x 40 f ee t . Using

1975 Means Handbook, cos t f o r covered area (warehouse/storage building) i s

$33,000.

2.2.12 Auxi 1 iary Equipment.

Figure 2-? i s a flow diagram of the proposed wastewater treatment f a c i l i t y .

Each day 20,000 gallons of the 70,000 gallons entering would be used t o s lur ry

away f locculants from the c l a r i f i e r and the s a l t s from the ion exchanger.

o f the waste e f f luent leaving the c l a r i f i e r , abou t 3500 gallons d a i l y could

be recovered using a holding t a n k w i t h a large detention period o r by using

a dewatering f i l t e r . Neither woulJ be economical t o i n s t a l l unless the operating

and amortized cos ts were l e s s t h a n the recovered water and sewage charges.

Recovering 3500 gal/day was no t considered economically pract ical in t h i s

report.

large amounts of ionic s a l t s .

of waste recovery and would also no t be pract ical .

required in mnitoring the pH of the backwash water from the ion exchangers.

2.3 Cost Ana'ysis.

2.3.1

Part

The other e f f luen t waters from backwashing the ion exchangers contain

These a r e renovabl? only by more exot ic methods

Special care would be

Total equipment and in s t a l l a t ion cost .

Table 2-5 i s a compilation of estimated equipment costs from the previous

sections.

i

i t b l c 2-5.

Estimated Costs of Chemicals f o r Laundry Wastewater Recovery.

Holding Tank $ 4,350

Upflow/Clarifier . 38,100

Sand/Mi xed Media F i 1 t e r 6,900

Ion Exchange 31,000

Chlorine dis infect ion 750

Holding Tank 4,350

Piping 2,200

Pump 3,800

Subtotal ' 91,450

Building 33,000

Total $124,450

A private contractor i n September 1973 proposed t o build a t Fort

Jackson a 1.44 X 105 gpd laundry wastewater reclamation system.

iri 1973 money f o r the system was $75,000 f o r equipment supplied by the

contractor and $60.960 for i n s t a l l a t i o n by a d i f f e r e n t firm. Total cost

o f the system was then $135,960.

equipment t h a t would have been suppl ied by the contractor:46

The cost

The following i s a l i s t i n g o f the

1 . Engineering drawings

2. Two a i r operated slow speed mixers

3. Three chemical feed systems

4. Required pumping systems

5. Vacuun f i l t e r

6.

7 . Chlorine feed system

8. Control panel

Two water sof teners w i t h regeneration tank

30

Ins t a l l a t ion charges were f o r the following:

1. Building and concrete work

2. Equipment i n s t a l l a t i o n

3.

4. Elec t r ica l w i r i n g and in s t a l l a t ion

Mechanlcal i n s t a l l a t ion , l .e., p i p i n g and bracketing required

5. Air compressor

6. Receiving, f.e., a l l items received and unloaded.

The estimated charge by the contractor d i d not include the cost of

two holding tanks. Using Means Cost Data f o r 1975 the equipment cost

and in s t a l l a t ion cos t of two 30,000 gallon cement holding t a n k s would be

approximately $18,000.47 Using Economic ind ica tors from Chemical

Engineering t o update the estimate by the contractor gives the following

f o r Dec 1975 prices,

Contractor equipment estimate: 75,000 [;;;:;! 7 j = $97,100. 1973

Contractor i n s t a l l a t ion estimate: ($60,960) I;:%:;; 75 = $78,900. 1973

T o t a l estimated cost I s then $97,100 + $78,900 + $18,000 = $194,000.

Ins ta l la t ion costs for the 70,000 gpd treatment f a c i l i t y are determined

by using the r a t l o of contractor estimated in s t a l l a t ion costs over the

to t a l cost estimate.

Instal la t ion estimate: ($91,450) 78,900 + 2,400 = $38,300. 194,000

The addftfonal $2,400 is f o r i n s t a l l a t ion of the holding tanks.

15% for ALE costs, the t o t a l cos t f o r the 70,000 gpd treatment f a c i l i t y

would be:

Adding

1.15 ($38,300 t $91,450) - $150,000

_-

Figure 2-3 shows t o t a l cos t o f plant versus c ipac i ty f o r a laundry

wastewater treatment f a c i l i t y .

120 I m

70 100 144

Plant Capacity fo r Wastewater Treatment (!O3 q p d ) .

Figure 2-3.

Estimated Laundry GIaste Treatment Plant Cost Versus Plant Capacity

2.3.2 Chemical Costs.

Table 2-6 is a compilation o f estimated chemical costs. Chemicals

a re of commercial grade and bought i n small quant i t ies . Prices a re

twice the value of l i t e r a t u r e pr ices for bulk quant i t ies i n 1975 and

F.O.B.48 Prices have been doubled 4 4 account f o r the small quant i t ies

bough t . Cost of chemicals a r e tabulated i n increments o f 1000 gallons

of recovered wastewater.

32

JI ". l a - , I

Recovery . Table 2-6-

Estimated Costs of Chemicals f o r Laundry Wastewater

C hemi ca 1 Form c0st48 Concen t r a t Used

A1 uml nun Sul fa te

Sodium Hydroxide

Sul fur ic Acid

Polymer

Powdered Activated Charcoal

100 l b bag $7.00 8.3 x 10-3 1 bs/gal

on cost 1000/ga 1

5 .a2

55 gal drum $53.00 34.2 gallday .66 50% strength f J r Aluminum

Sul fa te Coagulation

5.8 gallday . l l fo r Powdered Carbon Coagulation

55 gal drum $50.00 18.6 gal/day .34 60% strength

Liquid -- Trace Amount .03

100 l b bag or $10.00 8.3 x 10-3 1.17 Cannister 1 bs/gal

The t o t a l chemical charge using aluminum sul'fate a s a coagulant

t o t r e a t 1000 gallons @f wastewater i s then $1.82.

as the coagulant the t o t a l charge i s $1.65 t o t r e a t 1000 gallons of

wastewater.

2.3.3 Operating Costs.

Using powdered carbon

Operation and maintenance is estimated t o be 3% of the i n i t i a l

cap i ta l investment or $4,500 per year.

2.3.4 Total Cost.

Table 2-7 i s a sumnary of estimated costs required t o i n s t a l l and

maintain a 70,000 gpd treatment f a c i l i t y . The year ly cos t f o r equipment

-- and i n s t a l l a t i o n was determined using a capi ta l recovery f a c t o r , a

25 year p l an t l i f e w i t h no salvage value, and money a t 10 percent.

_-

Table 2-7. Summary o f Costs f o r 70,000 gpd l lastewatcr Treatment F a c i i i t y .

Type o f T o t a l Cost Year ly Cost Cost!1000 g a l * Expense

Equipment 6 $150,000 $16,50C 51.27 1 ns t a l l a t i on

Chemical c o s t u s i n g A1 umi num S u l f a t e f o r Coagula ti on -- $23,700 SI .82

Chemical c o s t us ing Powdered Carbon as Coagulat ion -- $21,500 51.65

-- Operat ion C mai nteiiance 5 4,500 s .35

*Cost 1000 g a l I s determined f rom water t h a t i s r e c y c l e d o r 50,OCd ga l lday .

Using t h e lowest chemical charge, powdered carbon, the .;nnual exnense

o f m a i n t a i n i n g a t rea tment f a c i l i t y r e c y c l i n g 50,000 gpd o f laundry waste-

‘ water would be $42,500.

The breakeven p o i n t f o r water and sewage charges would then be $3.21

per 1000 g a l l o n s o f t r e a t e d wastewater.

By a s i m i l i a r procedure the breakeven p o i n t f o r the p l a n t s i z e I iconmended

F i g u r e 2-4 i s t h e es t imated breakeven l i n e f o r water and sewage charges

by t h e c o n t r a c t o r i s $2.66 p e r 1000 g a l l o n s o f t r e a t e d wastewater.

versus d a i l y p l a n t capaci ty .

2.66

Water and Sewage Charge ($/1000)

L 76 144

D a l l y ‘P lant Capaci ty ( k g a l l d a y )

F i g u r e 2-4. Breakeven L i n e f o r P la r l t Capaci ty Versus Hater and Sewage Charge.

34

I

3.0 DISCUSSION.

3.1 Comparison.

The breakeven p o i n t f o r a 70,OOC gpd laundry treatment f a c i l i t y i s

Comparing t h i s value against the $3.27/7000 gal of treated wastewater.

purchased water and swage treatrrent r a t e s in Table 2-2, f o r the 1 7 la rges t

i n s t a l l a t ions by p o p u l a t i o n there i s no CONUS i n s t a l l a t ion t h a t warrants

the use of laundry water recycle. F t . Bragg's purchased water and sewage

treatment i s the nearest t o the estimated breakeven point a t $1.60/1000

gal. !ncreasing p lan t capacity and laundry water consumption r a t e s wi l l

decrease the cos t of wastewater treatment lowering the breakeven p lint.

Using the Ft . Bragg laundry and $1.60/1000 gal as a breakeven point for

example, approximately 270,000 gpd of laundry wastewater would have t o be

recycled a t the lau-dry t o a t t a i n the breakeven costs o f $1.60/1000 gal.

A flowrate o f t h i s magnitude amounts t o four percent of F t . Bragg's t o t a l

yearly water consumption. Four percent of the yearly water consumed i s

much higher t h a n w h a t would be expected t o be consumed a t the F t . Bragg

laundry. About one percent or a 78,100 gpd wastewater flow had been

previously estimated. Comparison of the two values would indicate t h a t

the F t . Bragg laundry does not use the amounts of water required t o be

economical u s i n g the process flow described w i t h i n t h i s report .

the costs and estimated wastewater flows of other i n s t a l l a t ions in Table

2-2, indicates t h a t no o ther i n s t a l l a t i o n current ly has the required waste-

water flow rate or purchased water and sewage r a t e s to make the in s t a l l a t ion

Comparing

of a laundry wastewater recycling process economical.

A possible method o f lowering the breakeven value o f the l aundry

_ _ wastewater treatment f a c l l i t y would be not to use the ion exchanger and

recycle only a portion of the flocculated wastewater . to keep the ionic

s a l t build-up below an acceptable l imit . Figure 3-1 i s a representation

o f the flow diagram. Using the same sized equipment and estimating

procedures for a 70,000 gpd , the total instal led cost would be $98,000.

Letting X be the amount o f wastewater t o be recycled per year, $1.17/1000

gal the chemical a n d operating cost , $1.60,’?000 gal the purchased water

and sewage charge, and 510.000 the yearly f i x e d cost, the a r o u n t o f watcr

Non recycled waste f o r s a l t removal

I

I Quartermaster Make-up Laundry Process

,+ L Water

Recycle

.( Backwash + Floc Waste

FIGURE 3-1

Flow Diagram for Laundry Wastewater Recycling Without the Use o f Ion Exchange Equipment.

required t o be recycled t o breakeven would be as follows:

m total C o s t Total Prof i t

$10,800 + (51.17/1000 g a l ) ( X ) = ($1.60/1000 ga l ) ( X )

36

Solving fo r X , 25,000 kgal lyr of wastewater would have t o be recycled.

F t . Bragg t o breakeven would have to recycle a t a r a t e o f 125%. Any

recycle r a t e above 100% i s physically impossible,

method i s a l so n o t economically feas ib le .

$5,000 annually, representing a in s t a l l ed p l a n t cost o f $45,000, the

breakeven recycle rate i s 58% and this value in tu i t i ve ly i s s t i l l too

h i g h .

Consequently, t h i s

Even i f the fixed cos t were

Laundry wastewater recycling fo r economic reasons current ly does

n o t appear t o be feas ib le .

flows a re n o t large er,ough, purchased water and sewage r a t e s a r e n o t

high enough, and equipment and i n s t a l l a t ion costs a re too high.

n o t reasonable t o expect these parameters t o change rapidly. Laundry

wastewater recycle a t the in s t a l l a t ion quartermaster laundries wil l remain

economically infeas ib le u n t i l conditions a n d water costs increase. Future

e f f o r t s should consider the economics of recover of the chemical treatment

materials as this i s a major cos t item.

recovered and reused, substant ia l cos t savings would occur.

4.0 CONCLUSION.

4.1 Conclusion.

As seen i n the previous discussion the process

I t i s

I f the act ivated carbon could be

Laundry wastewater recycling a t CONUS i n s t a l l a t i o n quartermaster

laundries i s current ly uneconomical t o perform. There i s no indication

t h a t present circumstances wil l change dramatically enough in the near

fu ture t o warrant fu ture study i n t o recycling processes f o r i n s t a l l a t ion

quartermaster laundries

37

\

I , - . . ,..

B i b l iography -- - 1. L i p t a k , B.G., Environmental Enqineer 's Handbook, Volume 1, C h i l t o n

Book Company, Pennsylvania, 1974.

2. Peters M.S., T i m e r h o u s K.D., P l a n t Design and Economics f o r

- Chemical Engineers, McGraw H i l l , New York, 1968.

3.

John Wiley and Sons, Inc., New York, 1968.

4. F a i r G . M . , Geyer J.C., Okun D.A., Elements of Water Supply and

Wastewater Disposal, John Wiley and Sons, Inc., New York, 1971.

5.

Engineers, Barnes and Noble, Inc., New York, ,1970.

6. Weber, W.J.Jr., Physiochemical Processes f o r Water Q u a l i t y C o n t r o l ,

Wiley In te rsc ience, New York, 1972.

7. N o r d e l l E., Water Treatment f o r I n d u s t r i a l and Other Use;, 2nd

e d i t i o n , Reinhold P u b l i s h i n g Corp. rlew York, 1961.

8. Betz Handbook o f I n d u s t r i a l Water Condi t ion inq, 6 t h e d i t i o n , Betz

Laborator ies, Inc., Pennsylvania, 1962.

9. Standard Methods f o r t h e Examination of Water and Wastewater, 13 th

e d i t i o n , American P u b l i c Hea l th Associat ion, Washington, DC 1971.

10. Eisenhower H.R., Chemical Kemoval o f ABS f rom Wastewater E f f l u e n t s ,

Journal Water P o l l u t i o n Cont ro l Federation, Vol. 37, 1965.

F a i r G.M., Geyer J.C., Okun D.A., Water and Wastewater Enqineerinq,

Eckenfelder, W.S., Jr., Water Q u a l i t y Engineer ing f o r P r a c t i c i n g

38

1 2 . Flynn J . M . , Andress B . , "Launderette Waste Treatment Processes",

Journal Water Pollution Control Federation, Vol. 35, 1963.

13. U.S. Army Mobility Equipment Research & Development Center, "Study

on Power Laundry Wastewater Treatment", 1974.

14.

on most Field Hospital Wastewater Treatment", 1974.

U . S . Army Mobility Equipment Research & Development Center, "Studies

Program Wastewater Treatment System",

Engineering, Vol. 83, No. 3 , Feb 1976.

Costs", Chemical Engineering Deskbook

15. Snoeyink V . L . , "USAF Mobility

University of I l l i n o i s , 1972.

16 . Economic Indicators , Chemical

1 7 . Guthrie K.M., "Pump and Valve

Vol. 78, No. 23, October 1971.

18. C u l p G.L. , Culp R.L . , New Concepts i n Water Pur i f ica t ion , Van Nostrand

Reinhold Company, N e w ,York, 1974.

;9. Department of the Army, Office of the Chief of Engineers, " F a c i l i t i e s

Engineering Annual S t i i a r y of Operations", Fiscal Year 1974 & 1975.

20.

and Evaluation, 1961.

21.

E f f 1 uent'l, Industr ia l Wastes, March/Apri 1 1976.

22.

1946.

23 . U.S. Environmental Protection Agency, Process Design Manual fo r

Suspended Sol i d s Removal, 1975.

TB Eng 259, Repairs and U t i l i t i e s , U t i l i t i e s Ut i l iza t ion Targets

Poon C., "Elec t ro ly t ic Treatment of Laundry Waste Froduces Qual i ty

Ryan W.J., Water Treatment and Purif,ication, McGraw Hi l l , New York,

39

2 4 .

Fort Jackson, Vacumite Inc., 1973.

25 .

26.

New York, 1963.

Proposal f o r 300 GPM Laundry Waste Water Reclamation System a t

Buildinq Construction Cost Data, Means, Massachusetts, 1374.

Perry's Chemical Engineers' Handbook, 4 t h ed i t i on , McGraw H i l l , -

40

FOOTNOTES

Flynn J . , Andress B., "Laundere t t e Waste Treatment P r o c e s s e s " , Journa 1 1 .

Water P o l l u t i o n Con t ro l F e d e r a t i o n , Vol. 35 , No. 6 , pg. 787.

2. I b i d , pg. 789.

3. I b i d , pg. 789.

4 . I b i d , pg. 790.

5.

E f f l u e n t " , I n d u s t r i a l Wastes, March/April 1976, pg. 34.

6.

Equipment Research and Development Center, 1974.

7.

Van Nostrand Reinhold Co., 1974, pg. 6 .

8.

and E v a l u a t i o n , 1961, pg. 25.

9.

the Army, Office o f t h e Chief cif Enginee r s , F i s c a l Year 1974 L 1975.

10. I b i d .

11.

C h i l t o n , 1974, pg. 1509.

12.

New York: Wlley, 1972, pg. 128.

13. I b l d , note i l l , pg. 1215.

14. I b i d , note R6, pg. 2.

15. F a i r G.M., Geyer J.C., Elements of Water Supply and Wcstewater D i s p o s a l ,

New York: Wlley, 1971.

Poon C . , " E l e c t r o l y t i c Treatment o f Laundry Waste Produces Q u a l i t y

"Study on Pqwer Laundry Idastewater Treatment" , U.S. A m y M o b i l i t y

Culp G.L. , Culp R . L . , New i n c e p t s i n Water P u r i f i c a t i o n , New York:

"TB Eng 259". R e p a i r s and Ut i l i t i es , Ut i l i t i es U t i l i z a t i o n T a r g e t s

" F a c i l i t i e s Engineer ing Annual Sumnary o f Opera t ions" , Department o f

L i p t a l k B.G., Environmental Enqineers Handbook, Vol. _1, Pennsylvania:

Weber W.J., Physiochemical P rocesses f o r Water Q u a l i t y C o n t r o l ,

.- 16. I b i d .

17. I b i d , note 111, pg. 764.

41

i

b

.-

18. Ibid, note kll, pg. 1510.

19. Betz Handbook o f Industrial Water Conditioning, Pennsylvania: Betz

Laboratories, 1962, pg. 40.

20. Ibid, pg. 40.

21. Ibid, pg. 40.

22. Ibid, pg. 40.

23. Ibid, note #11.

24. Ibid, note U6, pg. 4

25. Ibid, nnote #6, pg. 4.

26. Ibid, note lug, pg. 4.

27.

28. Snoeyink V.L., USAF Mobility Program Wastewater Treatment System, 1972,

pg. 138.

29. Ibid.

30. Ibid, note 811, pg. 1255.

31. Ibid, note 111, pg. 1243.

32. Ibid, note #ll, pg. 1243.

33. Ibid, note 111, pg. 1243.

34. Ibid, note tll, pg. 1243.

35. Ibid, note f f l l , pg. 1243.

36. Ibid, note 111, pg. 1243.

37. Ibid, note f l l , p9. 1243.

38. Ibid, note #11, pg. 1243.

39. I b i d , note 111, pg. 1243.

40. I b f d , note 111, pg. 960.

41. Ibid, note tll, pg. 959.

42. ioid, note #11, pg. 959.

-

Ibid, note 819, pg. 46.

42

I ...

43. B u i l d i n g Construct ion Cost Data, Massachusetts; Means, 1974, pg. 32.

44. I b i d , pg. 182.

45. I b i d , pg. 220.

46. "Proposal f o r 3Gyl GPM Laundry Water Reclamation System a t F o r t Jackson",

Vacumi t e Inc . , 1973.

47 .

48.

P r o t e c t i o n Agency, 1975.

I b i d , n o t e 143, pg. 32.

Process Design Manual f o r Suspended S o l i d s Removal, US Environmental

-. . ,. . . , . 8'

43

*-- I

FESA DISTRIBUTION

US M i li t a r y Academy ATTN: Dept of Mechanics ATTN: L i b r a r y West Po in t , NY 10996

Ch ie f o f Engineers ATI": DAEN-ASI-L ( 2 ) ATTN: DAEN-FEB ATTN: DAEN-FEP ATTN: DAEN-FEU ATTN: DAEN-FEZ-A ATTN: DAEN-MCZ-S

* ATTN: DAEN-MCE-U ATTN: DAEN-MCZ-E ATTN: DAEN-RDL Dept o f t h e Army WASH, DC 20314

D i r e c t o r , USA-WES ATTN: L i b r a r y P.O. Box 631 Vicksburg, HS 39181

C Oman de r , TRADOC Of f i ce o f t h e Engineer ATTN: ATEN

F t . Monroe, VA 23651 ATTN: ATEN-FE-U

US Army Engr D Is t , New York

26 Federal Plaza New York, NY 10007

ATTN: NANEN-E

USA Engr D l S t B Ba l t fmore ATTN: Ch le f , Engr D l v P.O. Box 1715 Bal t imore , MD 21203

USA Engr D i s t , Char les ton ATTN: Chlef , Engr D f v P.O. Box 919 CharleStOn, SC 29402

* - * USA Engr D i s t , Savannah ATTN : Ch I e f , 3ASAS-L P.O. Box 889 Savannah, GA 31402

USA Engr D i s t D e t r o i t P.O. Box 1027 D e t r o i t , MI 48231

USA Engr D i s t Kansas C i t y ATTN: Ch ie f , Engr D i v 700 Federal O f f i c e B ldg 601 E. 1 2 t h S t Kansas City, MO 64106

USA Engr D i s t , Onaha ATTN: Ch ie f , Engr D i v 7410 USOP and Courthouse 215 N. 1 7 t h S t Omaha, NM 68102

USA Engr D i s t , F o r t Worth ATTN: Chief , SWFED-D ATTN: Ch ie f , SWFED-MA/MR P.O. Box 17300 F o r t Worth, TX 76102

USA Engr D i s t , Sacramento ATTN: Chief, SPKED-D 650 C a p i t o l M a l l Sacramento, CA 95814

USA Engr D i s t , Fa r East ATTN: Chief, Engr D i v APO San Francisco, CA 96301

USA Engr D i s t , Japan APO San Francisco, CA 96343

USA Engr D lv , Europe European D i v, Corps o f Engineers APO New York. NY 09757

USA Engr D iv , N o r t h A t l a n t i c ATTN: Ch ie f , NADEN-T 90 Church S t New York. NY 10007

USA Engr D iv , South A t l a n t i c ATTN: Ch ie f , SAEN-TE 510 T i t l e B ldg 30 Pryo r S t , SW A t l a n t a , GA 30303

1

USA Engr D i s t , Mob i l e ATTN: Ch ie f , SAMEN-C P , O , Box 2288 Mobile, AL 36601

US.4 Engr O is t , L o u i s v i l l e ATTN: Chief, Engr D i v P.O. Box 59 L o u i s v i l l e , KY 40201

USA Engr D i s t , N o r f o l k ATTN: Ch ie f , NAOEN-D 803 F r o n t S t r e e t N o r f o l k , VA 23510

USA Engr Div, M issour i R i v e r ATTN: Chief , Engr D i v P.O. Box 103 Downtown S t a t i o n Omaha, NB 68101

USA Engr Div, South P a c i f i c ATTN: Ch ie f , SPDED-TG 630 Sansome St, Rm 1216 San Francisco, CA 94111

AF C l v i l Engr Center/XRL T y n Q l l AFB, FL 32401

Naval F a c i l i t i e s Engr Comnand ATTN: Code 04 200 S t o v a l l S t A1 exandria, VA 22332

Defense Documentation Center ATTN: TCA (1 2) Cameron S t a t i o n A1 exandria, VA 22314

C o m n d e r and D i r e c t o r USA Co ld Regions Research Eng ineer ing

HanGVer, NH 03755 La bora t o r y

USA Engr D iv , H u n t s v i l l e ATTN: Ch i e f , HNDED-ME P.O. Box 1600 West S t a t i o n Huntsv i 11 e, AL 35807

USA Engr D iv , Ohio R i v e r ATTN: Chief, Engr D i v P.0 Box 1159 C i n c i n n a t i , OH 45201

USA Engr Div, N o r t h Cen t ra l ATTN: Chief, Engr D i v 536 S o C la rk S t Chicago, I1 60605

USA Engr Div, Southwestern ATTN: Ch ie f , SWDED-TM Main Tower Bldg, 1200 Main S t Da l las , TX 75202

USA Engr D iv , P a c i f i c Ocean ATTN: Ch ie f , Engr D i v APO San Francisco, CA 96558

FORS COM ATTN: AFEN

F t . McPherson, GA 30330

O f f i c e r i n Charge C i v i l Eng ineer ing Labora to ry Naval Cons t ruc t i on B a t t a l i o n Center ATTN: L i b r a r y (Code L08A) P o r t Hueneme, CA 93043

ATTN: AFEN-FE

Commander and D i r e c t o r USA Cons t ruc t i on Engi n e e r i ng

Research Labora to ry P.O. Box 4005 Champaign, I L 61820

D. - 72.7YI - A G - Fc Bclrotr