29
Fault Rupture Displacement Estimation: Caltrans’ Approach Martha Merriam and Tom Shantz 2012 SSA Annual Meeting

Fault Rupture Displacement Estimation: Caltrans’ Approach

  • Upload
    starr

  • View
    79

  • Download
    1

Embed Size (px)

DESCRIPTION

Fault Rupture Displacement Estimation: Caltrans’ Approach. Martha Merriam and Tom Shantz. 2012 SSA Annual Meeting. Design criteria and references. Caltrans bases the design fault rupture displacement on the larger of…. . mean Wells & Coppersmith (1994) 5% in 50 year displacement hazard. - PowerPoint PPT Presentation

Citation preview

Page 1: Fault Rupture Displacement Estimation: Caltrans’ Approach

Fault Rupture Displacement Estimation:Caltrans’ Approach

Martha Merriam and Tom Shantz

2012 SSA Annual Meeting

Page 2: Fault Rupture Displacement Estimation: Caltrans’ Approach

Caltrans bases the design fault rupture displacement on the larger of….

- mean Wells & Coppersmith (1994)- 5% in 50 year displacement hazard

Probabilistic assessment based on…

Abrahamson, N., 2006, Appendix C, Probabilistic Fault Rupture Hazard Analysis, San Francisco PUC, General Seismic Requirements for the Design on New Facilities and Upgrade of Existing Facilities…..

Petersen, M., Dawson, T., Rui, C., Cao, T., Wills, C., Schwartz, D., Frankel, A., Displacement Hazard for Strike-Slip Faults, BSSA, Vol 101, No. 2, pp. 805-825, April 2011

Design criteria and references

Page 3: Fault Rupture Displacement Estimation: Caltrans’ Approach

Probabilistic Calculation (for 975 year displacement hazard)

Assume 95% of seismic moment is released by characteristic earthquake

Estimate MCHAR using fault dimensions and Hanks-Bakun (2002)

100 km

15 k

m MCHAR =7.3

Example

Mw

Mag

. Pro

b. D

ensit

y

7.3

M0= 101.5 MCHAR +16.05

Too small! Increase 15 to 20%.

Slip rate = 10 mm/yr

M0= (0.95) mAD

Page 4: Fault Rupture Displacement Estimation: Caltrans’ Approach

mean recurrence interval M0

M0=

Probabilistic Calculation (con’t)

= 282 years

Annual rate of exceedence z > z0

( ) = Annual rate of EQCHAR( ) P[z > z0| EQCHAR]*

1/975 1/282Assume log-normal distribution of rupture displacement

Z0

What’s m and s?

No measurements:

m = W&C (AD)

With measurements:

m = measavg

epistemic aleatory

sT = 0.39 (log10 units)se = 0.35 sa = 0.17

Page 5: Fault Rupture Displacement Estimation: Caltrans’ Approach

Example con’t: assume no past rupture displacement measurements are available

W&C (AD) = 1.8 m

e = 0.55

z = 1.8 * 100.55*0.39

Alt. 1:

= 2.95 m

Alt. 2:

Z% = m% * 100.55*sa

Z50% = 1.8 * 100.55*0.17 = 2.23 m

Uncertainty in fault location

Per Petersen et. al (2011) we characterize fault mapping as either (1) Accurate, (2) Approximate, (3) Concealed, or (4) Inferred

Probabilistic Calculation (con’t)

Z70% = 1.8 * 100.52*0.35 * 100.55*0.17 = 3.40 m

Page 6: Fault Rupture Displacement Estimation: Caltrans’ Approach

Alder Creek Bridges, Mendocino County San Andreas Fault

Page 7: Fault Rupture Displacement Estimation: Caltrans’ Approach

Old Alder Creek Bridge 1905

Page 8: Fault Rupture Displacement Estimation: Caltrans’ Approach

Old Alder Creek Bridge 1906

Bancroft Library

Page 9: Fault Rupture Displacement Estimation: Caltrans’ Approach

Alder Creek State Bridge, built in 1947

Page 10: Fault Rupture Displacement Estimation: Caltrans’ Approach

San Andreas Fault parameters(North Coast section)

• MMax 8• Type strike-slip• Slip rate 24 mm/yr• Aseismic slip factor 0.0185• Site-specific* measurements 3 • Average displacement 5 m

*Within 1 km

Page 11: Fault Rupture Displacement Estimation: Caltrans’ Approach

Displacement at fault

2.00 4.00 6.00 8.00 10.00 12.00 14.00

0.0001

0.001

0.01

D(m) SS

10% Fractile

30% Fractile

50% Fractile

70% Fractile

90% Fractile

Displacement (m)

Prob

abili

ty o

f Exc

eede

nce

Page 12: Fault Rupture Displacement Estimation: Caltrans’ Approach

1974 Point Arena/Mallo Pass AP EFZ Maps

Page 13: Fault Rupture Displacement Estimation: Caltrans’ Approach

Main Trace Secondary Trace Tertiary Trace

Map Rating (accurate, approximate, concealed, inferred)

Approximate Accurate Concealed

Trace (simple, complex)

Simple Simple Simple

Slip distribution 85% 10% 5%

Distance from bridge

0 -35 m 50 m

Page 14: Fault Rupture Displacement Estimation: Caltrans’ Approach

Displacement at Alder Creek Bridge

-300 -200 -100 0 100 200 3000

1

2

3

4

5

6

Distance from trace (m)

Faul

t D

ispl

acem

ent

(m)

Main Trace

Secondary Trace

Tertiary Trace

Combined(for preliminary design)

Page 15: Fault Rupture Displacement Estimation: Caltrans’ Approach

Recommendations to Engineer

• For preliminary design use 5.4 m of right lateral offset perpendicular to bridge and beneath any portion of the bridge

• Further investigation may refine location and reduce design offset

Page 16: Fault Rupture Displacement Estimation: Caltrans’ Approach

East Warren Avenue Undercrossing Sunol Grade Hwy 680, Hayward Fault

Page 17: Fault Rupture Displacement Estimation: Caltrans’ Approach

Hayward fault parameters(southern section)

• MMax 7.3• Type strike-slip• Slip rate 9.2 mm/yr• Aseismic slip factor 0.4

Page 18: Fault Rupture Displacement Estimation: Caltrans’ Approach

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

0.0001

0.001

0.01

D(m) HB

10% Fractile

30% Fractile

50% Fractile

70% Fractile

90% Fractile

Displacement (m)

Prob

abili

ty o

f Exc

eede

nce

Displacement at fault

Page 19: Fault Rupture Displacement Estimation: Caltrans’ Approach

Main Trace Secondary Trace Tertiary Trace

Map Rating (accurate, approximate, concealed, inferred)

Accurate Accurate Concealed

Trace (simple, complex)

Simple Simple Simple

Slip distribution 85% 10% 5%

Distance from bridge

0 165 -40

Page 20: Fault Rupture Displacement Estimation: Caltrans’ Approach

Displacement at East Warren Avenue Undercrossing

-300 -200 -100 0 100 200 3000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Distance from main trace (m)

Faul

t Dis

plac

emen

t (m

)

Page 21: Fault Rupture Displacement Estimation: Caltrans’ Approach

Pasadena Freeway Bridges Raymond fault

1977 Los Angeles AP EFZ Map

Page 22: Fault Rupture Displacement Estimation: Caltrans’ Approach

Raymond fault parameters

• MMax 6.7• Type strike-slip

dips north 79• Slip rate 1.5 mm/yr

Page 23: Fault Rupture Displacement Estimation: Caltrans’ Approach

Displacement at fault

0.00 0.50 1.00 1.50 2.00 2.50 3.00

0.0001

0.001

0.01

D(m) HB

10% Fractile

30% Fractile

50% Fractile

70% Fractile

90% Fractile

Displacement (m)

Prob

abili

ty o

f Exc

eede

nce

Page 24: Fault Rupture Displacement Estimation: Caltrans’ Approach

Main Trace Secondary Trace

Map Rating (accurate, approximate, concealed, inferred)

Approximate Approximate

Trace (simple, complex)Simple Simple

Slip distribution 50% 50%

Map Distance from bridge 40 m 100 m

Page 25: Fault Rupture Displacement Estimation: Caltrans’ Approach

Displacement at Pasadena Freeway Prospect Ave Overcrossing

-150 -100 -50 0 50 100 150 200 2500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Distance from trace (m)

Faul

t Dis

plac

emen

t (m

)

Trace 1

Trace 2

Combined (for preliminarydesign)

Page 26: Fault Rupture Displacement Estimation: Caltrans’ Approach

Fault Trace

Map Rating (accurate, approximate, concealed, inferred)

Approximate

Trace (simple, complex) Simple

Slip distribution 100%

Map Distance from bridge 10 m

Page 27: Fault Rupture Displacement Estimation: Caltrans’ Approach

Displacement on Pasadena Freeway Bridges 10 m from single trace

-150 -100 -50 0 50 100 150 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance from main trace (m)

Faul

t Dis

plac

emen

t (m

) Use for

preliminary

design

Page 28: Fault Rupture Displacement Estimation: Caltrans’ Approach

State Bridges With 1.8 m (6 feet) or more estimated offset

Page 29: Fault Rupture Displacement Estimation: Caltrans’ Approach

Issues

• When is the assumption of characteristic magnitude-frequency behavior not justified?

• Need method for when MCHAR recurrence period is longer than 975 years

• What fractile (on epistemic uncertainty) should we use for displacement hazard?

• Use of time dependent hazard models• Consideration of aseismic creep