Fall Project A

Embed Size (px)

Citation preview

  • 8/6/2019 Fall Project A

    1/6

    a)Supposeourmirrorisshapedliketheparabolay=kx2wherekisanypositive

    constant.Findthecoordinatesofitsfocusandtheequationofitsdirectrixinterms

    ofk.

    Assumingthefocusanddirectrixlieonafocalchordoflength4p,wherepisthe

    distancefromthevertextoboththefocusanddirectrix,wecanutilizethefollowing

    standardformofaparabolicequationwithvertex(h,k):

    (x-h)2=4p(y-k)

    Supposingourparabolaisdefinedbyequationy=kx2,thevertexliesattheorigin,at

    point(0,0).Thestandardequationcanthenbealgebraicallymanipulatedasfollows:

    x2=4py

    y=

    x2

    4p

    1

    4p=k

    1

    4k=p

    Thus,thefocusliesatpoint(0,

    1

    4k),andthefocalchordendsonthedirectrixat

    point(0,

    -1

    4k).Theequationofthedirectrix,therefore,isy=

    -1

    4k.

    b)Findtheequationofthelinetangenttotheparabolaatapoint(x0,y0)onthe

    parabola.Then,findthey-interceptofthetangentline.

    Giventheequationoftheparabolay=kx2,itfollows,bywayofthepowerand

    productrules,thatderivativey'=2xk.

    Bysubstitutingvariablex0forx,weseethattheslopeofthetangentlineatpoint(x0,

    y0)is2x0k.

    Usingthepoint-slopeformofaline,itfollowsthat

    (y-y0)=2x0k(x-x0)

    y=2kx0(x-x0)+y0

    andthustheequationofthetangentat(x0,y0)is

    y=2kx0x-2kx02+y0

  • 8/6/2019 Fall Project A

    2/6

    Substitutingkx02fory0,sincey=kx2,

    y=2kx0x-2y0+y0

    Theequationofthetangentatpoint(x0,y0)isthus

    y=2kx0x-y0.

    Substitutingvalue0forxinordertofindthey-intercept:

    y=2kx0(0)-y0

    y=-y0

    Therefore,they-interceptofthetangentlineat(x0,y0)isatpoint(0,-y0).

    c)Considerthetriangleformedbyapoint(x0,y0)ontheparabola,they-interceptof

    thetangentlineatthispoint,andthefocus.Drawapictureofthistriangle.Provethe

    triangleisisosceles.

    Thisparticulartrianglewouldbefor

    thespecificcaseofy=x2.The

    triangleformedbythepoint(1,1)

    ontheparabola,they-interceptof

    thetangentlineatpoint(0,-1),and

    thefocus(0,1/4)isshowninred.

    Wewill,however,provethetriangle

    isisoscelesforthegeneralcase.

  • 8/6/2019 Fall Project A

    3/6

    First,wewilldefineeachofthesepointsasaletter(A,B,orC)forthesakeof

    convenience.

    PointA=Focus=(0,

    1

    4k)

    PointB=Pointonparabola=(x0,y0)

    PointC=Y-interceptoftangent=(0,-y0)

    Inorderforthetriangletobeisosceles,twoormoreofthelinesegmentsintriangle

    ABCmustbeequal.Wewillexaminelinesegments

    ABand

    AC.

    Inordertoprovethat

    ABand

    ACareofequallength,wemustusethedistance

    formula:

    d=

    (x2 x1)2

    + (y2 y1)2

    First,thedistancebetweenAandB:

    d

    AB = (x0 0)2+ (y0

    1

    4k)2

    Substitutingx0for

    y0

    k(fromequationy=x2),

    d

    AB =y

    0

    k+ y0

    2y

    0

    2k+

    1

    (4k)2

    d

    AB = y02+

    y0

    2k+

    1

    (4k)2

    d

    AB = y0+

    1

    4k

    2

    d

    AB = y0+

    1

    4k

    NowforthedistancebetweenAandC:

    d

    AC= (0 0)2

    + (y0

    1

    4k)2

    d

    AC= (y0 1

    4k)2

    d

    AC= y0+

    1

    4kandtherefore,thetwodistancesareequal,andthetriangleis

    isosceles!

  • 8/6/2019 Fall Project A

    4/6

    d)Supposeanincominglightraystrikesacurveatapoint(x0,y0).Ifthelightray

    makesananglewithrespecttothetangentline,thenitisreflectedatanequal

    angletothetangentline.Thisresultfromphysicsisknownbythephrase"theangle

    ofincidenceequalstheangleofreflection."Usingthisfact,arguethatincominglight

    raysparalleltotheaxisoftheparabolaareallreflectedtothefocus,independentof

    thepointofincidence.Thus,aparabolicmirrorfocusesalllightraysparalleltotheaxistoapoint.

    Werefertothefollowingdiagram,againofaspecificcasey=x^2,inorderto

    illustratethisphenomenon.

    Inorderforthelightray(depictedin

    green)tobereflectedtothefocus,

    angles1and2mustbeequaltoeach

    other.

    Weknowthatthelightrayisparallelto

    theparabola'saxisofsymmetry,orthe

    y-axis.

    Uponinspection,wecanseethat

    becauseangles1and3are

    correspondinganglesonatransversal,

    theymustbecongruent.

    Inaddition,weknowthatbecausethe

    triangle(inred)isanisoscelestriangle,

    itsbaseangles,2and3,mustbe

    congruent.

    Therefore,bythetransitiveproperty,becauseangles1and3arecongruent,and

    angles2and3arecongruent,angles1and2arecongruent.Thus,theangleof

    incidenceandtheangleofreflectionareequal,andalllightraysparalleltothe

    parabolicaxiswillbereflectedtothefocus.

  • 8/6/2019 Fall Project A

    5/6

    e)Thepathfollowedbyarayoflightfromthestartothefocusofthemirrorhas

    anotherspecialproperty.Drawachordoftheparabolathatisabovethefocusand

    paralleltothedirectrix.Considerarayoflightparalleltotheaxisasitcrossesthe

    chord,hitstheparabolaandisreflectedtothefocus.Letd1bethedistancefromthe

    chordtothepointofincidence(x0,y0)ontheparabolaandletd2bethedistance

    from(x0,y0)tothefocus.Showthatthesumofthedistancesd1+d2isconstant,

    independentofthisparticularpointofincidence.

    Again,toillustratethis

    phenomenon,welooktothis

    diagramofspecificcasey=x^2.

    Thechordisdrawninmaroon,

    andthelightrayisagaingreen.

    WehavealreadyproveninpartC

    thatthedistancefromthepointofincidence(x0,y0)tothefocusis

    equalto

    y0+

    1

    4k.Fromthiswe

    cansaythatd2is

    y0+

    1

    4k.

    Thisalsoappliestothepointat

    whichthechord,whichwillbe

    definedasy=cforanyintegerc

    largerthan

    1

    4k

    ,intersectsthe

    parabola.Inthiscase,the

    distancewouldbedefinedbyc+

    1

    4k.

    Fromthiswecanthengatherthatthedistancefromthechordtothepointof

    incidenced1isequaltoc+

    1

    4k-(

    y0+

    1

    4k),orc-y0.

    Addingthesetwotogether(d1+d2),wegetthegeneralexpression:

    c-y0+y0+

    1

    4k

    Whichequals...

    c+

    1

    4k,whichdoesnotinvolveeithercomponentof(x0,y0).Thus,thesumof

    thedistancesremainsconstantregardlessofpointofincidence.

  • 8/6/2019 Fall Project A

    6/6