49
Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J., Grassineau, N., Halverson, G. P., ... Stevenson, C. T. E. (2016). The Late Cryogenian Warm Interval, NE Svalbard: Chemostratigraphy and genesis. Precambrian Research, 281, 128-154. https://doi.org/10.1016/j.precamres.2016.05.013 Peer reviewed version License (if available): CC BY-NC-ND Link to published version (if available): 10.1016/j.precamres.2016.05.013 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at http://www.sciencedirect.com/science/article/pii/S0301926816301577. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J., Grassineau, N.,Halverson, G. P., ... Stevenson, C. T. E. (2016). The Late Cryogenian WarmInterval, NE Svalbard: Chemostratigraphy and genesis. PrecambrianResearch, 281, 128-154. https://doi.org/10.1016/j.precamres.2016.05.013

Peer reviewed version

License (if available):CC BY-NC-ND

Link to published version (if available):10.1016/j.precamres.2016.05.013

Link to publication record in Explore Bristol ResearchPDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available onlinevia Elsevier at http://www.sciencedirect.com/science/article/pii/S0301926816301577. Please refer to anyapplicable terms of use of the publisher.

University of Bristol - Explore Bristol ResearchGeneral rights

This document is made available in accordance with publisher policies. Please cite only the publishedversion using the reference above. Full terms of use are available:http://www.bristol.ac.uk/pure/about/ebr-terms

Page 2: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

1

TheLateCryogenianWarmInterval,NESvalbard:chemostratigraphyandgenesis

IanJ.Fairchilda,1,PierreBonnandb,TesniDaviesa,EdwardJ.Fleminga,c,NathalieGrassineaud,GalenP.Halversong,MichaelJ.Hambreyh,EmilyM.McMillana,ElizabethMcKaya,IanJ.Parkinsoni,CarlT.E.StevensonaaSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK bDepartment of Earth Sciences, South Parks Road, Oxford OX1 3AN, UK cCASP, West Building, 181A Huntingdon Road, Cambridge, CB3 0DH, UK dDepartment of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UKgDepartment of Earth and Planetary Sciences/Geotop, McGill University, 3450 University St., Montréal, QC,

H3A 0E8, Canada hDepartment of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DB,

UK iDepartment of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8

1RJ, UK ABSTRACTTheLateCryogenianWarmInterval(LCWI)referstoanon-glacialintervalthatseparatespresumedrepresentativesoftheSturtianandMarinoanpanglaciations.Itsdurationispoorlyconstrainedradiometricallyanditsdepositsarerelativelypoorlyknowninmostgeographicregions.Thispaperaimstoconstraintheduration,palaeoenvironmentsandpetrogenesisofsuchdepositsintheclassicregionofNESpitsbergen,Svalbard.Thesuccessioncomprisesa200-205mdolomiticshale(MacdonaldryggenMember,knownasE3,oftheElbobreenFormation)overlainbyooliticdolomiteSlangenMember(E4),15-25mthick,withlimestonedevelopedattopandbaseofE3inthesouthofthearea.TheassumedagecontextofthesuccessionhasbeenconfirmedbythepresenceofatypicalSturtiancapcarbonateprofileofnegativetopositiveδ13C,andprimarySrisotopecompositionsofbasalE3limestones<0.7072andofupperE3limestonesof0.7076. AtthebaseofE3,interstratificationofcapcarbonatewithice-raftedandredepositedglacialsedimentsoccurs.Earlydiageneticstabilizationofcarbonatemineralogyfromaprecursor,possiblyikaite,tocalciteordolomiteisinferred.E3ispredominantlydolomiticsilt-shale,withsub-millimetrelamination,lackingsandorcurrent-relatedsedimentarystructures.Thinfinelaminaearepartlypyritizedandinterpretedasmicrobialmats.Dolomitecontentis25-50%,withδ13Cvaluesconsistentlyaround+4‰,avalueattributedtobufferingbydissolutionofaprecursormetastablecarbonatephase.Localcalcitecementassociateswithlowδ13Cvalues.Thecarbonatesformsilt-sized,chemicallyzonedrhombiccrystalsfromanenvironmentwithdynamicallychangingFeandMn.Three-dimensionalreconstructionsofcm-scaledisturbancestructuresindicatethattheyrepresenthorizontallydirectedsock-likefolds,developedbyreleaseofoverpressureintothinsurficialsedimentoverlyinganearly-cementedlayer. AshoalingupwardsunitnearthetopofE3displayscalciumsulphatepseudomorphsindolomiteinthenorth,butstorm-dominatedlimestonesinthesouth,bothbeingoverlainbyperitidalooliticdolomites,exposedunderthesucceedingWilsonbreenglacialdeposits.ThereisnoTrezonaδ13Canomaly,possiblyimplyingtop-truncationofthesuccession. Regular0.5m-scalesedimentaryrhythms,reflectingsubtlevariationsinsedimenttextureorcompositionoccurthroughoutE3andareinterpretedasallocyclic.Theyarethoughttobemainlyprimaryinorigin,locallymodifiedslightlyduringearlydiageneticcementation.Rhythmsareproposedtorepresentca.18kyrprecessioncycles,implying6-8Myrdepositionbetweenglaciations.

1CorrespondingauthoratSchoolofGeography,EarthandEnvironmentalSciences,UniversityofBirminghamB152TT,UK.Tel:+441214144181.E-mailaddress:[email protected](I.J.Fairchild)

Page 3: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

2Keywords:Cryogenianshalerhythmicsedimentationchemostratigraphyorbitalforcingdolomite

Page 4: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

31. Introduction

DistinctandwidespreadglaciationisakeyphenomenonoftheEarthsystemintheCryogenianPeriod(FairchildandKennedy,2007;Shields-Zhouetal.,2012),butmuchlessattentionhasbeenpaidtothenon-glacialdeposits.Recentradiometricdateshavestrengthenedtheviewoftwowidespreadglaciations,onestartingnearthebeginningoftheCryogenian(redefinedtobe720Ma,IUGS,2014),andonefinishingattheCryogenian-Ediacaranboundary(Rooneyetal.,2015).TheinterveningperiodisreferredtoastheLateCryogenianWarmInterval(LCWI)byShieldsetal.(2012).BasedonnewobservationsfromSvalbard,wedeterminethepalaeoenvironmentsandpetrogenesisoftheshale-dominatedLCWI,placeconstraintsonitsdurationfromcyclostratigraphy,andassessitschemostratigraphiccorrelations. The720MalowerCryogenianboundaryisclosetoaclusterofpreciseU-PbdatesonzirconsrecordingtheonsetofglaciationinNWCanada(716-717Ma,Macdonaldetal.2010),Oman(711Ma,Bowringetal.,2007)andSouthChina(716Ma,Lanetal.,2014).Likewise,thebasal,globallycorrelatedcapcarbonatetotheMarinoanglaciation,whichdefinestheCryogenian-Ediacaranboundary,iswell-constrainedtoca.635MabasedonradiometricagesinChina(Condonetal.,2005;Zhangetal.,2008),Namibia(Hoffmannetal.,2004),Tasmania(Calveretal.,2013)andNWCanada(Re-Osdate;Rooneyetal.,2015).BothearlyandlateCryogenianglaciations,referredtoastheSturtianandMarinoan(basedonlocationsinSouthAustralia),respectively,appeartobegloballydistributed(Lietal.,2013).Insomeregions,thehistoryofoneorbothglaciationsislocallyorregionallycomplex,withdistinctglacialretreatintervalsrecognizedinSouthAustralia(Williamsetal.,2008,LeHeronetal.,2011;Roseetal.,2013),Namibia(Hoffman,2011;LeHeronetal.,2013),Scotland(Spencer,1971;ArnaudandFairchild,2011)andOman(Leatheretal.,2002;Rieuetal.,2007a).However,semi-continuousCryogeniansuccessionsdisplayaclearstratigraphicmotifinwhichtwoglacialunitsboundanunambiguouslynon-glacialinterval,representingamid-Cryogenianinterludeofunknownduration(~5–27My;Rooneyetal.,2014).TheNeoproterozoicsuccessionofNESvalbard,formerlycontiguouswithpresent-dayNortheastGreenland(formerlyknownasEastGreenland;Knolletal.,1986;Fairchild&Hambrey,1995;Hoffmanetal.,2012),preservesthisCryogeniannon-glacialinterval. Chronologicalandchemostratigraphicconstraintsonthemid-Cryogenianingeneral,althoughimproving(Halversonetal.,2010;Rooneyetal.,2014,2015),arecurrentlymorefluidthanthebaseandtopoftheCryogenian(Spenceetal.,2016).AtuffaceousbedjustabovetheSturtianglaciationinSouthChinahasyieldedaU-Pbageof663±4Ma(Zhouetal.,2004).Re-OsdatesfromSturtiangapcarbonateshaveyieldeddatesof662.4±4.6Ma(NWCanada,Rooneyetal.,2014),659.0±4.5Ma(Mongolia,Rooneyetal.,2015)and657±7(AmadeusBasin,Australia,Kendalletal.,2006).ArgumentstodisregardratheryoungerdatesfromtheAdelaideriftbasin(Kendalletal.,2006,2009)werepresentedbyRooneyetal.(2014).DatesfortheonsetofMarinoanglaciationarelessconstrained.U–Pbagesof654.5±3.8Maand636.3±4.9MafromtuffsimmediatelybelowtheNantuoFormation,andwithintheNantuoFormationinSouthChina(Zhangetal.,2008)respectively,providethetightestageconstraintsontheonsetofMarinoanglaciation.Insummary,currentknowledgefromradiometricdatingsuggeststhemid-Cryogenianglacialintervalrepresentsthetimebetweenc.663–659Maandc.654–636Ma,adurationofbetween5and27My. Salientchemostratigraphicfeaturesoftheintervalbetweenglaciationsinclude:1)ariseandfallinweathering-controlledchemicalindexofalteration(CIA;Rieuetal.,2007b);2)highδ34Svaluesinsedimentarypyritesandcarbonate-associatedsulphate(Gorjanetal.,2000;Hurtgenetal.,2002;Lietal.,2012);3)initiallystronglyrising,thenslightlyrising87Sr/86Srpattern(Halversonetal.,2007);4)abasalnegativeδ13Ccarbonateanomaly(Sturtiancapcarbonate),followedbyheavycarbonateδ13Csignaturespunctuatedbythepre-glacial,deepnegativeTrezonaanomaly(Halversonetal.,2002),andpossiblyanolder(Tayshir)anomaly,asseeninthelowerTsagaanOloomFormationinSWMongolia(Macdonaldetal.,2009).Detailedpalaeoenvironmentalinterpretationsofthemid-Cryogenianarepatchy.ThemostcomprehensivestudieshavebeenperformedonthickcarbonatesuccessionsinSouthAustralia(e.g.McKirdyetal.,2001;GiddingsandWallace2009a,b;Roseetal.,2012;Hood&Wallace,2014,2015;Wallaceetal.,2015)andNamibia(Halversonetal.,2002,2005,2007;HoffmanandSchrag,2002;Hurtgenetal.,2002;HoffmanandHalverson,2008;Hoffman,2011),andmixedcarbonate-siliciclasticsedimentsofNWCanada(Hofmannetal.,1990;NarbonneandAitken,1995;Dayetal.,2004). NESvalbardpresentstwoCryogenianglacialunits,presumedtobeSturtianandMarinoanequivalents.Theinterveningmid-Cryogeniannon-glacialintervalisexposedonthemainland(NESpitsbergen)andon

Page 5: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

4Nordaustlandet(Fairchild&Hambrey,1984;Halversonetal.,2004;Hoffmanetal.,2012;Riedmanetal.,2014;Tahataetal.,2015;Kunzmannetal.,2015).Thestrataaresteeplydipping,butunmetamorphosedanddetailedgeologicalmapsaregiveninHoffmanetal.(2012)andFleming(2014,p.121-122).Were-describeandtestthecorrelationsofthewell-exposedSpitsbergenoutcrops(Figs.1and2),primarilyusingSrandCisotopechemostratigraphy,andnewevidenceispresentedforthepresenceofaSturtiancapcarbonate.Itisarguedthatpreviouslyundescribedregularsedimentaryrhythmsappeartobeorbitallycontrolled,allowinganestimatetobemadeoftheminimumdurationofthenon-glacialinterval.TherhythmsarefoundwithinaremarkablyuniformdolomiticshalefacieswhichisshowntodisplayevidenceforearlycementationinanenvironmentsubjecttodynamicvariationsinFeandMn,andyetunlikePhanerozoicferruginouscarbonates,maintainspositiveδ13Cvalues.Thisstudycontributestounderstandingofthenon-glacialCryogenianandtheunder-researchedfieldofNeoproterozoicshalesedimentology.ItalsopointstothepotentialimportanceofcyclicshaleunitsintheProterozoic.

2. Methods

2.1Field,magneticsusceptibility,petrographicandreconstructivemethodsFieldsectionsweremeasuredbytapeandAbneylevelandcorrectedtotruethickness,ordirectlymeasuredincliffs;totalthicknesswascheckedbyGPS.Samplesweretaken,primarilyforchemicalanalysisataminimumintervalof5mandsawninhalf.Around40sampleswerestudiedinpolishedorstainedthinsections.Polishedsectionswerestudiedbycold-cathodecathodoluminescence(CL)at15kVandseveralofthesealsobybackscatteredelectronmicroscopy(BSE)onaPhillipsXL30environmentalSEMoperatedat15kVandcombinedwithqualitativeelementalanalysis.One6mfieldsectionwassampledcompletelyat2cmresolution(threehundred10gsamples).Asub-set(120)ofthisintensivesamplesetweregroundtoafinepowderandmeasurementsmadeintriplicateoftotalmagneticsusceptibilityinaKLY-3SKappabridgeinstrument(supplementaryTableS1). Twocomputer-generatedthree-dimensionalreconstructionsofcentimetre-scalestructuresindolomiticshalesweremadefromserialsections.Sawnrocksurfaceswereflattenedandseriallygroundonarotatinglabcoveredwithaplatecoatedwith40µmdiamondpaste,checkingtheamountremoved(tothenearest0.1mm)withverniercalipers.EachfreshsurfacewasphotographedwetinafixedpositionandtheSPIERS(SerialPalaeontologicalImageEditingandRenderingSystem)softwaresuite(Suttonetal.,2012)wasusedtoaligntheimagesandbuilda3-dimensionaltemplate,withtheaidofrepeatedmanualadjustmentofcontrastandbrightnesstospecifysedimentarylaminae.

2.2U-PbdatingofdetritalzirconsZircongrainsfromfourpre-glacialsamples(memberE1)wereprocessedandseparatedusingstandardgravimetricandmagneticseparationtechniquesattheNERCIsotopeGeoscienceLaboratories(UK).Zircongrains(standardandunknowns)wereemplacedinepoxymountsandpolishedtoexposethegrains.PhotomicrographsandCLimageswereusedtocharacterizetheinternalstructuresofeachgraintoallowunzonedsamplestobeselected,andtohelprecordinglaserspotlocations.ThelaserstudywasperformedusingaNewWaveResearchsolid-stateNd:YAGlaserablationsystemcoupledwithaHR-NuinstrumentICP-MSintheNIGLlaboratories.AfurthersamplefromtheWilsonbreenFormationwasanalyzedattheUniversityofAdelaideusingsimilartechniquesinwhichanalysiswascarriedoutusinganAgilent7500csICPMScoupledwithaNewWave213nmNd-YAGlaser.FurtherdetailsofmethodsaregiveninlaboratoriesRobertsetal.(2011)anddataarelistedinSupplementaryTableS4.

2.3Srisotopeanalysis

Page 6: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

5Fordeterminationof87Sr/86Sr,40-60mgofsamplepowderwasweighed,andthenleachedwith0.5MHClfor24hoursatlaboratorytemperature.Sampleswerethencentrifuged,acidpipettedoutanddriedat110°C.Srwasseparatedfromthematrixusingpre-cleanedEichromSrspecresin.Approximately150µlofresinwasloadedintoapre-cleanedandfritted1mLpipettetip.Thesampleswereloadedontoacleanedandconditionedresinin1mLof2MHNO3.Thesampleswerethenwashedwith0.4mLofthesameacid,1mLof7MHNO3and0.2mLof2MHNO3.TheSrcutwasthencollectedin1mL0.05MHNO3anddried.Totalprocedureblankisnegligible(~20pg)relativetotheamountofSrprocessedthroughthecolumn(~500ng).Thetotalyieldwascloseto90%. SrisotopeswereanalysedattheOpenUniversityusingtheThermoFisherTritonTIMS.ThesampleswereloadedontodegassedRefilamentfollowingtheproceduredescribedbyCharlieretal.(2006).Samplefilamentswereheatedto~1460°CandtheSrbeamwastunedtoobtainastablesignalof~8Vof88Sr.RawSrisotopesratioswerecorrectedforinstrumentalmassfractionationusingtheexponentiallawanda86Sr/88Srratioof0.1194.Inthisstudy,eachmeasurementconsistsofcollecting240ratiosin24blocksof10cycles,witheachratiorepresenting8.4secondsofintegrationtime.Abaselineismeasuredandtheamplifiersarerotatedaftereachblock.Aninternalprecisionof~10ppm(2s.e.)wasobtainedandtheexternalrepeatabilitywasassessedbymultipleanalysisofastandard(NIST987)andisequalto~15ppm(2s.d.,n=5).TheNIST98787Sr/86Srratiomeasuredinthisstudyis0.710224±0.000011.DataarelistedinSupplementaryTableS1.

2.4Elementalanalysis(SupplementaryTablesS1toS3)SamplesforICP-AESanalysisatRoyalHollowaywerepreparedbydrilling4mgofsamplepowderfromfresh,sawnsurfacescoveringwith2mLof1.6M(10%v/v)Aristar-gradeHNO3andallowingtoreactovernightatlaboratorytemperature,beforedilutionto0.3Mandremovalfrominsolubleresidue.Theacidstrengthwasrelativelyhightooptimizedissolutionofferroancarbonatephases.Analyseswerecorrectedusingthreestandardsmatrix-matchedforlimestonesandsimilarlyfordolomites.Ca,Mg,FeandMnanalyseswereconvertedtoequivalentmasscarbonatetoderiveananalyticaltotalfromwhichtheinsolubleresiduewasderivedbydifference.Elementalconcentrationswerethencalculatedfortheseelements(togetherwithtraceelementsSr,BaandZn)assumingthemtolieinthecarbonatefraction.Repeatanalysesfromnewdissolutionsnormallyliewithin5%. X-rayfluorescence(XRF)analysison40consecutivesamplesfromtheintensivelysampledsuitementionedabovewascarriedoutattheUniversityofLeicesteronaPANalyticalAxiosspectrometerusingfusedglassbeadspreparedfromdriedpowdersinaratioof1:5with100%Litetraborateflux.ElementsdeterminedwereSi,TI,Al,Fe,Mn,Mg,Ca,Ma,K,PandS,togetherwithlossonignition;dataarepresentedconventionallyasoxidesandanalyticaltotalswere99.7±0.9%. MicroanalysiswascarriedoutattheEdinburghIonMicroprobeFacilityonaCameca4finstrumentonpolished,goldcoatedthinsectionsusingaprimaryO-beamtogeneratepositivesecondaryions.Abeamcurrentof0.5nAwasused.Thebeamwasfocusedtoananalyticalareaofc.2µmwithanoveralldiameterof5-7µm.Anoffsetof75kVwasusedwithaverticalstepsizeof5µm.Ionsof24Mg,27Al,30Si,42Ca,54Fe,55Mn,88Sr,89Y,138Baand140Cewerecounted.ResultswerestandardisedusinginternalstandardsOkaCarbonatiteandNormanCrossCalcite. ForCO2(carbonatecarbon)analysisatbyActivationLaboratoriesLimited(Ontario),powderedsample(0.2g)wasthermallydecomposedat1000°C,H2Oremovedinamoisturetrap,andCO2determinedbyaninfra-redcell.Organiccarbonanalysesweredeterminedatthesamelaboratoriesusingthedifferencebetweentotalcarbonandcarbonatecarbon,butmostvalueswerebelowtheeffectivelimitofdeterminationof0.2wt.%andarenotreproducible.

2.5CarbonandoxygenisotopeanalysisCarbonandoxygenstableisotopedataarepresentedhereasδ13Candδ18OinpartsperthousandwithrespecttotheVPDBstandard.Dataarelistedinsupplementarytable1andincludeanalysesfromFairchild&Spiro(1987)andHalversonetal.(2004).NewdatawasobtainedattheUniversityofBirminghamusinga

Page 7: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

6continuous-flowIsoprimeIRMS,withamultiflowpreparationsystem.Samplesofbetween80-250µgpowderedcarbonatewerereactedwithphosphoricacidat90°Cforatleast90minutes;resultswerecalibratedusingIAEAstandardsNBS-18andNBS-19andrepeatabilityonaninternalstandardwasbetterthan0.1‰forδ13Cand0.15‰forδ18O.DataarereportedinSupplementarydataTableS1.

3. LithostratigraphyandcorrelationsCryogeniansedimentsinSvalbardoccurwithinthePolarisbreenGroupoftheHeklaHoekSupergroupandcomprisetheElbobreen,WilsonbreenandDracoisenformations,subdividedintomembers,whichareabbreviatedbymeansofnumbers(Table1;Hambrey,1982).Anearlierglaciation(memberE2)iscorrelatedwiththeolderCryogenian(Sturtian)glaciation(Halversonetal.,2011),andalaterglaciation(WilsonbreenFormation)istruncatedbyatransgressivesuccessioncorrelatedwiththebasalEdiacaran(Halversonetal.,2004),substantiatingaMarinoanage.Theinterveningnon-glacialintervalwasinterpretedbyFairchild&Hambrey(1984)asasingleshoaling-upwardssequencetorepresentoffshoremarinedolomiticshales(memberE3)shallowingupwardstoadolomiticooidalgrainstonewithanhydritepseudomorphsandperitidaltepeestructures(memberE4)depositedinarestricted,shallow,warmenvironment.TheupperboundaryofE4isasubaerialexposuresurfacewithevidenceforfrost-wedging. Halversonetal.(2004)proposedanalternativemodelinwhichE2toE4andtheWilsonbreenFormationweredepositedwithinasingle(Marinoan)glaciation.Thisaccountedfor:a)thepresenceofanegativecarbonisotopeanomaly(correlatedwiththesub-MarinoanTrezonaanomaly)beneathE2,butnotbeneaththeWilsonbreenFormation,despitenoevidenceofsignificanttruncationatthatsurface,b)thelackofaclearstratigraphicδ13Cprofileakintoothersequencesinthisnon-glacialtimeinterval,andc)thepresenceofpseudomorphswithinE3,interpretedasglendonites(afterikaite).Inthismodel,theuniformlyfine-grainedE3facieswereinterpretedtohavebeendepositedbeneathpermanenticecover.Thelaterdiscoveryofacarbonisotopeanomaly(theIslayanomaly)beneathSturtian-agedsedimentselsewhere,alongwithnewstrontiumisotopedatafromtheRussøya(E1)membertippedthebalanceofevidencebacktothetwo-glaciationmodel(Halverson,2006;Halversonetal.,2007). Riedmanetal.(2014)foundonlydepauperateacritarchassemblagesinE3,dominatedbysimplespheres,butfoundsuchlowdiversityassemblagestobetypicalalsooftheSturtianandpost-SturtianintervalinAustraliansections.Tahataetal.(2015)carriedoutamicroanalyticalFe-isotopestudyofpyriteinPolarisbreenGroupsectionsinNordaustlandettotheNEofourstudyareaandobservedδ56/54FeinE3upto+3.91±0.29‰,indicativeofironoxidationatachemoclineaboveaferruginousocean.Theyalsopresentedlow-resolutionδ13Cdatawhichareconsistentwiththosepresentedherein.Theiron-speciationandtracemetalstudyofKunzmannetal.(2015)whichincludessomeE3samples,likewiseconfirmsananoxic,ferruginousocean. Wehavere-measuredtwonearlycompletesectionsoriginallypresentedbyFairchild&Hambrey(1984)atDracoisenandDitlovtoppen(Fig.2).AnewlocationinSEAndromedafjellet,informallytermedReinsryggen,presentsacontinuoussection,butismuchthinnerbecauseofstratacutoutbyafaultcrossingthesectionjustbelowtheE3-E4boundary.Despitethis,thetopofE3andallofE4areexposedhere,astheyareinseveralincompletesectionstothesouth(Halversonetal.,2004).Wepresentanew,field-excavatedsectionofthebaseofE3fromthesouthBacklundtoppenlocationandinupperE3fromthenorthBacklundtoppenridge(Fig.2).BothofthesesectionscontainlimestonesfromwhichusefulnewSrisotopedatawereobtained.

4. Sedimentology,diagenesisandenvironmentalevolution

4.1TheE2-E3transitionIntroduction

Page 8: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

7Fairchild&Hambrey(1984)describedandinterpreteddiamictiteandrhythmitefaciesofE2,recordingaconsistentlysharpboundarytodolomiticshaleatthebaseofE3.However,Halversonetal.(2004)additionallyrecordedatransitionalcontactbetweenglacigenicfaciesinE2andlaminatedlimestonesattheSouthBacklundtoppensection.ThekeyissuehereiswhetherdistinctivefeaturesofaSturtiancapcarbonate(Kaufmanetal.,1997;Kennedyetal.,1998)arepresent.Description E2istypically10-15mthickandnearitstopisdominatedbysharp-basedconglomerates,gradedsilty-sandstoneswithclimbingripplesanddropstones,andmillimetretocentimetre-scaleclasticrhythmites(e.g.Fig.3A,B).TheboundarybetweenthetopofE2tolaminatedshalycarbonatesofMemberE3issharpexceptintheSouthBacklundtoppensection(Fig.2)wherea30cmintervaloflimestonerhythmitesoccursametrebelowthetopofE2(Fig.3B),exhibitingwithin-layerasymmetricfoldsandthrusts(Fig.3D).Observedpetrographically,theserhythmitesconsistofcalcitemicrosparandareseparatedbydolomicritelaminaecontainingsandandsilt-gradedolomiteandsiliciclasticdetritus(Fig.3E).Theyareoverlainbyasharp-based1.2m-thickunitvaryinglaterallyfromconglomerate(Fig.3B)tosilt-to-sand-gradeclasticdolomiteandinturnby0.2mofmillimetre-laminatedrhythmiteswithsmalldropstones(recognizedusingcriteriainFairchild&Hambrey,1984).ThebasalfewcentimetresofE3atSouthBacklundtoppen(Fig.3C)andDitlovtoppen(Fig.3F)consistofdololaminiteswithsignificantdetritus,dropstonesanddiamictitepellets.Accessoryfine-grainedpyriteisnearlyubiquitousinalllithologies.Cathodoluminescencemicroscopydemonstratesthepresenceofanauthigenicdolomitephasewithabrightluminescencezonethatsurroundsdetritalparticleswhichhavevariablecathodoluminescencecharacteristics(Fig.3G,H).FairchildandHambrey(1984)foundthatauthigenicmatrixdolomitewithnegativeδ13C(-1to-4‰)andhighFecontent(>25000ppm)wascharacteristicofE2,surroundingclastswithpositiveδ13C. Halversonetal.(2004)recordedlaminatedlimestonewithhighlyvariablenegativeδ13Csignatures(-3to-16‰)inthebasalmetreofE3,probablyequivalenttolimestonestartingatthe+1mlevelinthisstudy.Thislimestonehas0.2-0.3mm-thickmicrosparlaminaewiththininterveningmicritelaminaeandislocallyaffectedbystylolitization(Fig.4B).Themicrosparlayerslocallyhavemillimetre-wide,shallowupwardconvexitiesthatmayreflectanoriginalprimaryupwardmineralgrowth(Fig.4C).However,cathodoluminescencedemonstratesadistinctivereplacivefabricofzonedcalciterhombs(Fig.4D).Abovethe+5mlevel,thecarbonatesaredolomiteratherthanlimestone,buthaveasimilarlaminationstyle. Intheothersections,limestoneisabsentinthebasalE3sediments,butsimilarfaciescomposedofdolomitearefoundinstead.AconsistentCLzonationofdolomicritetodolomicrosparreplacivemosaicsovergrownbydolomitecementsdemonstratestheearlydiageneticoriginofthisdolomitephase(Fig.5).DolomicrosparlaminaesometimesshowupwardconvexitiessimilartotheBacklundtoppenlimestonelaminitesdescribedabove. NotablesedimentarystructuresatvariouslevelsinthebasalfewmetresoftheBacklundtoppenandReinsryggensectionsarerecumbentfoldsafewmmthickwithroundednoses(Fig.4A,5A).Infoldnoses,thecarbonatefabricbreaksupinto"pseudo-allochemical"areasbybrecciationofthelaminitesandthesearethenovergrownbycarbonatecement(Fig.5B,5F). OxygenandcarbonisotopedatafromthewholeofE3andE4areplottedinFig.6wherethevastmajorityofthenegativeδ13CvaluesarefromtheE2-E3transition.LimestonesatthebaseofE3clusteraround-9‰anddisplayconsistentlymorenegativeδ18Ovaluesthandolomite(mostly-1to-4‰).Thisoffsetisgreaterthanthe3‰expectedfromequilibriumprecipitationfromafluidofthesameδ18Ocompositionatthesametemperature(Land,1980).Strontiumconcentrationsinthebasal30mofE3rangefrom514to705ppmforlimestonesand84to319ppmfordolostones(supplementarydata,TableS1). Highlyvariablecarbonisotopevaluesfromthebasallimestonebed(Fig.7)wereinterpretedbyHalversonetal.(2004)asanindicationofearly,microbiallymediateddiagenesis(cf.Irwinetal.,1977).Whilstthisisvalid,thenewlyenlargeddataset(Fig.7)showsthatsuchvariability,withlimestonestendingtobelighterthandolomites,isrestrictedtothebasal2m(Fig.7).Overallinthebasal25mofE3intheBacklundtoppensection,aconsistentrisingtrendisseenfromaround-4to+3‰,corroboratedbyisolatedsamplesfromothersections,andindependentofFeandsiliciclasticcontent.Thebasallaminateddolomites

Page 9: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

8atReinsryggenhaveslightlynegativeδ13Cvalues,anditispossiblethattheyarecoevalwithdolomitesinthe5-10mintervalatBacklundtoppen.Interpretation BasedonthecriteriadevelopedbyFairchild&Hambrey(1984),massivediamictitesrepresentthebulkrain-outfromahighdensityoficebergsinaproximalglacimarineposition,whereasthelensingbedsofmatrix-supportedbrecciarepresentsubaqueoussedimentgravityflows(possiblyclosetothegroundingline).Rhythmitesreflectingcyclictidally-influencedsedimentationfromsedimentplumesemergingfromicecliffsbelowwave-base(cyclopelsandcyclopsams).GlaciallyderivedsedimentdiminishedrapidlyattheE2-E3boundaryandsedimentparticleslargerthancoarsesiltarenotfoundabovethebasalfewdecimetresofmemberE3.Sucharapidchangeinsedimentcharacterisconsistentwithrapiddeglaciation.Thereisnodirectevidenceofchangesinwaterdepth,althoughsignificantsea-levelrisewouldbeexpectedatthecloseofapanglaciation. Thesedimentarydeformationfoundinfinesediments(Fig.4A)issuggestiveofdownslopemovementwithrecumbentfoldsandroundedfoldnosesresemblingsmall-scaleslumpfolds.However,exposuresdonotpermitmeasurementstodemonstrateaconsistentslope-relatedorientation.InmicrobiallaminitesinanequivalentcapcarbonatefromNamibia,Prussetal.(2010)documentedtheoccurrenceofrecumbentfoldsandspiralroll-upstructureswhichareassociatedwithsedimentarydykesindicativeofanoriginrelatedtoliquefactioncausedbyfluidescape.However,nosuchancillaryfeaturesoccurintheE3sections.Nevertheless,inbothcasesthedeformationislikelytohavebeenrestrictedtoasurficial(nomorethandecimetre-thick)unlithified,orweaklylithifiedlayer,reflectingsimilarearlycementationofthelayers. Thelimestonerhythmitesfound1mbelowthetopofE2atBacklundtoppenhaveamicrosparrycharacterlikethosenearthebaseofE3andtheirpresenceimpliesprecipitationofacarbonatephasewithinthewatercolumnoratthesedimentsurface,probablyassistedbythepresenceofmicrobes(BosakandNewman,2003).Therelativelyuniformthicknessofthecarbonatelayers(Fig.3B)mightimplyanannualoriginbycomparisonwithlacustrinelaminitesoftheWilsonbreenFormation(Fairchildetal.,2016),buttheregularityislessmarkedinthinsection(Fig.3F)wherelayerscommonlydisplayacompositestructure.Carbonatevarvesarecommoninlacustrineenvironmentsinvariousclimaticzones(LawrenceandHendy,1985;Shanahanetal.,2008)butarenotcharacteristicofmarineenvironmentstodaydespitethelackofaphysico-chemicalreasonwhytheyshouldnotoccur.Photosynthesisismoreeffectiveinraisingcarbonatesupersaturationinwatersoflowerionicstrength(Fairchild,1991),butthedepositionalwatersatE2-E3boundarytimeswouldhavebeensaturatedforcalciteanywaybecauseoftheabundanceofdetritaldolomiterockflour(FairchildandHambrey,1984).Consequently,seasonalfluctuationintheintensityofphotosynthesisisaviablemechanismfortheirformation.Ontheotherhand,therelativelylightoxygenisotopecompositionofthelimestones(-6to-9‰,Fig.6)couldimplyanorigininseawaterdilutedwithmeltwater.Limestonelayersdonotshowevidenceofphysicalcompaction,implyingthatthereplacementofaprecursorbycalcitehappenedduringearlydiagenesisandhenceelevatedburialtemperaturesarenotrequiredtoexplainlighterδ18Ovalues.Theupwardconvexitiesarereminiscentofabulbousmodeofupwardgrowthoftheprecursorfromthesedimentsurface,buttherearenopreservedinclusionstoprovidefurthercluesastotheprimarystyleofgrowth.LessstablecalciumcarbonateformsthatcouldhavebeentheprecursorareamorphousCaCO3,ikaite,vateriteoraragonite.Ikaiteisanattractiveoptionbecauseitformspreferentiallyatlowtemperatures(Shearman&Smith,1985;Sellecketal.,2007;Oehlerichetal.,2013)suchasthoseexpectedtocoincidewithice-rafting;Fairchildetal.(2016)haveshownsimilarreplaciverhombiccalcitefabricstothoseinbasalE3limestonesinreplacedikaiteoftheWilsonbreenFormation. SamplesstudiedfromthosepartsofmemberE2closetotheboundarywithE3appeartexturallytobedominatedbydetritaldolomite,althoughanauthigeniccontributioncanbeinferredfromthenegativeδ13CandsignatureandhighFecontents(FairchildandHambrey,1984).AuthigenicdolomiteisvisibleasabrightCLzoneinbasalE3dolomite,althoughitismostlydarkasexpectedforahigh-Fephase(Fig.3H).InE3,dolomiteformslaminarcarbonatesthataretexturallyverysimilartothelimestonelaminites,anditappearsthatdolomitizationoccursbyreplacementofapartlylithifiedprecursorphasefoldedbysoft-sedimentdeformationbeforecompactionandcementationbydolomite(Fig.5).DuringtheNeoproterozoic,early

Page 10: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

9dolomitizationisubiquitousinperitidalmarinerocksbutpatchierandinsubtidalsediments(KnollandSwett,1990).InthecaseoftheE2-E3boundarysediments,thepresenceoforganiccarbonboundtoclaysandsignificantsulphatereduction(asevidencedbypyritecontent)wouldhavefavoureddolomiteformation(Mazzullo,2000;Zhangetal.,2012). Varyingporewaterchemistryduringdiageneticmineralreplacementisimpliedbythecomplexcathodoluminescencezonationobservedinbothcalciteanddolomiteandthepresenceofauthigenicphasessuchaspyrite.Alocalizedroleforbacterialprocessesinmodifyingtheδ13CofDICisclearinthebasallimestone(Halversonetal.,2004).However,thesteadyriseinδ13CvalueswithstratigraphicheightthroughE3agreeswithalow-resolutionstudyshowinganupwardrisingtrendinδ13Cofbothorganiccarbonandcarbonatecarboninthesamestudyarea(Kaufmanetal.,1997)andimpliesthatthecarbonisotopevaluesofE3carbonatesarenotdominatedbylocalbacterialinfluences.Thesecularriseinδ13Coccursinfine-grainedpost-Sturtiancapcarbonatesonmultiplecratonsandimpliesaglobalsignature(HalversonandShields-Zhou,2011),orparallelvariationsinlocalconditionssuchaswaterdepth(GiddingsandWallace,2009a).TheFe-enrichmentanddarkcolour(upto0.7%organiccarbon,Kunzmannetal.,2015)arealsofeaturesofbasalE3whichbearcomparisonwithotherSturtiancaps(Kennedyetal.,1998),whilstfeaturesthatarerestrictedtoMarinoancaps(e.g.barite,tepees,giantwaveripples)areabsent.

4.2DolomiticshalesedimentationinE3IntroductionMostofmemberE3iscomposedofdolomiticsilt-shale,withsub-millimetrescalelaminationandnotractionstructures(FairchildandHambrey,1984).Althoughnooverallchangeinfaciesisapparentfrom20to180maboveitsbase(Figs.2,8A),astrikinglyregularrhythmicorcyclicmodeofsedimentationisrevealedondifferentiallyweatheredoutcropsatDracoisen(Fig.8B)andDitlovtoppen.Themoreresistantlevelswithinrhythms(cycles)commonlyappearonweatheredsurfacestobepurercarbonates(Fig.8C),andlocallydisplayaconcretionaryforminwhichlayerthicknessisdoublethatoutsidetheconcretion(Fig.8F).However,morecommonly,resistantandnon-resistantweatheredpartsofsedimentaryrhythmsaremoredifficulttodistinguishclose-up(Fig.8D,E)thanatadistance(Fig.8B)andthissubtletyprovidesasignificantchallenge.Webuildupthestorythroughsuccessivelydescribingandinterpreting:1)overalllithology,2)characteristicsedimentarydisturbancestructures,3)petrologyandgeochemistryand4)rhythmicity.LithologyThesiliciclasticcomponentofE3isdominatedbyfinetocoarsequartzo-feldspathicsilt;sandisvirtuallyabsent.Typicallaminaeare0.1-0.4mmthickandconsistofathicker,dolomiticsiltsub-laminaandathinnerparting,richerinphyllosilicates,oftenwithenhancedlevelsofframboidalpyrite(Fig.9A,B,D-G).Thesiltysub-laminaearelocallymicro-nodularincharacter(Fig.9A),andatcertainhorizonsthelaminarstructuredisplayslaterallyimpersistentcentimetre-scaledisturbanceswithtightlyfoldedlaminae(Fig.9B,F)whicharedescribedinthenextsection.Above170mstratigraphicheight,finerlaminaearelessnoticeable(Fig.9H)andhydrodynamicsedimentsortingisshowntexturallyabove180mwhen100-200µm-thicklensesofsortedsiltandfaintcross-laminationappearinwhatarenowdolomiticsiltstonesratherthansilt-shales(Fig.9C). Theuniform,fine-grainedlithologyofthemainpartofmemberE3,coupledwithevidenceforconsistentsub-millimetrescalelaminationindicatesaregimeofslowsedimentationwithoutstronghydrodynamicactivity.Inparticular,sharp-basedorgradedunitsareabsentandlaminaearemorecontinuousthanthelensingstructuresthatcanforminshalesfromredepositionofsoftmudclasts(Schieberetal.,2010).Theimplieddepositionalenvironmentwasconsistentlybelowwavebaseuntilthefirstsignsofsortinginlensinglaminae(e.g.Fig.9C)nearthetopofthemember.Thelackofevidenceforsedimentgravityflowsimpliesacontinentalshelf,ratherthanslopeenvironment,andhencewaterdepthsoftheorderof100-300m.Thepresenceoflaminaevaryingingrainsizeindicatessomevariationinsedimentsupplyandaccumulation. Pale,micronodularlaminaeimplyearlycarbonatecementation,andtheselayerswouldhaveresistedcompaction.Thediscrete,thin,andflexiblenatureofthefiner,darkerlaminaeisconsistentwithanoriginas

Page 11: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

10microbialmats,whicharewell-knowninProterozoicoffshoresiliciclasticsediment(Schieber,1986).Suchmatstypicallymetabolizedbyanoxicphotosynthesis.Thefocussingoforganicmatterinthesehorizonsisconsistentwiththepreferentialoccurrenceofpyrite(Schieber,1986;Prussetal.,2010).Disturbancestructures Fieldandpetrographicobservationsshowthatthedeformedlaminaenotedabove(Fig.9B,F)formadistinctgeometricclassofsedimentarystructure,referredtohereasdisturbancestructures,whichhavesimilarcharacteristicsthroughoutthemainpartofmemberE3.Thesestructuresarevisibleinthefieldindiscretehorizons(Fig.2),althoughrequireoptimalweatheringandilluminationtobeclearlyseen.Thestructuresformequant,centimetre-scaleconcaveorconvexmarkings(Fig.10A)withcurvedandupturnedlaminae(Fig.10B).Locallytheyformtrainsofseveralstructureswithuptocentimetre-scaleseparation(Fig.10C).Intransversesection,structuresexhibitacoreofconcentricovoidlaminaewithlaminadisturbancedecreasingawayfromthestructure;hencetheyarestratigraphicallyconfinedonacentimetre-scale(Fig.10D)andhencearemuchsmallerthanthestructuresinterpretedaboveasslumpfoldsfromthebaseofmemberE3.Locallytheyformmorecomplexen-echelonarraysinwhichapparentlycontinuous,butdeformedlaminaeseparateeachstructure(Fig.10E). Athree-dimensionalmodelwasconstructedfromthesampleshowninFig.10Ffrom71serialsectionscuttoadepthof9mm.Themodelshowstheconcentriccorelaminae(Fig.10G)tobeconical,flaringintothesectionedslab(upwardsinFig.10H,I).Theterminationsarecomplex(e.g.double-pointedinFig.10H)andtheflattenednatureoftheconesindicatesanoverallsheath-likegeometry.Thecoreissurroundedbycontinuouslaminae(e.g.greenlayerinFig.10J),thenbydisturbedlaminae(purpleandblue,Fig.10J),thedeformationofwhichisdisjointedfromtheinnerpartofthestructure. AsecondmodelwasgeneratedfromthelowerrightoftheslabshowninFig.11Abasedonfrom31sectionscuttoadepthof6.2mm.Thismodelrevealsanen-echelontrainofstructures,eachwithatubularcorethatisovoidincross-section(Fig.11B)andnarrowsintotheslab(Fig.11C).Thelaminationseparatingsomeofthestructuresisclearlycontinuous(e.g.Fig.10A),butlaminaearebentinsuchawayastosuggestareversefaultgeometry.Otherwise,laminaemorethanafewmillimetresaboveadisturbancestructureappeartobeunaffected.Adeeperserialsectioncutthroughthissamplerevealsbrittledeformationalstructures,e.g.thesharpapparentlyreverse-faultoffsetarrowedinFig.10Dwhichappearstocontinueasanormalfaultlowerintheslab. Insummary,thetypicalgeometryoftheE3structurescanbesummarizedashorizontallydirectedprolapses—thatis,sheath-likefoldsflattenedinthehorizontalplane.Inplanview,thedirectionofmovementisunclearasthestructuresareequantandinternallaminationisonlylocallyvisible,butthedirectionofclosureoflaminationcanbediscernedbyserialsectioning.Theavailableevidenceindicatesnopreferredorientationofthestructures. Wecanruleseveralpossibleoriginsforthesestructuresongeometricgrounds.Theunbrokenlaminationrulesoutanoriginastracefossils,whilsttheonlyputativebodyfossilthatshowssimilaritiesisHorodyskia,whichmanifestsasachainofbead-likestructures(cf.Fig.10C)butispreservedaspitsormoulds(Greyetal.,2010),lackinginternallamination.Likewise,thesheath-likecorestotheE3structuresarelaminatedthroughout,unlikethesedimentpackingofanimalburrows.Also,thestructuresdifferfromthefamilyofmicrobialmat-relatedphenomenaknownas“wrinklestructures”(Porada&Bouougri,2007)becausetheE3structuresareirregularlyspaced,ratherthanformingacontinuous,self-organizednetwork. Theclosestsimilarityinexternalmorphologyiswithhorizontaltubularstructurestermedroll-upstructureswhicharefoundinmoderncoastalenvironments,andbothshallowanddeepProterozoiclaminatedsediments(Sarkaretal.,2014).TherearetwoProterozoicexamplesdescribedindetail.SimonsonandCarney(1999)describedcentimetre-highanduptodecimetre-widerecumbentfoldswithroundedlimbsandinconsistentvergencewithinpartiallycarbonate-cementedshalesofthePalaeoproterozoicHamersleyGroupofWesternAustralia.Prussetal.(2010)illustratedavarietyoffoldstructuresupto10cmwideby1cmwide,andcommonlycontainingspirallaminae,foundassociatedwithsedimentarydykesinthinlylaminatedmicrobiallaminitesofSturtiancapcarbonatesofNamibia.Inmoderncoastalenvironmentsrollupsformwhereamicrobialmatbreaksandedgescurlupduetosubaerialexposure(Sarkaretal.,2014),whereastheancientdeep-waterstructuresarelesscompletelyunderstood.

Page 12: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

11 AlthoughE3disturbancestructuresdonotcontainspirallinglaminaeandhencetheycannotbetermedrollupstructures,acomparisonisstillinstructive.Thefirstpointisthatroll-upstructuresdemonstratesedimentelasticity,apropertywhicharisesfromtheabundanceofmucilaginousextracellularpolymericsubstances(Beraldi-Campesi&Garcia-Pichel,2011;Chewetal.,2014).Thelackofbreakageoflayers,despitetightbending,isseentoointheE3disturbancestructures,andtheyarealsointerpretedtocontainmats. Thesecondpointofcomparisonwithrollupstructuresisthetriggerfordeformation.IntheirHamersleyexampleSimonson&Carney(1999)couldnotdecidebetweenseveralcandidatetriggeringmechanisms:downslopemovement,currentshear,highpore-fluidpressuresandcyclicdisturbancebyseismicwaves.However,intheRasthofexamples,theassociateddykesappeartohavebeenzonesofactivefluidescapeatthetimeofsedimentation,andPrussetal.(2010)interprettheroll-upstructurestobeassociatedwithlocalliquefactionrelatedtodykeemplacement. TheE3disturbancestructures,occurthroughouttheaffectedsediments,ratherthanbeingfocusedatspecificeventhorizons,anddonothaveapreferredorientation.Hence,thereisnodirectevidenceforcurrentshear,seismicdisturbanceordownslopemovement,buttheverysmallscaleofthedisturbancesisconsistentwithlocalizeddeformationtriggeredbyexcessporepressureinliquefiedsediment.Akeypointisthatthestructuresarenotstronglycompactedandhencesubsequent,near-surfacecementationcanbeinferred(asinthecaseofSimonson&Carney,1999).Thisisalsoconsistentwiththepresenceofundisturbedlaminationafewmillimetresabovedisturbancestructures.Hence,thedeformationisassociatedwithasurficiallayer,capableofductiledeformation,aswouldbeastrongandelasticmat,overlyingprogressivelymorerigid,cementedsediment.Ifearlycementationwasfocusedmoreinsomelaminaethanothers,porefluidpressureswouldberaisedbeneathmorelithifiedhorizons,asphysicalcompactionproceeds.InE3,evidenceoflocalizedfracturingofslightlycementedlayers(Fig.11D)isconsistentwithreleaseofunderlyingfluid.RatherthanformingdykesasintheRasthofFormation(Prussetal.,2010),theporefluidsinE3sedimentsappearstohavebeenalocallyeruptedintoalesscemented,lowerpressurelayerpropellingasmallclotofsedimentsideways,creatingtheprolapsedstructures.Theen-echelonstructurecanbeinterpretedasanobliquefaultzonewithinwhichfluidisreleased,eitheronseveraldistinctoccasions,ormorelikelysimultaneouslyatseveraldifferentlevelswithinthe1.5cm-highstructure,withlittledeformationatinterveningslightlymorecementedhorizons(e.g.2onFig.11A). Itcanbepredictedthatsuchsmall-scalefluid-escapestructures,whicharedifficulttostudyinthefield,maybemuchmorewidespreadinNeoproterozoicshalesthanhavebeendescribeduptonow.Ashasbeenshown,theyprovideusefulevidenceforthenatureofearlydiagenesis.GeochemistryandpetrologyThestratigraphicvariationofδ13Cinthe20-180mintervalisextremelylimited,withdolomitevaluesnearlyallintherangeof+2.5to+4‰(Fig.12).Low,outlyingδ13Cvaluesalmostallcontainsignificantcalciteandhenceweinferthatthecalcitehasalowerδ13Cvaluethandolomiteinthesamesamples.Thecalciticsamplesalsohavelowerinsolubleresiduecontents(Fig.13).Dolomitesshowmorevariationinδ18O(4‰)thanδ13C(2‰,Figs.7,12),andthereisaclearupwardstratigraphictrendinδ18Ofrom40-180minbothDracoisenandDitlovtoppen.Howeverinthe20-40minterval,δ18Ovariesfrom-6toslightlyabove0‰andvariesbetweensections.Theonlyothermeasuredparametershowingastratigraphictrendisacid-solubleFe(plottedasFeCO3),whichdiminishesupwards(Fig.13),andisslightlyhigherinDitlovtoppensamplesthanatDracoisen. ThemineraltexturesandinternalstructuresaremostclearlyrevealedinCLandBSEmicroscopy(Fig.14).Dolomiteformschemicallyzonedcrystals(Fig.14A,B,E)ofsimilarsizetothesiliciclasticsilt.Thezonesarerhombic,buttheexternalcrystalshapeissubhedral,adjacenttosilicates,oranhedralagainstotherdolomitecrystals(Fig.14E,F).Calciteshowslessregularcrystalshapes(Fig.14E)andtendstooccurmorediscretelyaslargerirregularcrystals(Fig.14F).IntheconcretionofFig.8F,calcitecrystalsenclosedetritusanddolomitecrystalsalike(Fig.14D)andhencepost-datesdolomite. IonmicroprobemicroanalysisrevealsthatmostindividualcrystalsdisplayzonationasillustratedforoneofthesamplesinFig.15A.IndividualcrystalseithershowFe-MncovariationorvariationinFealone.Strikingly,bothdolomiteandcalciteshowthesameoverallrangeinconcentration,andthispatternisfound

Page 13: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

12inothersamples.OverallFe-Mncovarianceisshownbycrystalmeans(Fig.15B)withuptotwoordersofmagnitudevariationinFeandthreeinMn.ThisextraordinaryheterogeneityisreflectedintheCLcharacteristicsofthecarbonates(Fig.14A-C)wherenocommonpatternofzonationisdiscernable.ComparisonofICPandionprobeanalysesillustratesthatalthoughMnanalysesarecloselycomparable,bulkacid-solubleFeisclosetothemaximumobservedformeansofcrystalsanalyzedbyionmicroprobe(Fig.15B)andhencethattheacidattackisreleasingFefromotherphasesaswellascarbonate. Thepresenceofmicronodularlaminae(Fig.9A),macroscopicuncompactedconcretions(Fig.8F)andsedimentdisturbancestructuresallpointtotheroleofearlycementationbydolomite.Calcitepost-datesdolomitepetrographicallyandthelowinsolubleresidueofcalciticlithologies(Fig.13)impliesthatcalcitefillsremainingporosityathorizonswheredolomitecementationwassufficienttoresistanyfurthercompaction.Calciteanddolomiteprecipitatingfromfluidswiththesameδ18Oatthesametemperatureareexpectedtodifferinδ18Oby3‰(Land,1980),butmostcalciteshaveevenlowerδ18O,consistentwithanoriginathighertemperature. BothcalciteanddolomitescavengeFe2+andMn2+fromsolutionduringgrowth(Veizer,1993;Rimstidtetal.,1998)andsotheirhighlyvariableFe-Mnchemistry(Fig.15)canbeassumedtobeadirectreflectionofthechangingporefluidcompositionoftheseelements.ChangingavailabilityofFeandMneitherreflectsmicrobialreductionofprogressivelymorerefractoryoxidizedsourcesoftheseminerals(Irwinetal.,1977)ordownwarddiffusionfromoverlyingseawaterwithfluctuatingFe-Mnchemistry.Thelackofδ13Cvariabilityindolomitesimpliesbufferingbyapre-existingfine-grainedcarbonatephase.SinceCLzonationshowsthatcrystalsgrewatdifferenttimes,theprecursorislikelytohavedissolvedprogressively,permittingthesustainedgradualprecipitationofdolomite.Theprecursorthenpresumablybecomeexhaustedbythetimethatcalciteprecipitated,leadingtoalowerδ13Cvalueindicativeofapartialsourceofcarbonfrombreakdownoforganicmatter(MozleyandBurns,1993).Conversely,theconsistentδ13Csignatureofthedolomitescanbeusedforchemostratigraphicpurposesasanindicatorofmarinewaterδ13Cvalues.Thisresultisunexpected,giventhehypothesisthatlightδ13Cvalueswouldcharacterizeauthigeniccarbonateindeepermarinesettings(Schragetal.,2013),butisconsistentwiththeloworganiccarboncontentofthesediments(Kunzmannetal.,2015recordvalues<0.3%). Theup-sectionreductioninacid-solubleFe(Fig.13),whichcoincideswithariseinorganiccarbontovaluesof0.5-1%(Kunzmannetal.,2015),mayreflectchangesinbothcarbonateandsilicatefractionsandthisisbeinginvestigatedinaseparatestudyofclaymineralogyandFe-speciation.Iftheup-section3‰increaseinδ18Oofdolomites(Fig.12)werecausedsimplybychangingtemperatureofformation,itwouldimplyadecreaseof>12°C,whichisunlikelygiventheotherwiseconsistentcharacterofthesediments.Otherstudieshaveshownoxygenisotopecompositionsofearlydiageneticcarbonateconcretionstobemorenegativethanexpectedatequilibrium(MozleyandBurns,1993)andthatthisismarkedlysoforsideritesprecipitatedfrommicrobialratherthaninorganicsystems(MortimerandColeman,1997).Hence,kineticeffectslinkedtovaryingavailabilityofFeareinterpretedtoberesponsiblefortheδ18Otrend.RhythmicityTherhythmicbeddinginE3showsupprominentlyincertainfieldphotographs(Fig.8),butitisdifficulttoquantify.Wehaveaccuratelyloggedthestratigraphicpositionofthecentreofeachofthemoreresistanthorizonswhichdefineeachcycle,butthicknessmeasurementsofthesehorizonsareimprecisesincethesebedsusuallydonothavesharpbasesortops.TimepermittedloggingofonlyoneprofileeachatDracoisenandDitlovtoppen;comparablecyclestothosefoundatthesetwolocalitieswereonlylocallyvisibleatReinsryggenandBacklundtoppen. TheDitlovtoppensectionpresentsthegreatestnumberofcycles:270arevisibleinthe12mto195mintervalabovethebaseofE3(Fig.2).Thehistogramofthicknessespresentsamodeintherange0.4-0.6mandapositiveskew(Fig.16C).Overall,thecumulativethicknessplotisfairlylinear(Fig.16A),butwithdiscontinuitiesatstratigraphicheightsofaround50,80and150m(abovethebaseofE2),whereunusuallythickrhythmsarepresent.Lackofclearexposureofsomerhythmspresentsareadyexplanationforthepositiveskewofthethicknesshistogram(Fig.16C)andthemodeistakenasmorerepresentativeoftheirtruethickness.

Page 14: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

13 TheDracoisensectionpresents120cyclesbetweenthe45mand170mlevelinthesection,withnostratigraphictrends(Fig.16A)andwithahighermeanvalueandastrongerskewthanatDitlovtoppen(Fig.16B,C).TheDracoisensectionwasloggedintheuppercentreofFig.8B,butthephotographillustratesthatmanycyclesvisibleinthecliffintheforegroundbecomelessclearlaterally.Also,sincethetotalthicknessofE3isvirtuallyidenticalatbothsectionsandtheyareonly10kmapart,thedatafromDracoisenareregardedaslesscomplete.Themodalthickness,between0.8and1.2m,islikelytocontainasignificantproportionofdoublerhythms,andthetailofthedistributionlikelyincludesmultiplerhythms.TheDitlovtoppenhistogram(Fig.16C),withamodeataround0.5m,isregardedasbeingclosertothetruepicture. Sincefieldobservationswerenecessarilyimprecise,laboratorydatawasusedtospecifythelithologicalnatureofrhythmsbasedonacombinationofgeochemicalanalysesandmagneticsusceptibility(MS)measurements.Samplesweretakenfromrepresentativeresistant/lessresistantlithologiesthroughoutE3andonselectedsamplesfromahighresolutionsuiteof300collectedbetween40and45mheightintheDracoisensectionandcoveringsevencycles.Organiccarboncontentcouldnotbeusedsincemostsampleswerebelowdetectionlimits(0.2wt.%)fortotalorganiccarbon. Sincetheratioofcarbonatetosiliciclasticsedimentisthecommonestmodeofvariabilityinoffshorecyclicsediments(Ricken,1986,1996),plotsofCaCO3contentoftotalsedimentweregenerated(Fig.17C,D).AlthoughthebasalcycleshowsaresistanthorizonwithhighCacontentat46.5m,suchacorrelationisnotobvioushigherintheintensivelysampledsection(Fig.17C),noristhereanycleardistinctioninCacontentbetweenfield-described‘dolomites’and‘dolomiticshales’intheprofileasawhole(Fig.17D). ToconfirmwhetherCaCO3contentisthemostappropriatevariable,anobjectivedeterminationofmodesofvariabilitywasmadeusingPrincipalComponentsAnalysisontwodatasets:1)XRFandmagneticsusceptibilityanalyseson40samplescovering80cmofthebasalcycle(Fig.17A)and2)68ICP-AESanalysesbetween50and190minstratigraphicheight,including35oftheabove40samples(Fig.17B). FortheXRFdataset,thefirstprincipalcomponent,accountingfor69%ofdatavariabilitycontrastscarbonate-derivedelements(CaandMn,togetherwithlossonignition,i.e.largelyCO2)withsilicatecomponents(Al,Si,Na,K,Ti,andacid-insolubleresiduederivedfromaseparatealiquot).MagnesiumscaleslargelywiththecarbonatecomponentandFemorewiththesilicatecomponent.Magneticsusceptibilityloadswiththesilicatecomponentbutmoreweaklythantheothervariables.ThesecondprincipalcomponentgroupsFeandS,correspondingtoanindependentvariationinpyritecontent.CalculationofmodalanalysesindicatesthatFeislocatedincarbonates>silicates>>pyrite.FortheICP-AESdataset(referringtoacid-soluble,nottotalchemistry),thefirstprincipalcomponent,accountingfor55%ofvariationcontrastsCa,SrandMnwithFe,Fe/Mn,Mg,Znandinsolubleresidue,implyingthataproportionofFe,MgandZnisleachedfromnon-carbonatephasesduringacidleaching.Bariumdisplaysindependentvariation,beingthemosthighlyloadedelementonthesecondprincipalcomponent(Fig.17B).Minorprincipalcomponentsinbothanalysesdonotshowanystratigraphicallymeaningfulvariation.Incombination,thetwosetsofanalysesindicatethatCaispresentnearlyentirelyincarbonates,andconfirmsthattheCacontent(expressedasCaCO3)ofthetotalsampleshouldprovideaneffectivevariableillustratingcompositionalchange. Takenasawhole,theseobservationsindicatethatthemainmodeofvariationinsedimentcompositionisintermsofvariationinthecarbonatetosilicateratio,butonlylocallyisthereasimplecorrelationbetweenhighcarbonate(Ca)contentandmoreresistantbeds.Insuchcases,enhancedearlycementation,leadingtohighercarbonatecontent,likelycreatedalithologymoreresistanttoweathering.Otherwise,theremustbesubtletexturaldifferencesbetweenmoreandlessweathering-resistantpartsofcycles.Theverysubtletyofthecyclesprovidesreassurancethattheyareindeedofprimaryorigin.InPhanerozoicrhythms,itiscommontofindsignificantdiageneticenhancementofprimarydifferencesincarbonatecontentwhetherbyearlycementation(e.g.Westphaletal.,2000)orviapressuredissolution(Ricken,1986)andinextremecasesrhythmsarelostbyamalgamationofbeds(Hallam,1964).Instead,dolomitecementationispervasiveinE3andappearstodevelopcontinuouslyoverarangeofshallowdepthsinallsedimentarybeds,beingaccompaniedbylocaloverpressuringanddeformationofsurfacesedimentsbyreleasedfluids. Insummary,giventhelimitedrolefordiageneticcarbonateredistributionbetweenlayers,weinferthatthecyclicityismainlyafunctionofaweakprimaryvariationinsedimenttextureand/orcarbonatetosiliciclasticratio.Thelackofclusteringofcyclesorstronggradientsinanydescriptiveparameterwithinthe

Page 15: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

14E3sedimentscontrastswithautocyclicsystemswhereinternalprogradationalprocessesgeneratecycleswhosestackingisafunctionprimarilyofaccommodationspaceandwhichthereforecannotcaptureaspectsofexternaldriverssuchashierarchicalstackingofcycles(Pollittetal.2015).Incontrast,E3cyclicsedimentscanbeconfidentlyinterpretedasdisplayingallocyclicity,inwhichasubtlechangeincompositionisimposedonafine-grainedsedimentdepositedfarfromsedimentsourcesRicken(1986),typicallybyclimaticforcing(ElrickandHinnov,2007;Weedon,1993).Wereturntothetimescaleofvariationinthediscussion.

4.3TheE3-E4transitionandtheoriginofmineralpseudomorphsTheoverallsuccessionfromE3toE4(Fig.2)hasbeenpreviouslyinterpretedtobeasingleregressiveunit,culminatinginexposureunderperiglacialconditionscorrespondingtothebaseoftheWilsonbreenFormation(Fairchild&Hambrey,1984).Here,wepresentnewdatamainlyrelatedtotheE3-E4transitionandre-assesstheoriginofpseudomorphsandcrack-fillingsacrosstheintervalofrapidshoaling. Thenorthernthreesectionsshowahomologoussuccessionfromthedolomiticsilt-shalesofthemainpartofE3,toincreasinglywell-sortedsiltstonesarrangedindistinct,thicklaminae(Fig.18A),withthethickestexamplesbeinggradedandsomedisplayingbasalguttercastsorwave-generatedcross-laminae.Locally,desiccationcracksormudclasts(Fig.18C)occur.ThesesedimentspassuptransitionallyintodolarenitesatthebaseofE4,locallyseentocontainparallellaminatedtocross-stratifiedooids.ThistransitionissimilartoathickshallowingupwardsparasequencefromtheEdiacaranofNortheastGreenland(Fairchild&Herrington,1989),wherestorm-dominatedfaciespassupintointermittentlyexposedlagoonalandtidalsandflatfacies.Distinctive,butraresedimentarystructureinbasalE4sedimentsareptygmaticallyfolded,crack-fillings,upto3cmhighand~1mmwide.Theyarefilledwithsedimentfromrelativelycoarsesedimentlayersandcuttingfinerlayers(Fig.18B).Theycanbeclassifiedassub-aqueousshrinkageordiastasiscracks(cf.Fairchild&Herrington,1989;Cowan&James,1992).ThisexplanationcouldalsoapplytothedolomitizedstructuresidentifiedbyHoffmanetal.(2012)fromasimilarhorizoninNordaustlandettothenorthofthestudyareaandidentifiedasmolartoothstructureswhichotherwisearenotfoundafterinitialCryogenianglaciationlocally(Fairchild&Hambrey,1995)orglobally(Kuang,2014;Shields,2002,Shields-Zhouetal.,2012). PseudomorphswererecordedbyFairchild&Hambrey(1984),bothatthetopofE3asnumeroussmallcrystalpseudomorphs,typicallypreservedasmoulds,andwithinE4assomewhatlargernodularstructures,typicallyreplacedbysilica.Anhydriteinclusionswerenotedinthelattercase.Inthecurrentwork,crystalpseudomorphsarefoundtoberestrictedtotopofE3,within10mofthetopatDracoisen,andinanarrowerrangeatDitlovtoppen.Incontrast,Hoffmanetal.(2012)showedthepseudomorphstobedistributedintheupperthirdofE3inalesswell-exposedsectioninNordaustlandettothenorthofourstudyarea.Thepseudomorphsaretypically2-3mmacrossandequant,althoughwitharangefromobtuse,toright-angledandacuteinterfacialangles(Fig.18C),whichHalversonetal.(2004)notedwereconsistentwiththecold-watercarbonateikaite(CaCO3.6H2O),althoughnotdiagnosticofit.Halversonetal.(2004)showedδ18Ointherange-15to-10‰inexamplesfilledbyburialdiageneticcalcitespar.AtReinsryggen,pseudomorphsarealsopreservedlocallyascalcitesparcement,butalsoassociatedwithreplacivesilica(megaquartz),containinginclusionsofanhydrite(Fig.18D).Thecharacteristicallylarger,nodularpseudomorphslocallyfoundinmemberE4consistofamixtureofmegaquartzwithanhydriteinclusions(Fig.18F)andvug-liningferroansaddledolomite(Fig.18E).Thepresenceofanhydriteinclusionsimpliesoriginalgypsum(consistentwithacute-angledpseudomorphs)oranhydrite(consistentwithequantshapeandcastellatedright-angledmarginsofsomepseudomorphs).CalciumsulphateevaporitesareindicativeofamildlyevaporativedepositionalenvironmentconsonantwithaveryshallowwatersettingtransitionaltotheoverlyingintraclasticandooidaldolomiteswithlocalreplacedanhydritenodulesinmemberE4(cf.Fairchild&Harrington,1989).Conversely,thedepositionalsettingisnotonewhereikaitewouldbeexpected(Oehlerichetal.,2013)andcontrastswiththevarvedlimestoneswithice-rafteddebriswhereikaitepseudomorphshavebeenrecognizedintheoverlyingWilsonbreenFormation(Fairchildetal.,2016). Inthesouthernpartofthestudyarea,Halversonetal.(2004)notedtheoccurrenceofalimestoneintervalatleast5mthickatthetopofE3atSlangen(5kmwestofBacklundtoppen)andherewedocumenta20mlimestoneintervalatthenorthBacklundtoppensectionseparatingdolomiticsilt-shalesbelowandooliticdolomitesabove(Fig.2).Sedimentarystructuresinthisintervalincludegutteredbedbases,

Page 16: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

15hummockycross-stratification,andtwodistinctmetre-thickstromatolitebiostromehorizons.Thesestructuresareallconsistentwithanenvironmentabovestormwave-baseandtransitionalupwardstoperitidalsediments(e.g.Fairchild&Herrington,1989;Knoll&Swett,1990). MemberE4containsthreedistinctlithologicalunits(Fairchild&Hambrey,1984andFig.2).Thelowest,unitA,consistsofparallel-laminatedandcross-stratifiedooidaldolarenites(A)interpretedastidalsandflatdeposits,andwhichisparticularlythickatBacklundtoppenoverlyingthelimestoneunit.Itisoverlainbytocementedfenestralooidaldolomiteswithtepeestructuresindicativeofsalineartesiangroundwaterdischarge(B)inasupratidalsetting.AtDitlovtoppen,thereisanoverlyingmorevariableunitwithmicritic,locallyshalyandbrecciateddolomites(C),possiblyback-barrierinorigin.Furthernorth,inNordaustlandet,E4istransitionaltoasandstoneunit(theBråvikaSandstone),interpretedasfluvialinoriginbyHoffmanetal.(2012).Depositionofalltheseunitswasfollowedbysubaerialexposureandevidenceofperiglacialconditions:decimetre-scalefoldsinunitCandextensivedevelopmentofparallelfracturenetworksofpreviouslycementeddolomite(Fairchild&Hambrey,1984).Bennetal.(2015)associatethesephenomenawithSnowball-typeglacialconditions,inferringamulti-millionyearhiatus.

5. ChronologyandSrisotopes

5.1DetritalzirconconstraintsonageHopesofconstrainingdepositionalagethroughdetritalzirconageswereraisedbythepresenceofrarealteredvolcanicclastsinE2(Harlandetal.,1993).Also,avolcaniccontributiontotheE3shalesisindicatedbyelevatedTi/Alratios(Kunzmannetal.,2015).DetritalzirconsfromfoursandstonesfromnearthetopofmemberE1haveagesrangingfromca.2.7Matoca.1.0Ga(supplementaryTableS4).Theagedistributionischaracterizedbyabroaddominantmajorpeakfrom1.0Gato1.7Gaandasubordinatepopulationofdatesfrom2.5Gato2.7Ga.ThespectrumoftheE1samplesiscomparabletospectraobtainedfortheMoineSupergroupinScotlandandthemainpeakat1.2GaisprobablylinkedtotheGrenvilleorogen(Cawoodetal.2007).DetritalzirconsinasamplefromtheWilsonbreenFormationexhibitcomparableagespreadtotheE1samples(supplementaryTableS5).Theyoungeststatisticallysignificantsetofdetritalzircondatesfromthesesamplesisca.1.0Ga;youngerdatesarenotconcordantandlikelyreflectpost-crystallisationPb-loss.

5.2SrisotopechemostratigraphyMarinecarbonatesarethemostwidelyusedmaterialsforchemostratigraphyandtheirprimarySrisotopesignaturehasprovedlessambiguousthanδ13Cinglobalcorrelations(Halversonetal.,2010).Inpractice,theratioofradiogenic87Srtostable86SrtendstoincreaseduringdiagenesisbecauseoftheloweringofSrcontentduringcarbonatestabilizationandtheadditionof87SrfromRb-decayinsilicates.CommonscreeningcriteriaarelowRb/Sr,highSr,andlowMn/Sr(Fairchildetal.,2000;Melezhiketal.,2015),thelatterarisingfromtheassumptioninPhanerozoicstudiesthatprimaryMnwouldbenegligibleinconcentration,butthatitwouldincreaseduringmeteoricdiagenesis(Brand&Veizer,1980).However,significantlevelsofprimaryMncanoccurinNeoproterozoicdepositionalenvironments(e.g.Hood&Wallace,2014)andMncanalsobehighinfluidsduringearlymarinediagenesisashasbeenestablishedaboveforE3dolomiticshales.Inourwork,onlylimestoneshadsufficientlyhighSrconcentrationstobeconsidered.ThesewerefoundinboththebasalE3sectionandtheupperE3sectionintheBacklundtoppenarea(Fig.19). ForthebasalE3limestones,87Sr/86SrdecreaseswithincreasingSrcontent(Fig.19A),butthemaximumSrconcentrationisonly705ppm(SupplementaryInformation,TableS1).Mn/Srshowslesssystematicdistribution(Fig.19B)whichisunsurprisinggiventhepetrographicevidenceforgrowthspikesinMn(brightCL)duringgrowthinearlymarinediagenesis.NeverthelessthesamplewithhighestSrandlowestMn/SryieldsthelowestSrisotoperatioof0.70717.Theprimaryseawatersignaturecanbesafelyinferredtobe<0.7072,butcouldberatherlowergiventherelativelylowSrcontentofthesamplesuite.

Page 17: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

16 ThelimestonesnearthetopofE3aremoreconventional(allochemicalandstromatolitic)andformthebaseofaregressivepackageimplyingthattheymayhavebeensubjectedtometeoricdiagenesis.Here,awiderrangeofSrconcentrationswasencountered,andthe87Sr/86SrvaluesapproachanasymptotewithhigherSrconcentrations,withalowof0.70767foundinasamplewith1079ppmSr.Thisleastalteredsample,withover1000ppmSrandMn/Sr<0.1wouldpasstherigorousscreeningcriteriausedinpreviousliterature(Fairchildetal.,2000)andaprimarySrisotopesignatureofcloseto0.70765isimplied. ThesenewdatafromSvalbardshowasimilaroveralltrendtovaluesintheLCWIelsewhere,butareslightlymoreradiogenic.Typicalearlypost-Sturtianstrontiumisotopecompositionsare~0.7067–0.7069,rapidlyrisingtoaplateauof0.7071–0.7073,withasingle(pre-Trezonaanomaly)valueashighas0.70735(Kaufmanetal.,1997;Shieldsetal.,1997;McKirdyetal.,2001;Halversonetal.,2007).EarlyEdiacaran87Sr/86Srvaluesarenearlyidenticaltotypicalpre-Marinoanvalues:~0.7072(Jamesetal.,2001;Halversonetal.,2007),buttheserisesharplytoratiosinexcessof0.7077withinthebasalEdiacarancapcarbonatesequence(Halversonetal.,2010).Hence,whereasthelowerE3valuesresemblebasalEdiacaranvalues,upperE3valuesaretoounradiogenictoreflectmiddleEdiacaranvalues.Therefore,eitherthescreeningcriteriaareinvalidforthebasalE3limestones,ortheelevatedvaluesreflectdepositionatatimewhenlocalseawaterwasheavilyinfluencedbyglacialmeltwater.Thelatterhypothesisisconsistentwiththeoxygenisotopeevidencepresentedabove.TheelevatedupperE3valuesaremoreambiguous.Eithertheycaptureahighlyradiogenicpre-Marinoanseawatercompositionotherwisenotseeninothersuccessions,ortheyreflectrestrictionofthebasinandSrreservoirinfluencedbylocalrunoff.WefavourthelatterhypothesisbasedonthemineralogicalevidenceforincreasingrestrictionofthebasindiscussedaboveandthecoherentcarbonisotopeprofilethroughE3–E4thatimpliesthattheserocksentirelypre-datetheTrezonaδ13Canomaly.

6. Discussion

6.1Palaeoenvironmentalevolution

TheCryogenianperiodisthoughttohavehadlowconcentrationsofatmosphericoxygenandhighlyvariablePCO2(Fairchild&Kennedy,2007;Baoetal.,2009).Availableevidencesuggestsanoxicoceans(largelyferruginousbutlocallyeuxinic)beneathanoxygenatedsurfacemixedlayer(Och&Shields-Zhou,2012;Tahataetal.,2015;Sperlingetal.,2015).Thismodel,basedonredoxproxies,isconsistentwithpetrographicevidencefromtheLCWIinSouthAustralia,whereprimarydolomitecementsinareefcomplexwithsignificantverticalreliefrecordgradientsinFeandMn(Hood&Wallace;2014,2015).OurgeochemicalandpetrographicdatafromthemiddleofE3,whichshowsignificantFeandMnenrichment,areconsistentwithanoxicbottomwaters. ThebaseofMemberE3istransitionalwithmarineglacialdepositsandcontinuesintotheshalycarbonatesthatcharacterizemostofthememberanddisplaythecharacteristicmid-Cryogeniannegativetopositiveδ13Cprofile.ThesefeaturesimplythatthatdepositionatthebaseofE3beginsduringthetransitiontoahighstand,consistentwithSturtiancapcarbonatesglobally(Kennedyetal.,1998;Hoffman&Schrag,2002).Thispatterncontrastssharplywiththefallingδ13CprofilerecordedinatransgressivesystemstractatthebaseofMarinoancapcarbonates(Kennedyetal.,1998;HoffmanandSchrag,2002;Halversonetal.,2004).

Thedurationofcapcarbonatedepositionandthemeaningoftheδ13Canomalyhasbeenactivelydebated(Trindadeetal.,2003;Hoffmanetal.,2007;Kennedy&Christie-Blick,2011),butlimitationsonthehydrologicalcyclerevealedthroughmodellingindicatethathighPCO2conditionswouldhavepersistedforuptomillionsofyearspost-glacially(LeHiretal.,2009).Itiscurrentlyunclearwhetherthechangingδ13Cvaluereflectsbathymetryorchangingoceanchemistry(Kaufmanetal.,1997;Giddings&Wallace,2009a).Nevertheless,adistinctstratificationforcedbymeltwaterinfluxisdistinctlypossibleasisactivecarbonateproductionstimulatedbyphotosyntheticblooms(Shields,2005).InthebaseofE3,likeSturtiancapsingeneral,thereisevidencefortherapidstabilizationofmetastablecarbonatetoeitherdolomiteorcalcite,possiblymicrobiallymediated.

Page 18: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

17 CyclicshalefacieslikethoseinSvalbardoccurintheimmediatelypost-SturtianTapleyHillFormation,(Giddingsetal.,2009),butthere,asinNamibia,purercarbonatedepositionsubsequentlydominatestheplatformalstratigraphy.Svalbardisunusualthen,inthatconsistentdepositionalenvironmentandlithologyismaintainedthroughmostoftheLCWI.AconsistentshaleenvironmentisalsofoundintheDatangopFormationofSouthChina(Lietal.,2012),butcyclicityisnotdocumented.ThecarbonisotopepatterninE3issimilartoothersectionsoftheLCWI,butroughly2‰lower.Giventhepotentialforbathymetricvariationinδ13C(Giddings&Wallace,2009b)andacomponentofauthigeniccarbonate,thisdifferenceinδ13Cisnotsignificant. Theupperpartofthesuccessionisawell-developedregressivesequence25-40minthickness,culminatinginsubaerialexposure.Conditionsweremildlyevaporiticinmostofthebasin,leadingtothepreservationofpseudomorphsofcalciumsulphates,includingsomepreviouslyinterpretedasikaite.Moretypicalshallowsubtidal,storm-influencedlimestonescharacterizethebaseoftheshallowingupwardsintervalinthesouthofthestudyareaindicativeofamoreopenmarineconnection.TheSouthAustralianandNWCanadiansectionsbetweenglacialsincludeawell-developedprogradationalupperunitcontainingvariablyhighδ13Cvaluesandadistinctnegative(Trezona)anomalythatisalsofoundinseveralotherregions(HalversonandShields-Zhou,2011).Theabsenceofthisfeaturesuggeststop-truncationofthepre-MarinoansuccessioninSvalbard.Thistruncationcouldhavebeenrelativelyminoriftheregressionitselfreflectedtheinitialbuild-upofMarinoaniceathighlatitudes,buttherearenochronostratigraphicconstraintstoconfirmsuchatiming,andHalversonetal.(2002)arguedthattheonsetoftheTrezonaanomalypre-datedglacieustaticsealevelfallrelatedtoonsetofMarinoanglaciation.

TheuppermostsurfaceofE4atthebaseoftheWilsonbreenFormationhasbeeninterpreted(Bennetal.,2015)asamulti-millionyearhiatus,coincidingwithadeep-frozenSnowballEarthconditionculminatinginperiglaciationandglacifluvialerosion,followedbyiceadvancesandretreatsinaterrestrialsetting.ThisrepresentsalatestageintheglaciationwhenPCO2hadrisentohighlevels(Baoetal.,2009;Bennetal.,2015).

6.2AstronomicalforcingandthetimeintervaldurationoftheLCWIThestrikingrhythmicityofE3isinterpretedaboveasallocyclic.GiventheradiometricconstraintsthatthetotaldurationoftheLCWIis5-27Myr,butthatthesuccessioninSvalbardistop-truncated,itislikelytorepresent3-20Myrofdeposition.Givenalsothattherearenearly300cyclesobservedatDitlovtoppen,afirstpassatestimatingcycledurationisthattheyshouldrepresentbetween10kyrand66kyr,withintheMilankovitchband. CyclescorrespondingtoeachofthemainMilankovitchbandsbetween20and400kyrarewell-preservedinappropriatesettingsinthegeologicalrecord(Hinnov,2013;Hilgenetal.,2015).Studyofsuchcyclicityinpelagicsedimentshasprovidedacalibrationof40Ar/39ArgeochronologyandthedefinitiveageoftheMesozoic-Cenozoicboundary(Kuiperetal.,2008).Oldersuccessionsaresubjecttomoreuncertainty,butthereexistalargenumberofsuccessfulstudiesintheMesozoicandincreasinglyinthePalaeozoic(Hinnov,2013)andeventheMesoproterozoic(Zhangetal.,2015)wheremultiplefrequencieshavebeenidentifiedandassignedtoparticularbands.OnesourceofchangeistheeffectofincreasingEarth-Moondistanceovertime,whichisincompletelyknown.However,Waltham(2015)hascalculatedboththechangingperiodicityandestimatedtheassociateduncertainties. Inbothearlyandlate-Cryogeniantimes,NESvalbardisthoughttohavelaininthetropicsorsub-tropics(Lietal.,2013),latitudeswhichareparticularlysusceptibletotheeffectsofprecessionalforcing(e.g.Wangetal.,2008),incontrasttoobliquityforcingathighlatitudes.HenceprecessionalforcingisourpreferredhypothesisfortheE3cycles.IntheoverlyingWilsonbreenFormation,Bennetal.(2015)haveshownthroughclimatemodellingthatglacialadvancesandretreatsinthelatterstagesofaSnowballEarthiceageareconsistentwitharidity-humidityshiftsonprecessionaltimescales.At650Ma,thefourprecessionalfrequencies,whichtodayare18.95,19.1,22.4and23.7kyr,thenwere16.3,16.4,18.8and19.7kyrwithuncertaintiesbetween1.4and1.9kyr(Waltham,2015).Ageneralizedfigureof18kyrwillbeusedhere. TwoexamplesofstrongstratigraphicsignalsofprecessioninPalaeozoicsedimentillustratetheextremesofsedimentationratesinwhichprecessionalsignalsarelikelytobepreserved.TheclassicAptiancoredsectionatPiobbico,Italy(Huangetal.,2010)whichdisplaysprominentprecessionalcyclesin

Page 19: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

18greyscalevariationiscomposedofpelagiccarbonatesedimentsthataccumulatedexceptionallyslowlyataround0.5cm/kyr(post-compactionandcorrespondingtoaround10cmpercycle).ThiscontrastswiththeTriassicrift-relatedNewarkGroupwhereshallowingupwardsprecessionalcyclesaround5mthickinlacustrinelithofacieswerecontrolledbyhumidity-aridityvariations(Olsen&Kent,1996).The0.5mmodalthicknessofE3cyclesiscomfortablywithinthisvariationandimpliesadeep-shelfmudrockaccumulationrateofaround2.8cm/kyr,whichiswithintherangeofpelagicsediments.Theinferredaccumulationrateisslightlylowerthanthatofvariousdeep-waterPalaeozoiccycliccarbonateswithlimestone-marlcouplets4-20cmthickthatareinterpretedasmillennialcycles(ElrickandHinnov,2007). NowweattemptamorecarefulestimateoftimedurationrecordedbytheE3-E4succession.TheuppermostpartofE3andmemberE4representaregressivesequencewhichcouldhaveaccumulatedrelativelyquicklyandsoaredisregarded,leaving200mthicknessofE3.Themaximumnumberofobservedcycleswas270,between12mand195mstratigraphicheightatDitlovtoppen,whichwouldscaleto300over200mthickness,providinganestimateoftheminimumnumberofcycles.Anupperboundof400cyclesissetifonetakesthetruemodalthicknessofcyclestobe0.5monaverage,i.e.assumingthatlargerapparentthicknessesareduetomissedcycles.Hence,thedurationofE3canbeestimatedtobeof5.4to7.2Myr(basedon300to400cyclesof18kaduration)whichisclosetotheminimumestimatefromgeochronologydeducedintheintroduction.HoweverinSouthAustralia,NamibiaandNWCanada,theTrezonacarbonisotopeanomalytakesuptheupper5-10%oftheLCWI(Halversonetal.,2005)andthisismissinginSvalbard,implyingthatthedurationshouldbeestimatedinroundfiguresat6to8Myr,assumingthataccommodationspacehadlimiteddepositiononlyintheimmediatelypre-Marinoanperiod.

7. Conclusions

1. ThepresumedcorrelationofmembersE3andE4withtheLCWIissupportedbythediscoveryofawell-developedδ13CprofileandlithologiestypicalofSturtiancapcarbonatesoverlyingmarineglacialdepositsofmemberE2.PrimarySrisotopevaluesdeterminedfromlimestonesinthesouthofthestudyareaof<0.7072atthebaseofE3,and0.7076atthetopareconsistentwiththis.

2. ThepossibleikaitepseudomorphspreviouslydescribedfromthetopofE3,areshowntohaveoriginallybeencalciumsulphate,consistentwiththeevaporativeenvironmentofoverlyingE4.

3. Thesub-E2δ13Canomaly,correlatedwiththepre-MarinoanTrezonaanomalyinHalversonetal.(2004),isnowunderstoodtobethepre-SturtianIslayanomaly,consistentwithSr-isotopeevidence.ThelackofpreservationofaTrezonaanomalyimpliesthatthesectionbetweentheglaciationsistop-truncated,consistentwiththesupratidalsedimentsatthetopofE4.

4. Thesmoothδ13CprofileinE3,despitetheFe-andMn-richnatureofthecarbonates,pointstoanunexpectedlylimitedrolefororganicallymediateddiagenesisintheseshalysediments.ThereisacontrastbetweencarbonatesatthebaseofE3andinthemainpartofthismember.AtthebaseofE3,allcrystalsofdolomiteorcalciteasonehorizonshowthesameCLzonationreplacingalessstableprecursorphase,probablyprecipitatedinthewatercolumn,andwhichcouldbeikaite.InthemainpartofE3,Fe-andMn-richdolomitesshowmuchmorevariableCLpropertiesindicatingdiachronousgrowth,althoughstillduringearlydiagenesisasdemonstratedbylocalnon-compactedconcretions.Consistentδ13Cimpliesbufferingbypre-existingcarbonatephaseandfitswiththeloworganiccontentofthesediments.Fe-andMn-reductionlikelyoccurredinthesurficialzoneorinthewatercolumn,althoughthepresenceofsome13C-depleted,Fe-andMn-rich,pore-fillingcalciteindicatescontinuedFe-andMn-supplydeeperinthesediment.

5. Centimetre-scaledisturbancestructuresinmid-E3arereconstructedtobehorizontalprolapses(sheath-likefolds)ofmicrobiallyboundandunlithifiedsurficialsediments.Theymaybecharacteristicoffluidescapefromunderlyingsedimentsundergoingactivecementation.

6. Subtlevariationsincarbonateandsiliciclasticcontentgiverisetotheallocyclicsedimentaryrhythmsthatarethedominantfeatureofwell-weatheredoutcropsofE3.Wheremostcompletelyexposed,modalcyclethicknessis0.5m.Ifthecyclesareforcedbyprecession,asisconsistentwiththelowpalaeolatitude,thepreservedthicknessoftheintervalbetweenglaciationsrepresentsatimeperiodof6-8Myr.

Page 20: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

19AcknowledgementsThisworkwassupportedbytheNERC-fundedprojectGR3/NE/H004963/1GlacialActivityinNeoproterozoicSvalbard(GAINS).Logisticalunderpinningofourhelicopter-supportedfieldworkwasprovidedbytheUniversityCentreinSvalbardandtheSvalbardGovernor’sOffice,facilitatedbyourcollaboratorDougBenn.Weacknowledgethefollowingfortheiressentialhelp:DanCondon(zirconworkatNIGL),ImranRahman(SPIERSsoftware),DavidLimmerandPaulaBoomer(samplepreparation),IanBoomer(stableisotopeanalysis),NickMarsh(XRFanalysis),PaulStanley(SEM)andJohnCraven(ionmicroprobe).PaulHoffmanandNickChristie-Blickarethankedfortheirreferees’comments.ReferencesArnaud,E.&Fairchild,I.J.2011ThePortAskaigFormation,DalradianSupergroup,ScotlandIn:Arnaud,E.,

Halverson,G.P.&Shields-Zhou,G.(eds)TheGeologicalRecordofNeoproterozoicglaciations.GeologicalSocietyofLondon,Memoir,36,635-642.

Bao,H.,Fairchild,I.J.,Wynn,P.M.,Spötl,C.,2009.Stretchingtheenvelopeofpastsurfaceenvironments:NeoproterozoicglaciallakesfromSvalbard.Science,323,119-122.

Benn,D.I.,LeHir,G.,Bao,H.,Donnadieu,Y.,Dumas,C.,Fleming,E.J.,Hambrey,M.J.,McMillan,E.A.,Petronis,M.S.,Ramstein,G.,Stevenson,C.T.E.,Wynn,P.M.,Fairchild,I.J.,2015.OrbitallyforcedIcesheetfluctuationsattheendoftheMarinoanSnowballEarthglaciation.NatureGeoscience,DOI:10.1038/NGEO2502.

Beraldi-Campesi,H.,Farcia-Pichel,F.,2011.Thebiogenicityofmodernterrestrialroll-upstructuresandsignificanceforancientlifeonland.Geobiology,9,10-23.

Bosak,T.,Newman,D.K.2003.MicrobialnucleationofcalciumcarbonateinthePrecambrian.Geology,31,577-580.

Bowring,S.A.,Grotzinger,J.P.,Condon,D.J.,Ramezani,J.,Newall,M.J.,Allen,P.A.,2007.GeochronologicconstraintsonthechronostratigraphicframeworkoftheNeoproterozoicHuqfSupergroupSultanateofOman.AmericanJournalofScience,307,1097–1145.

Brand,U.,Veizer,J.,1980.Chemicaldiagenesisofamulticomponentcarbonatesystem.1.Traceelements.JournalofSedimentaryPetrology,50,1219-1236.

Calver,C.R.,Crowley,J.L.,Wingate,M.T.D.,Evans,D.A.D.,Raub,T.D.,Schmitz,M.D.,2013.GloballysynchronousMarinoandeglaciationindicatedbyU-PbgeochronologyoftheCottonsBreccia,Tasmania,Australia.Geology,10,1127-1130.

Cawood,P.A.,Nemchin,A.A.,Strachan,R.,Prave,T.,Krabbendam,M.,2007.SedimentarybasinanddetritalzirconrecordalongEastLaurentiaandBalticaduringassemblyandbreakupofRodinia.JournaloftheGeologicalSociety,London,164,257-275.

Charlier,B.L.,Ginibre,C.,Morgan,D.,Nowell,D.,Pearson,D.G.,Davidson,J.P.,Ottley,C.J.2006.Methodsforthemicrosamplingandhigh-precisionanalysisofstrontiumandrubidiumisotopesatsinglecrystalforpetrologicalandgeochronologicalapplications.ChemicalGeology,232,114-133.

Chew,S.C.,Kundukad,B.,Seviour,T.,vanderMaarel,J.R.C.,Yang,L,Rice,S.A.,Doyle,P.,Kjelleberg,S.,2014.Dynamicremodellingofmicrobialbiofilmsbyfunctionallydistinctexopolysaccharides.mBio,5(4):e01536-14.doi:10.1128/mBio.01536-14.

Condon,D.,Zhu,M.,Bowring,S.,Wang,W.,Yang,A.,Jin,Y.2005.U-PbagesfromtheNeoproterozoicDoushantuoFormation,China.Science,308,95-98.

Cowan,C.A.andJames,N.P.,1992.Diastasiscracks:mechanicallygeneratedsynaeresis-likecracksinUpperCambrianshallowwaterooliteandribboncarbonates.Sedimentology,39,1101-1118.

Day,E.S.,James,N.P.,Narbonne,G.M.,Dalrymple,R.W.,2004.AsedimentarypreludetoMarinoanglaciation,Cryogenian(MiddleNeoproterozoic)KeeleFormation,MackenzieMountains,northwesternCanada.PrecambrianResearch,133,223-247.

Elrick,M.,Hinnov,L.A.,2007.Millennial-scalepalaeoclimatecyclesrecordedinwidespreaddeeperwaterrhythmitesofNorthAmerica.Palaeogeography,Palaeoclimatology,Palaeoecology,243,348-372.

Page 21: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

20Fairchild,I.J.,1991.OriginsofcarbonateinNeoproterozoicstromatolitesandtheidentificationofmodern

analogues.PrecambrianResearch,53,281-299.Fairchild,I.J.,Hambrey,M.J.,1984.TheVendiansuccessionofnortheasternSpitsbergen–petrogenesisofa

dolomite-tilliteassociation.PrecambrianResearch,26,111-167.Fairchild,I.J.,Hambrey,M.J.,1995.VendianbasinevolutioninEastGreenlandandNESvalbard.Precambrian

Research,73,217-233.Fairchild,I.J.,Herrington,P.M.,1989Atempestite-evaporite-stromatoliteassociation(lateVendian,East

Greenland):ashoreface-lagoonmodel.PrecambrianResearch,43,101-127Fairchild,I.J.,Spiro,B.1987.PetrologicalandisotopicimplicationsofsomecontrastingPrecambrian

carbonates,NESpitsbergen.Sedimentology,34,973-989.Fairchild,I.J.,Kennedy,M.J.,2007.NeoproterozoicglaciationintheEarthSystem.JournaloftheGeological

Society,London,164,895-921.Fairchild,I.J.,Spiro,B.,Herrington,P.M.,Song,T.2000.ControlsonSrandCisotopecompositionsof

NeoproterozoicSr-richlimestonesofEGreenlandandNChina,In:Grotzinger,J.P.,James,N.P.(eds.)CarbonateSedimentationandDiagenesisintheEvolvingPrecambrianWorldSEPMSpecialPublication67,297-313.

Fairchild,I.J.,Fleming,E.J.,Bao,H.,Benn,D.I.,Boomer,I.,Dublyansky,Y.V.,Halverson,G.P.,Hambrey,M.J.,Hendy,C.,McMillan,E.A.,Spötl,C.,Stevenson,C.T.E.,Wynn,P.M.,2016ContinentalcarbonatefaciesofaNeoproterozoicpanglaciation,NESvalbard.InrevisionforSedimentology.

Fleming,E.J.,2014.Magnetic,structuralandsedimentologicalanalysisofglacialsediments:insightsfrommodern,QuaternaryandNeoproterozoicenvironments.UniversityofBirmingham,unpubl.PhD.thesis,http://etheses.bham.ac.uk/5136/

Giddings,J.A.,Wallace,M.W.,2009a.SedimentologyandC-isotopegeochemistryofthe‘Sturtian’capcarbonate,SouthAustralia.SedimentaryGeology,216,1-14.

Giddings,J.A.,Wallace,M.W.,2009b.Faciesdependentδ13CvariationfromaCryogenianplatformmargin,SouthAustralia:EvidenceforstratifiedNeoproterozoicoceans?Palaeogeography,Palaeoclimatology,Palaeoecology,271,196-214.

Giddings,J.A.,Wallace,M.W.,Woon,E.M.S.,2009.InterglacialcarbonatesoftheCryogenianUmberatanaGroup,northernFlindersRanges,SouthAustralia.AustralianJournalofEarthSciences56,907–925.

Gorjan,P.,Veevers,J.J.,Walter,M.R.,2000.Neoproterozoicsulfur-isotopevariationinAustraliaandglobalimplications.PrecambrianResearch,100,151–179.

Grey,K.,Yochelson,E.L.,Fedonkin,M.A.,Martin,D.McB.,2010.Horodyskiawilliamsiinewspecies,aMesoproterozoicmacrofossilfromwesternAustralia.PrecambrianResearch,180,1-17.

Hallam,A.,1964.Originofthelimestone-shalerhythmsintheBlueLiasofEngland:Acompositetheory.JournalofGeology,72,157-168.

Halverson,G.P.,2006.ANeoproterozoicChronologyIn:Xiao,S.,Kaufman,A.J.(Eds.)NeoproterozoicGeobiologyandPaleobiology,Springer,NewYork,231-271.

Halverson,G.P.,2011.GlacialsedimentsandassociatedstrataofthePolarisbreenGroup,northeasternSvalbard.In:Arnaud,E.,Halverson,G.P.&Shields-Zhou,G.(eds),TheGeologicalRecordofNeoproterozoicGlaciations.GeologicalSociety,London,Memoirs,36,571-579.

Halverson,G.P.,Shields-Zhou,G.,2011.ChemostratigraphyandtheNeoproterozoicglaciations.In:Arnaud,E.,Halverson,G.P.&Shields-Zhou,G.(eds),TheGeologicalRecordofNeoproterozoicGlaciations.GeologicalSociety,London,Memoirs,36,51-66.

Halverson,G.P.,Hoffman,P.F.,Schrag,D.P.,Kaufman,A.J.,2002.AmajorperturbationofthecarboncyclebeforetheGhuabglaciation(Neoproterozoic)inNamibia:PreludetosnowballEarth?Geochemistry,Geophysics,Geosystems,3,1035.doi:10.1029/2001GC000244.

Halverson,G.P.,Maloof,A.C.,Hoffman,P.F.,2004.TheMarinoanglaciation(Neoproterozoic)innortheastSvalbard.BasinResearch,16,297-324.

Halverson,G.P.,Hoffman,P.F.,Schrag,D.P.,Maloof,A.C.,Rice,A.H.N.,2005.TowardsaNeoproterozoiccompositecarbon-isotoperecord.GeologicalSocietyofAmericaBulletin,117,1181-1207.

Halverson,G.P.,Dudas,F.O.,Maloof,A.C.,Bowring,S.A.,2007.Evolutionofthe87Sr/86SrcompositionofNeoproterozoicseawater.Palaeogeography,Palaeoclimatology,Palaeoecology256,103-129.

Page 22: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

21Halverson,G.P.,Wade,B.P.,Hurtgen,M.T.,Barovich,K.M.,2010.Neoproterozoicchemostratigraphy.

PrecambrianResearch,182,337-350.Hambrey,M.J.,1982.LatePrecambriandiamictitesofnortheasternSvalbard.GeologicalMagazine,119,

527-551.Harland,W.B.,Hambrey,M.J.,Waddams,P.,1993.VendiangeologyofSvalbard.NorskPolaristituttSkrifter,

193.Hilgen,F.J.,Hinnov,L.A.,Aziz,H.A.,Abels,H.A.,Batenbrug,S.,Bosmans,J.H.C.,deBoer,B.,Hüsing,S.K.,

Kuiper,K.F.,Lourens,L.J.,Rivera,T.,Ruenter,E.,vandeWal,R.S.W.,Wotzlaw,J.-F.,Zeeden,C.2015Stratigraphiccontinuityandfragmentarysedimentation:thesuccessofcyclostratigraphyaspartofintegratedstratigraphy.In:Smith,D.G.,Bailey,R.J.,Burgess,P.M.,Fraser,A.J.(eds)StrataandTime:ProbingtheGapsinOurUnderstanding.GeologicalSociety,London,SpecialPublications,404,157-197.

Hinnov,L.A.,2013.Cyclostratigraphyanditsrevolutionizingapplicationsintheearthandplanetarysciences.GeologicalSocietyofAmericaBulletin,125,1703-1734.

Hoffman,P.F.,2011.Strangebedfellows:glacialdiamictiteandcapcarbonatefromtheMarinoan(635Ma)glaciationsinNamibia.Sedimentology,58,57-119.

Hoffman,P.F.,Schrag,D.P.,2002.ThesnowballEarthhypothesis:testingthelimitsofglobalchange.TerraNova,14,129-155.

Hoffman,P.F.,Halverson,G.P.2008.OtaviGroupofthewesternNorthernPlatform,theEasternKaokoZoneandthewesternNorthernMarginZone.In:Miller,R.McG.(ed.)TheGeologyofNamibia,vol.2.GeologicalSurveyofNamibia,Windhoek,Namibia,13-69–13-136.

Hoffman,P.F.,Halverson,G.P.,Domack,E.W.,Husson,J.M.,Higgins,J.A.andSchrag,D.P.,2007.ArebasalEdiacarn(635Ma)post-glacial“capdolostones”diachronous?EarthandPlanetaryScienceLetters,258,114-131.

Hoffman,P.F.,Halverson,G.P.,Domack,E.W.,Maloof,A.C.,Swanson-Hysell,N.L.,Cox,G.M.,2012.CryogenianglaciationsonthesoutherntropicalpaleomarginofLaurentia(NESvalbardandEastGreenland),andaprimaryoriginfortheupperRussøya(Islay)carbonisotopeexcursion.PrecambrianRes.,206-207,137-158.

Hoffmann,K.-H.,Condon,D.J.,Bowring,S.A.,Crowley,J.L.2004.U-PbzircondatefromtheNeoproterozoicGhaubFormation,Namibia:ConstraintsonMarinoanglaciation.Geology,32,817-820.

Hofmann,H.J.,Narbonne,G.M.,Aitken,J.D.1990.EdiacarianremainsfromintertillitebedsinnorthwesternCanada.Geology,18,1199–1203.

Hood,A.V.S.,Wallace,M.W.,2014Marinecementsrevealthestructureofananoxic,ferruginousNeoproterozoicocean.JournaloftheGeologicalSociety,London,171,741-744.

Hood,A.V.S,Wallace,M.W.,2015.ExtremeoceananoxiaduringtheLateCroygenianrecordedinreefalcarbonatesofSouthernAustralia.PrecambrianResearch,261,96-111.

Huang,C.,Hinnov,L.,Fischer,A.G.,Grippo,A.,Herbert,T.,2010.AstronomicaltuningoftheAptianStagefromItalianreferencesections.Geology,38,899-902.

Hurtgen,M.T.,Arthur,M.A.,Suits,N.,Kaufman,A.J.,2002.ThesulfurisotopiccompositionofNeoproterozoicseawatersulfate:implicationsforsnowballEarth?EarthandPlanetaryScienceLetters203,413–429.

IUGS(InternationalUnionofGeologicalSciences)2014InternationalCommissiononStratigraphy,AnnualReport2014.http://iugs.org/uploads/ICS%202014.pdf.Accessed16thMarch2015.

Irwin,H.,Curtis,C.,Coleman,M.,1977.Isotopicevidenceforsourceofdiageneticcarbonatesformedduringburialoforganic-richsediments.Nature,269,209-213.

James,N.P.,Narbonne,G.M.,Kyser,T.K.,2001.LateNeoproterozoiccapcarbonates:MackenzieMountains,northwesternCanada:precipitationandglobalglacialmeltdown.CanadianJournalofEarthSciences,38,1229-1262.

Kaufman,A.J.,Knoll,A.H.,Narbonne,G.M.1997.Isotopes,iceages,andterminalProterozoicearthhistory.ProceedingsoftheNationalAcademyofSciences,USA¸94,6600-6605.

Kendall,B.,Creaser,R.A.,Selby,D.2006.Re-Osgeochronologyofpost-glacialblackshalesinAustralia:Constraintsontimingof“Sturtian”glaciation.Geology,34,729-732.

Kendall,B.,Creaser,R.A.,Calver,C.R.,Ruab,T.D.,Evans,D.A.D.,2009.CorrelationofSturtiandiamictitesuccessionsinsouthernAustraliaandnorthwesternAustraliabyRe-Osblackshalegeochronologyand

Page 23: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

22

theambiguityof“Sturtian”-typediamictite-capcarbonatepairsaschronostratigraphicmarkerhorizons.PrecambrianResearch,172,301-310.

Kennedy,M.J.,Christie-Blick,N.,2011.CondensationoriginforNeoproterozoiccapcarbonatesduringdeglaciation.Geology,39,319-322.

Kennedy,M.J.,Runnegar,B.,Prave,A.R.,Hoffman,K.-H.,Arthur,M.A.1998.TwoorfourNeoproterozoicglaciations?Geology,26,1059-1063.

Knoll,A.H.,Swett,K.,1990.CarbonatedepositionduringtheLateProterozoicEra:anexamplefromSpitsbergen.AmericanJournalofScience,290-A,104-132.

Knoll,A.H.,Hayes,J.M.,Kaufman,A.J.,Swett,K.,Lambert,I.B.1986.SecularvariationincarbonisotoperatiosfromUpperProterozoicsuccessionsofSvalbardandEastGreenland.Nature,321,832-838.

Kuang,H.-W.,2014Reviewofmolartoothstructureresearch.JournalofPalaeogeography,3,359-383.Kuiper,K.F.,Deino,A.,Hilgen,F.J.,Krigsman,W.,Renne,P.R.,Wijbrans,J.R.,2008.Synchronizingrockclocks

ofEarthhistory.Science,320,500-504.Kunzmann,M.,Halverson,G.P.,Scott,C.,Minarik,W.G.,Wing,B.A.,2015.GeochemistryofNeoproterozoic

blackshalesfromSvalbard:ImplicationsforoceanicredoxconditionsspanningCryogenianglaciations.ChemicalGeology,417,383-393.

Lan,Z.,Li,X.,Zhu,M.,Chen,Z.-Q.,Zhang,Q.,Li,Q.,Lu,D.,Liu,Y.,Tang,G.,2014.ArapidandsynchronousinitiationofthewidespreadCryogenianglaciations.PrecambrianResearch,255,401-411.

Land,L.S.,1980.Theisotopicandtraceelementgeochemistryofdolomite:thestateoftheart.InZenger,D.H.,Dunham,J.B.&Ethington,R.L.(eds.),ConceptsandModelsofDolomitization,SEPMSpecialPublication,28,87-110.

Lawrence,M.J.F.,Hendy,C.H.,1985.WatercolumnandsedimentcharacteristicsofLakeFryxell,TaylorValley,Antarctica.NewZealandJournalofGeologyandGeophysics,28,543-552.

LeHeron,D.P.,Cox,G.M.,Trundley,A.E.,Collins,A.,2011.Sea-icefreeconditionsduringtheearlyCryogenian(Sturt)glaciation,SouthAustralia.Geology,39,31–34.

LeHeron,D.P.,Busfield,M.,Kamona,F.,2013.AninterglacialonSnowballEarth?DynamicicebehaviourrevealedintheChuosFormation,Namibia.Sedimentology,60,411-427.

LeHir,G.,Donnadieu,Y.,Goddéris,Y.,Pierrehumbert,R.T.,Halverson,G.P.,Macouin,M.,Nédélec,A.,Ramstein,G.,2009.TheSnowballEarthaftermath:Exploringthelimitsofcontinentalweatheringprocesses.EarthandPlanetaryScienceLetters,277,453-463.

Leather,J.,Allen,P.A.,Brasier,M.D.,Cozzi,A.2002.NeoproterozoicsnowballEarthunderscrutiny:EvidenceformtheFiqglaciationofOman.Geology,30,891-894.

Li,C.,Love,G.D.,Lyons,T.W.,Scott,C.T.,Feng,L.,Huang,J.,Chang,H.,Zhang,Q.,Chu,X.,2012.EvidenceforaredoxstratifiedCryogenianmarinebasin,DatangpoFormation,SouthChina.EarthandPlanetaryScienceLetters,331-332,246-256.

Li,Z.-X.,Evans,D.A.D.,Halverson,G.P.,2013.NeoproterozoicglaciationsinarevisedglobalpalaeogeographyfromthebreakupofRodiniatotheassemblyofGondwanaland.SedimentaryGeology,294,219-232.

Macdonald,F.A.,Jones,D.S.,Schrag,D.P.,2009.Stratigraphicandtectonicimplicationsofanewlydiscoveredglacialdiamictite-capcarbonatecoupletinsouthwesternMongolia.Geology,37,123-126.

Macdonald,F.A.,Schmitz,M.D.,Crowley,J.L.,Roots,C.F.,Jones,D.S.,Maloof,A.C.,Strauss,J.V.,Cohen,P.A.,Johnston,D.T.,Schrag,D.P.,2010.CalibratingtheCryogenian.Science327,1241–1243.

Mazzullo,S.J.,2000.Organogenicdolomitizationinperitidaltodeep-seasediments.JournalofSedimentaryResearch,70A,10-23.

McKirdy,D.M.,Burgess,J.M.,Lemon,N.M.,Yu,X.,Cooper,A.M.,Gostin,V.A.,Jenkins,R.J.F.,Both,R.A.2001.AchemostratigraphicoverviewofthelateCryogenianinterglacialsequenceintheAdelaideFold-ThrustBelt,SouthAustralia.PrecambianResearch,106,149-186.

Melezhik,V.A.,Ihlen,P.M.,Kuznetsov,A.B.,Gjelle,S.,Solli,A.,Gorokhov,I.M.,Fallick,A.E.,Sandstad,J.S.,Bjerkgård,T.,2015.Pre-Sturtian(800-730Ma)depositionalageofcarbonatesinsedimentarysequenceshostingstratiformironoresintheUppermostAllochthonoftheNorwegianCaledonides:Achemostratigraphicapproach.PrecambrianResearch,261,272-299.

Mortimer,R.J.G.,Coleman,M.L.,1997.Microbialinfluenceontheoxygenisotopiccompositionofdiageneticsiderite.GeochimicaCosmochimicaActa,61,1705-1711.

Page 24: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

23Mozley,P.S.,Burns,S.J.,1993.Oxygenandcarbonisotopiccompositionofmarinecarbonateconcretions:

Anoverview.JournalofSedimentaryPetrology,63,73-83.Narbonne,G.M.,Aitken,J.D.,1995.NeoproterozoicoftheMackenzieMountains,northwesternCanada.

PrecambrianResearch,73,101–121.Och,L.M.,Shields-Zhou,G.A.,2012.TheNeoproterozoicoxygenationevent:Environmentalperturbations

andbiogeochemicalcycling.Earth-ScienceReviews,110,26-57.Oehlerich,M.,Mayr,C.,Griesshaber,E.,Lücke,A.,Oeckler,O.M.,Ohlendorf,C.,Schmahl,W.W.,Zolitschka,

B.,2013.Ikaiteprecipitationinalacustrineenvironment–implicationsforpalaeoclimaticstudiesusingcarbonatesfromLagunaPotrokAIke(Patagonia,Argentina).QuaternaryScienceReviews,71,46-53.

Olsen,P.E.,Kent,D.V.,1996.MilankovitchclimateforcinginthetropicsofPangaeaduringthelateTriassic.Palaeogeography,Palaeoclimatology,Palaeoecology,122,1-26.

Pollitt,D.A.,Burgess,P.M.,Wright,V.P.,2015.Investigatingtheoccurrenceofhierarchiesofcyclicityinplatformcarbonates.In:Smith,D.G.,Bailey,R.J.,Burgess,P.M.,Fraser,A.J.(eds)StrataandTime:ProbingtheGapsinOurUnderstanding.GeologicalSociety,London,SpecialPublications,404,123-150.

Porada,H.,Bouougri,ElH.,2007.Wrinklestructures–acriticalreview.Earth-ScienceReviews,81,199-215.Pruss,S.B.,Bosak,T.,Macdonald,F.A.,McLane,M.,Hoffman,P.F.,2010.MicrobialfaciesinaSturtiancap

carbonate,theRasthofFormation,OtaviGroup,northernNamibia.PrecambrianResearch,181,187-198.

Ricken,W.,1986.DiageneticBedding.AmodelforMarl-LimestoneAlternations.LectureNotesinEarthSciences,6.Springer-Verlag,Berlin.

RIcken,W.,1996.Beddingrhythmsandcyclicsequencesasdocumentedinorganiccarbon-carbonatepatterns,UpperCretaceous,WesternInterior,U.S.SedimentaryGeology,102,131-154.

Riedman,L.A.,Porter,S.M.,Halverson,G.P.,Hurtgen,M.T.,Junium,C.K.,2014.Organic-walledmicrofossilassemblagesfromglacialandinterglacialNeoproterozoicunitsofAustraliaandSvalbard.Geology,42,1011-1014.

Rieu,R.,Allen,P.A.,Cozzi,A.,Kosler,J.,Bussy,F.,2007a.AcompositestratigraphyfortheNeoproterozoicHuqfSupergroupofOman:integratingnewlitho-,chemo-andchronostratigraphydataoftheMirbatarea,southernOman.JournaloftheGeologicalSociety,London,164,997-1009.

Rieu,R.,Allen,P.A.,Plotze,M.,Pettke,T.,2007b.CompositionalandmineralogicalvariationsinaNeoproterozoicglaciallyinfluencedsuccession,Mirbatarea,southOman:Implicationsforpaleoweatheringconditions.PrecambrianResearch,154,248-265.

Rimstidt,J.D.,Balog,A.,Webb,J.,1998.Distributionoftraceelementsbetweencarbonatemineralsandaqueoussolutions.GeochimicaetCosmochimicaActa,62,1851-1863.

Roberts,N.M.,Parrish,R.R.,Horstwood,M.S.,Brewer,T.S.,2011.The1.23GaFjellhovdanerhyolite,Grøssæ-Totak;anewagewithintheTelemarksupracrustals,southernNorway.NorwegianJournalofGeology,91,239-246.Rooney,A.D.,Macdonald,F.A.,Strauss,J.V.,Dudás,F.O.,Hallmann,C.,Selby,D.,2014.Re-OsgeochronologyandcoupledOs-SrisotopeconstraintsontheSturtiansnowballEarth.ProceedingsoftheNationalAcademyofSciences,111,51-56.

Rooney,A.D.,Strauss,J.V.,Brandon,A.D.,Macdonald,F.A.,2015.ACryogenianchronology:Twolong-lastingsynchronousNeoproterozoicglaciations.Geology,43,459-462.

Rose,C.V.,Swanson-Hysell,N.L.,Husson,J.M.,Poppick,L.N.,Cottle,J.M.,Schoene,Maloof,A.C.,2012.ConstraintsontheoriginandrelativetimingoftheTrezonaδ13Canomalybelowtheend-Cryogenianglaciation.EarthandPlanetaryScienceLetters,319-320,241-250.

Rose,C.V.,Maloof,A.C.,Schoene,B.,Ewing,R.C.,Linnemann,U.,Hofmann,M.,Cottle,J.M.,2013.Theend-CryogenianglaciationofSouthAustralia.GeoscienceCanada,40,256-293.

Sarkar,S.,Banerjee,S.,Smanta,P.,Chakraborty,N.,Chakraborty,P.P.,Mukhopaghyay,S.,Singh,A.K.,2014.Microbialmatrecordsinsiliciclasticrocks:ExamplesfromfourIndianProterozoicbasinsandtheirmodernequivalentsinGulfofCambay.JournalofAsianEarthSciences,91,362-377.

Schieber,J.,1986.ThepossibleroleofbenthicmicrobialmatsduringtheformationofcarbonaceousshalesinshallowMid-Proterozoicbasins.Sedimentology,33,521-536.

Schieber,J.,Southard,J.B.,Schimmelmann,A.,2010.Lenticularshalefabricsresultingfromintermittenterosionofwater-richmuds–interpretingtherockrecordinthelightofrecentflumeexperiments.JournalofSedimentaryResearch,80,119-128.

Page 25: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

24Schrag,D.P.,Higgins,J.A.,Macdonald,F.A.,Johnston,D.T.,2013.Authigeniccarbonateandthehistoryof

theglobalcarboncycle.Science,339,540543.Selleck,B.W.,Carr,P.F.,Jones,B.G.,2007.Areviewandsynthesisofglendonites(pseudomorphsafter

ikaite)withnewdata:assessingapplicabilityasrecordersofancientcoldwaterconditions.JournalofSedimentaryResearch,77,980-991.

Shanahan,T.M.,Overpeck,J.T.,Beck,J.W.,Wheeler,C.W.,Peck,J.A.,King,J.W.,Scholz,C.A.,2008.TheformationofbiogeochemicallaminationsinLakeBosumtwi,Ghana,andtheirusefulnessasindicatorsofpastenvironmentalchanges.JournalofPaleolimnology,40,339-355.

Shearman,D.J.,Smith,A.J.,1985.Ikaite,theparentmineralofjarrowite-typepseudomorphs.ProceedingsoftheGeologistsAssociation,96,305-314.

Shields,G.A.2002.‘Molar-toothmicrospar’:achemicalexplanationforitsdisappearance~750Ma.TerraNova,14,108-113.

Shields,G.A.2005.Neoproterozoiccapcarbonates:acriticalappraisalofexistingmodelsandtheplumeworldhypothesis.TerraNova,17,299-310.

Shields,G.A.,Stille,P.,Brasier,M.D.,Atudorei,N.-V.,1997.StratifiedoceansandoxygenationofthelatePrecambrianenvironments:ApostglacialgeochemicalrecordfromtheNeoproterozoic.TerraNova,9,218-222.

Shields-Zhou,G.A.,Hill,A.C.,Macgabhann,B.A.,2012.Chapter17—TheCryogenianPeriod.In:Gradstein,F.M.,Ogg,J.G.,Schmitz,M.D.,Ogg,G.M.,(eds).TheGeologicTimeScale.Boston:Elsevier,393-411.

Simonson,B.M.,Carney,K.E.,1999.Roll-upstructures:EvidenceofinsitumicrobialmatsinLateArcheandeepshelfenvironments.Palaios,14,13-24.

Spence,G.H.,LeHeron,D.P.,Fairchild,I.J.,2016.Sedimentologicalperspectivesonclimatic,atmosphericandenvironmentalchangeintheNeoproterozoicEra.Sedimentology,

Spencer,A.M.,1971.LatePre-CambrianGlaciationinScotland.GeologicalSociety,London,Memoirs,6.Sperling,E.A.,Wolock,C.J.,Morgan,A.S.,Gill,B.C.,Kunzmann,M.,Halverson,G.P.,Macdonald,F.A.,Knoll,

A.H.,Johnston,D.T.,2015.StatisticalanalysisofirongeochemicaldatasuggestslimitedlateProterozoicoxygenation.Nature,523,451-454.

Sutton,M.D.,Garwood,R.J.,Siveter,DavidJ.,Siveter,Derek,J.,2012.SpiersandVAXML;Asoftwaretoolkitfortomographicvisualisation,andaformatforvirtualspecimeninterchange.PalaeontologiaElectronicaArticle:15.2.5T.

Tahata,M.,Sawaki,Y.,Yoshiya,K.,Nishizawa,M.,Komiya,T.,Hirata,T.,Yoshida,N.,Maruyama,S.,Windley,B.F.,2015.ThemarineenvironmentsencompassingtheNeoproterozoicglaciations:EvidencefromC,SrandFeisotoperatiosintheHeclaHoekSupergroupinSvalbard.PrecambrianResearch,263,19-42.

Trindade,R.I.F.,Font,E.,D’Agrella-Filho,A.S.,Nogueira,A.C.R.,Riccomini,C.2003.Low-latitudeandmultiplegeomagneticreversalsintheNeoproterozoicPugacapcarbonate,Amazoncraton.TerraNova,15,441-446.

Veizer,J.,1993.Traceelementsandstableisotopesinsedimentarycarbonates.In:Reeder,R.J.(ed.)Carbonates:MineralogyandChemistry.MineralogicalSocietyofAmerica,Blacksburg,265-299.

Wallace,M.W.,Hood,A.V.S.,Woon,E.M.S.,Giddings,J.A.,Fromhld,T.A.,2015.TheCryogenianBalcanoonareefcomplexesoftheNorthernFlindersRanges:ImplicationsforNeoproterozoicoceanchemistry.Palaeogeography,Palaeoclimatology,Palaeoecology,417,320-336.

Wang,Y.,Cheng,H.,Edwards,R.L.,Kong,X.,Shao,X.,Chen,S.,Wu,J.,Jiang,X.,Wang,X.andAn,Z.,2008.Millennial-andorbital-scalechangesintheEastAsianmonsoonoverthepast224,000years.Nature,451,1090-1093.

Waltham,D.,2015.Milankovitchperioduncertaintiesandtheirimpactoncyclostratigraphy.JournalofSedimentaryResearch85,990–998.

Weedon,G.,2003.Time-SeriesAnalysisandCyclostratigraphy.CUP.Westphal,H.,Head,M.J.,Munnecke,A.,2000.Differentialdiagenesisofrhythmiclimestonealternations

supportedbypalynologicalevidence.JournalofSedimentaryResearch70,715–725.Williams,G.E.,Gostin,V.A.,McKirdy,D.M.,Preiss,W.V.,2008.TheElatinaglaciations(MarinoanEpoch),

SouthAustralis:Sedimentaryfaciesandpalaeoenvironments.PrecambrianResearch,163,307-331.Zhang,F.,Xu,H.,Konishi,H.,Kemp,J.M.,Roden,E.E.,Shen,Z.,2012.Dissolvedsulphide-catalyzed

precipitationofdisordereddolomite:Implicationsfortheformationmechanismofsedimentary

Page 26: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

25

dolomite.GeochimicaetCosmochimicaActa,97,148-165.Zhang,S.,Jiang,G.,Han,Y.,2008.TheageoftheNantuoFormationandNantuoglaciationinSouthChina.

TerraNova,20,289-294.Zhang,S.,Wang,X.,Hammarlund,E.U.,Wang,H.,Costa,M.M.,BjerrumC.J.,Connelly,J.N.,Zhang,B.,Bian,

L.,Canfield,D.E.,2015.Orbitalforcingofclimate1.4billionyearsago.ProceedingsoftheNationalAcademyofSciences,112,E1406–E1413,doi:10.1073/pnas.1502239112.

Zhou,C.,Tucker,R.,Xiao,S.,Peng,Z.,Yuan,X.,Chen,Z.,2004.NewconstraintsontheagesofNeoproterozoicglaciationsinsouthChina.Geology,32,437-440.

Page 27: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

26Table1:SummarystratigraphyandpalaeoenvironmentsofthePolarisbreenGroup,afterHambrey(1982),Halverson(2011)andBennetal.(2015).GlacigenicunitsareshowninredandtheE3-E4interval,thesubjectofthispaper,isshowninbold.GeologicalSystem Group Formation Member Thickness

(m) Lithologies Interpretedenvironment

Ediacaran

Polarisbreen

Dracoisen D1toD7 465

Capcarbonatepassingupintoshalethensandstoneand

mudstonealternationswithacentralandacapping

dolomiteunit

Transgressivecoastaltooffshore,becomingplayalake,thencoastal

Cryogenian

Wilson

breen

W1toW3 130-180

Diamictitesandsandstoneswithlimestoneanddolomite

unitsintheW2andW3overlyingsandstonesover

brecciateddolomite

Basalperiglaciatedsurface,locally

succeededbyfluvialdeposits,then

glacilacustrineandglacifluvialdeposits

Elbobreen

E4(Slangen) 20-30 Ooliticdolomite Regressiveperitidal

E3(Macdonaldryggen) 200

Finelylaminateddolomiticsiltyshale Offshoremarine

E2(Petrovbreen) 10-20Dolomiticdiamictites,

rhythmitesandconglomerates

Glacimarine

baseat720Malikelytolieinthismember

E1(Russøya) 75-170

Dolomitesoverlainbylimestonewithmolartoothstructure,blackshaleand

dolomite

Shallowmarine

Page 28: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

27Figurecaptions12Figure1.(left)LocationoftheSvalbardarchipelagowiththestudyregionshownasarectangle(enlargedon3right)onthemainisland,Spitsbergen.Intherightdiagramrockoutcrops(nunataks,grey)aresurroundedbyice4andsnow(white).AbbreviationsDRA(Dracoisen),DIT(Ditlovtoppen),AND(Andromedafjellet),REIN(informal5name,Reinsryggen),BACN(Backlundtoppen-KvitfjellaridgewhereasectionofupperE3andE4isexposed),6BACS(SouthBacklundtoppen,whereasectionofE2andbasalE3isexposed).78Figure2.StratigraphicprofilesthroughElbobreenFormation,E3(MacdonaldryggenMember)andE4(Slangen9Member)atlocationsshowninFigure1.1011Figure3.E2-E3transitionalfaciescontainingglacigenicsedimentfromDitlovtoppen(F)andsouth12Backlundtoppen(allothers).A.Thinsectionofgradedrhythmites,4mbelowthetopofE2.B.Limestone13rhythmitessharplyoverlainbyaneventbedwithsandybase,becomingpebblyupwards(1mbelowtopofE2).14C.Polishedhandspecimenexhibitingprominentdiamictite(till)pellet(upperright)andice-raftedsediment15withinlaminitescontainingauthigenicdolomite(5cmabovebaseofE3).D.Limestonelaminitesshowing16sedimentarydeformation(samehorizonasB.)E.Thinsectionoflimestonerhythmites(asB,D)showing17microsparlaminaewithinterveningdolomicriticlaminaecontainsedimentgrains.Prominentcentralstylolite.F.18Precipitateddolomitelaminiteswithdropstones,5cmabovebaseofE3.G,H.SamesampleasC.inthinsection19undertransmittedlight(G)andcathodoluminescence(H).Detritusisdolomitesiltandsandwithvariable20luminescencecharacteristics,quartz(black)andfeldspar(blue)silt.Authigenicdolomiteisabundantinthe21matrixandanearlybrightcementzonesurroundsclasts.2223Figure4.LimestonesfromSouthBacklundtoppen,1mabovethebaseofE3.A.Fieldphotographwithrecumbent24soft-sedimentfolds(examplesoffoldnosesarearrowed).B.Thinsectiondisplayingpalemicrosparlaminaeand25recumbentfoldnoses(arrows).C.andD.transmittedlightandcathodoluminescencerespectively.Microspar26laminaewithslightlybulboustopsconsistofmosaicsofrhombiccalcitecrystalswithaconsistent27cathodoluminescencezonationindicatingsimultaneousreplacementofaprecursorphase.28

Figure5.DolomitizedbasalE3facies,2.2mabovebaseofE3,Reinsryggen.A.Thinsectiondisplayingpale29dolomicrosparlayersalternatingwithdolomicritewithsoft-sedimentfolds.B.Photomicrographintransmitted30lightshowingbrecciationinto“pseudo-allochems”thatoccursintheregionoffoldnosesandwhichcreatespore31spaces(white)laterfilledbycement.C.andD.pairedtransmittedlightandcathodoluminescence32photomicrographsshowinggrowthofreplacivedolomicrosparcrystalswithconsistentluminescencezonation.E.33andF.pairedtransmittedlightandcathodoluminescencephotomicrographsshowingreplacivedolomicrosparof34“pseudo-allochems”passingintoclear,non-luminescentdolomitecement.35

Figure6.OxygenandcarbonateisotopeplotofE3andE4samples.36

Figure7.StratigraphicvariationinsedimentchemistryaroundtheE2-E3transitionandlowerE3.Carbonisotopes37showasteadyrisefromthebaseoftheformation.Extremevariabilityisrestrictedtothebasalbed.Reinsryggen38dolomiteshavelessnegativevaluesthanothersitesatthesamestratigraphicposition.InsolubleresidueandFe39displayparalleltrends(mirroredasplotted)withaninitialdecreasecorrespondingtopurercarbonates,followed40laterbyanincreasetothemixedcarbonate-siliciclasticsedimentcharacteristicofthebulkofE3.41

Figure8.RhythmicsedimentationinmemberE3.A.Dracoisensectionviewedfromthesouth,startingwith42beginningofexposureapproximately40mabovethebaseofE3.Doubleyellowlinesshowdirectionofbedding.43Flat-toppedhilltorightisunconformableCarboniferouscover.B.Enlargementofboxedareain(A)illustrating44variabledegreeofexpressionofsedimentaryrhythms.C.Twoorange-weatheringdolostonehorizons,theupper45oneofwhichwedgesouttorightofthe35cmhammer(ca.150mabovebaseofDitlovtoppensection).D.Non-46resistantpartofrhythm(93.8m,Dracoisen);heightofview45cm.E.Resistantpartofrhythm(97.4m,47Dracoisen);heightofview45cm.F.Distinctlyconcretionarydolostonehorizoncontainingsedimentarylayers48thatthinbyafactoroftwolaterallyintodolomiticshale(42m;Dracoisensection);ruler19cmlong.49

Page 29: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

28Figure9.Transmittedlightpetrographyofdolomiticsilt-shalesfromthemainpartofE3intheDracoisensection.50A-C.scaleisinmillimetres.A.Samplewithrelativelyhigh(60%)carbonatecontentformingdolomite-andcalcite-51cementedconcretionat42.75m).Laminationisparallel,butmicro-nodularonsub-millimetrescale.B.Sample52with50%carbonate(dolomite>>calcite)consistingofcarbonatedomainswithfinesiltseparatedbyclay-rich53laminaethatshowcomplexdeformation(disturbancestructures)at67m.C.Samplecontaining70%dolomite54andalsorichinquartzo-feldspathicsilt(187m)showingincipientcross-laminationandverythinlensesofcoarser55silt;suchsilt-richsedimentsareonlyfoundintheE3-E4transitionzone.DandE.Samesampleasin(A)56illustratingdiscontinuousclay-pyriteflaserlaminaeseparatedbydomainsoffinesiltwithcarbonate.F.Same57sampleas(B)illustratingdeformedlaminae.G.Samplewith35-40%carbonate(dolomite)withmuchsiliciclastic58siltanddistinctdeformedclay-richlaminae,106.9m.H.Samplewith30%carbonateasdolomitewithabundant59fine-mediumsiliciclasticsilt,173m.60

Figure10.Disturbancestructures.A-C.Beddingplaneoutcropviews.A.Typicalequantstructures1-2cmacross,61Dracoisen65m.B.Close-upoftwostructureswithdeformedlaminaevisible(widthofphoto3cm),62Ditlovtoppen,40m.C.Lineararrayofstructures,Dracoisen,65m.D-F.Verticalcross-sections.D.Smoothly63weatheredoutcropwithdisturbancestructureboundedaboveandbelowbyundisturbedlamination,Klofjellet,64exactstratigraphicpositionunknown.E.Weatheredoutcropshowingseveralstructuresverticallyoffsetfrom65eachother(mmscaleatlowerleft),Dracoisen,45m.F.Polishedsurfaceofsampleusedforserialsections,66Dracoisen,53m.G-J.Computermodelfromserialsectioningofsampleshownin(F);letteringindicatessnapshot67frommovieinsupplementaryinformation.G.Conicalcoretostructureseeninverticalsection.H.As(G)rotated68through90°anddisplayingdouble-pointedtermination.I.As(H),butalsoshowingenclosing(red)lamina.J.69Completemodelseenfromreversesidewithsheath-likelaminaeinthecoreandcontinuousoverlyinggreen70laminaoverlainbyfurtherdeformedlaminae.71

Figure11.TrainsofdisturbancestructuresfromKlofjellet(exacthorizonunknown).A.Cuthandspecimen72displayingcontinuouslaminationinterruptedbyvariousstructuresincludingatrainclimbingfrom1to3.Apale73laminaat2isnearlyundisturbedacrossthetrain.B-C.Modelfrom31serialsections(totalling0.62mmdepth)of74thelowerrightportionofthesample.B.Viewofmodelfromfrontofslabshowingtubularnatureofstructures75(cf.A).C.Transverseviewofmodelwithfrontatarrowheadtoright,illustratingnarrowingofstructuresintothe76slabonleftofimage.D.Anothercutfromsamesampleillustratingbothdisturbancestructuresandbrittlefailure77(e.g.arrowed).Examplesoflocalvariationsinlaminathicknessarenumbered.Diagonallinesaresawmarks.78

Figure12.StratigraphicvariationwithinE3ofcarbonatestableisotopevalues.KeyasinFig.6.79

Figure13.StratigraphicvariationwithinE3of%insolubleresidue(non-carbonate)andacid-solubleFe,expressed80asFeCO3.KeyasforFig.6.81

Figure14.E3samplesfromDracoisensectionviewunderCL(A-C)andbyBSE(D-F).A.Sampleat48.7mwith40-8245%carbonate(dolomite>>calcite).Siliciclasticsiltincludesquartz(dark),feldspar(blue)andapatite(green).83Zonationisinconsistentbetweendolomitecrystals,i.e.theydidnotgrowsimultaneously.B.Sampleat46.55m84with45%carbonate(dolomite).Similarto(A)butwithmoresegregationofquartzo-feldspathicdetritusand85dolomiteintolaminae.C.Sampleat68.55mwith50%carbonate(subequaldolomiteandcalcite).Finertexture86than(A)and(B)withfine-to-mediumquartzsiltandheterogenouszonationincarbonatecrystals.D.Sampleat8742.75mwith60%carbonate(subequaldolomiteandcalcite),visiblyconcretionaryinthefield(Fig.8F).Dolomite88crystalstendtobeisolatedandenclosedbycalcite.E.andF.Sampleat177mwith30%carbonate(dolomite).89Dolomiteformssubhedralcrystalswithbrighter(moreFe-rich)rims;calcitetendstoshowmoreirregularor90enclosingshapes;pyriteframboidsareconspicuous.C=calcite,D=dolomite,F=feldspar,P=pyrite,Q=quartz.91

Figure15.Ionmicroprobedata(fulldatainSupplementaryinformation,TableS2)fromindividualcarbonate92crystalsperformedbydownwardablationofcarbonatecrystalsto100µmdepthin5µmsteps.Analysesare93thusbiasedtowardscrystalcentresandnoinformationisavailableaboutrelativeageofzones.A.Exampleof94sampleF7163(42.75m,Dracoisen)wherepointsjoinedwithlinesaredepthtraversesofsinglecrystals.Overall95thereisoverlapinchemistryofdolomiteandcalcitewithordersofmagnitudevariationinabundance,and96

Page 30: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

29tendencyforvariationinFeorbothFe&Mnwithinindividualcrystals.B.comparisonofmeansofdolomiteand97calcitecrystalsfromionmicroprobeanalysiswithICPdataforacid-solubleFeandMn,bothexpressedaswt.%98carbonate.ICPmeansarehighinFeduetosomeleachingofFefromsilicatephases.SamplesarefromDracoisen99sectionatthefollowingstratigraphicpositions:109(48.3m,seealsoFigs.9A,D,E,14D),F7199(106.9m,see100alsoFig.9G),F7182(68.55m,seealsoFig.14C),F7163(42.75m),F7266(177.0m,seealsoFig.14E,F).101

Figure16.SedimentaryrhythmswithinmemberE3.A.Comparisonofcumulativethicknessofindividualcyclesat102theDracoisenandDitlovtoppenlocalities.B.andC.HistogramsofcyclethicknessattheDracoisenand103Ditlovtoppenlocations(numbersbeneathbinsindicateupperendofbinrange).104

Figure17.GeochemistryofE3rhythmicsedimentsfromtheDracoisensection.A.andB.showresultsfrom105PrincipalComponentsAnalysisofXRFandICPdatarespectively.Thediagramsdisplaytheweightingonthefirst106principalcomponent(F1)onthex-axis,togetherwiththe%ofdatavariation,plottedagainstF2onthey-axis.In107bothcaseCaprovidesthebestindicatorofsamplevariation,mappingnearlyperfectlyontoF1.C.VariationofCa108intotalsample(ICPanalysis)fromadetailedsamplingsectionthroughsevenfield-definedrhythms(XRFdataare109notplotted,butareverysimilar).Theintensivelysampledharderbedataround45.5misenrichedinCa,butat110higherlevelsthereisalackofclearrelationshipwithrhythms.D.VariationofCaintotalsample(ICPanalysis)111fromhigherhorizonsinE3intheDracoisensectionAtmosthorizonsthereisalackofsystematicdifferenceinCa112contentbetweenthefield-definedlithologies.113

Figure18.PhenomenaaroundtheE3-E4transition.A.Polishedhandspecimenillustratingdolomiticsiltstones114withdistinctcoarserandfiner(dark)laminaeandcommon2-3mmvugsrepresentingcrystalpseudomorphs.115Scalebarincm;9mbelowtopofE3,Dracoisen.B.Siltylaminateddolareniteswithripple-laminatedthingraded116unitsandptygmaticallyfoldedsediment-filledcontractioncracks.2mabovebaseofE4,Reinsryggen.C.117Dolomiticsiltstonewithdark-colouredelongatedmudclastsandabundantcrystalpseudomorphs,someopen,118somefilledbycalcitewithminorquartz.0.5mbelowthetopofE3,Reinsryggen.D.Samesampleas(C)119illustratingdiageneticquartzcontaininganhydriteinclusions(e.g.arrowed).E.Fine-graineddolarenites120containingnodularvuggypseudomorphsnowcomposedofquartz(white)orferroandolomite(orange).Scale121barincm,baseofE4,Ditlovtoppen.F.Samesampleas(E)illustratinganhydriteinclusions(e.g.arrowed)in122diageneticquartz.123

Figure19.StrontiumisotopedatafromE3limestonesinBacklundtoppensections.A.87Sr/86SrversusSr.B.12487Sr/86SrversusMn/Sr.125

Supplementarydata126

SupplementarydataTableS1.Stableisotope,Srisotope,ICPandmagneticsusceptibilitydata127

SupplementarydataTableS2.Ionmicroprobedata128

SupplementarydataTableS3.X-rayfluorescencedata129

SupplementarydataTableS4.ZircondatafromNIGL.130

SupplementarydataTableS5.ZircondatafromAdelaidelaboratory.131

SupplementaryVideo1:“3loops.avi”fromthree-dimensionalcomputermodelderivedfromsampleillustrated132inFigure11.133

SupplementaryVideo2:“core.avi”fromthree-dimensionalcomputermodelderivedfromsampleillustratedin134Figure11.135

Page 31: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure1

Page 32: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure2

Page 33: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure3

Page 34: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure4

Page 35: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure5

Page 36: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure6

Page 37: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure7

Page 38: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure8

Page 39: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure9

Page 40: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure10

Page 41: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure11

Page 42: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure12

Page 43: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure13

Page 44: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure14

Page 45: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure15

Page 46: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure16

Page 47: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure17

Page 48: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure18

Page 49: Fairchild, I. J., Bonnand, P., Davies, T., Fleming, E. J ... · 3 1. Introduction Distinct and widespread glaciation is a key phenomenon of the Earth system in the Cryogenian Period

Figure19