23
Fabrication of Self-organized Metal-Polymer Hybrid Structures for Optics and Photonics - Biomimetic Photonic Materials Design - Masatsugu SHIMOMURA, Hiroshi YABU, Daisuke ISHII, and Yuji HIRAI Institute of Multidisciplinary Research for Advanced Materials WPI Research Center : Advanced Institute for Materials Research, Tohoku University JST-CREST

Fabrication of Self-organized Metal-Polymer Hybrid

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fabrication of Self-organized Metal-Polymer Hybrid

Fabrication of Self-organized Metal-Polymer

Hybrid Structures for Optics and Photonics

- Biomimetic Photonic Materials Design - �

Masatsugu SHIMOMURA, Hiroshi YABU, Daisuke ISHII, and

Yuji HIRAI�

Institute of Multidisciplinary Research for Advanced Materials

WPI Research Center : Advanced Institute for Materials Research,

Tohoku University

JST-CREST�

Page 2: Fabrication of Self-organized Metal-Polymer Hybrid

New Generation of Biomimetic Materials

�������

Butterfly wing-scale:structure color

Fibers, coating, photonics

Moth-eye structure:anti reflectant

Anti-reflection film photonics

Lotus Effect:hydrophobic

coating, painting, anti-fogging Painting, coating.. Anti-fauling

Sharkskin riblet�

�� ������

Gecko Hand:

adhesion

self-cleaning surface

Page 3: Fabrication of Self-organized Metal-Polymer Hybrid

Japanische Miso Suppe�� Wine Legs�

Pattern formation by Self-organization

Novel Nano Materials�

Ilya Prigogine

Self-Organized Patterns in Daily Life

Dissipative structures Far from thermal equilibrium

General physical phenomena

for any materials in any scale

Benard convection Fingering instability Dewetting phenomenon

Coffee Stain�

������������ ������������������������ �������������������

���� ��������!�"##���$%&�!��%�'�!�(�!���)�*���������+���,������"##����

Page 4: Fabrication of Self-organized Metal-Polymer Hybrid

Japanische Miso Suppe�� Wine Legs�

Pattern formation by Self-organization

Novel Nano Materials�

Ilya Prigogine

Self-Organized Patterns in Daily Life

Dissipative structures

General physical phenomena

for any materials in any scale

Benard convection Fingering instability Dewetting phenomenon

Coffee Stain�

Breath figures

(dewing)

����������������������� ���������!-������ ����� #,�� #, �"###��

Page 5: Fabrication of Self-organized Metal-Polymer Hybrid

Casting of Polymer Solution under High-Humid Condition

What's happening?

In-situ optical microscopy of solution surface during solvent evaporation shows �

Page 6: Fabrication of Self-organized Metal-Polymer Hybrid

'�.����(�!��/�0�!� ���.�'�����!�'��*���.�*��*���

1���23�!���

Page 7: Fabrication of Self-organized Metal-Polymer Hybrid

4 3 2 1

Three phase line

Water

droplet

1111111111

Substrate

Condensation

of water

Evaporation

of solvent

Close packing

by capillary force

Polymer solution

Condensed water droplets

Top view

a b

Honeycomb Patterned Polymer Film

Prepared under Humid Condition

water droplets condensed on polymer solution act as template

SEM image schematic formation mechanism

100μm

Page 8: Fabrication of Self-organized Metal-Polymer Hybrid

�� �

���

�����������������

���������������������

����������������� �!����

Page 9: Fabrication of Self-organized Metal-Polymer Hybrid
Page 10: Fabrication of Self-organized Metal-Polymer Hybrid

����%��4�!-�

0 %�����.���5�

6��!�����!*�

Page 11: Fabrication of Self-organized Metal-Polymer Hybrid

!7�8�7�

2�2�2� ����'���,�2�

�������� ���� �����

"�#�$"�%&$��#$

�������

�� �������'�

'������(

��������

������������

'������(

���� �����

9�0�

2�

9�0� ��2�2�0�

2�:� ��� �* ��!�� ����)��� "&��

�;�� �;��

)���� )����)����

���������� �������������������������� �����������

�����������������������������������������������������

������������ ��������� �������� �!"#$����%�������������

%������������������������������� �

��������������������� ������ ����

����������������

Superhydrophobic Pincushion Structure�

Page 12: Fabrication of Self-organized Metal-Polymer Hybrid
Page 13: Fabrication of Self-organized Metal-Polymer Hybrid
Page 14: Fabrication of Self-organized Metal-Polymer Hybrid

����.���*�����*���

����.���*�����*���

����.���*�����*���

����.���*�����*���

����.���*�����*���

����.���*�����*���

����.���*�����*���

����.���*�����*���

����.���*�����*���

��� ����0�!� ���.�'����

�����!-�

)�*����� ������(!-�

�������!-�

)�*������*�%���!� ���.�<���

��� ����=��*���� .��%�

��!*���!-�

�>*���(�!�

��!������!��*���*���%�<���

���(!-�

�������!-�

)�*������*�%���!������!�<���

���� ����=��*���� .��%��

)�*����� ���

��!*���!-�

�>*���(�!�

����#���

����#���

����#���

����#���

������������

'�����������������#���

����#���

Page 15: Fabrication of Self-organized Metal-Polymer Hybrid

����.���*�����*���

����#���

����.���*�����*���

����#���

Optical Properties of Metalized Honeycomb Films

Page 16: Fabrication of Self-organized Metal-Polymer Hybrid

4�0�0� 5�0�0� 6�0�0� 7�0�0� 8�0�0�0�.�0�

2�0�

4�0�

6�0�

8�0�

������

��� ����*��!�<���

��*�����!� ���.������

��*����3�(�!�

��� ������!� ���.������

��*����3�(�!�

��*���*��!�<���

4�&���!-*��!���

*��!��

���!��

�?��

��*�����!� ���.������

��� ������!� ���.������

Page 17: Fabrication of Self-organized Metal-Polymer Hybrid

Pincushion films

Silver pincushion films

30 μm

(b)

30 μm

(c)

50 μm

(d)

Honeycomb-patterned

films

(a)

Peeling off

Silver

deposition

Glass

Silver

Polymer

i

h

g f

e

d c b

a

0

800

600

400

200

0 500 1000 1500 2000

Inten

sity (C

PS

)

Raman Shift (cm-1)

(a)

0.5

5.0

50

50 flat

pincushion

pincushion

pincushion

(b)

5 �m

Hot spot

(c)

1 �m

Silver Pincushion Arrays Prepared by Self-Organization and Vapor Deposition

Enhance Raman Scattering

Yuji Hirai, Hiroshi Yabu, Yasutaka Matsuo, Kuniharu Ijiro, and Masatsugu Shimomura

Page 18: Fabrication of Self-organized Metal-Polymer Hybrid

30μm

Aggregate of neurons

30μm

Proliferation of Stem Cells

Neurite Neuron

30μm

Pore-size Effect on Cultured Hippocampus Neural Cells

on Honeycomb Patterned Films

Differentiation to Neuron Differentiation to Neuron

A.Tsuruma, M.Tanaka, N.Fukushima, M.Shimomura

e-J. Surf. Sci. Nanotech 3, 159-164 (2005).

Page 19: Fabrication of Self-organized Metal-Polymer Hybrid

Self-Organized Superhydrophobic Hybrid Nano-&

Micro-Materials with Controllable Adhesive Force

@���*��������

���(!-

�����!-��/�

*����� ���

��μ� ��μ�

'������

�����

0�!� ���.������!�%��

��� ����'����

0 %�����.��

����' ����

�����%��%�4!

�*��!-��%�����!

��� ����)�*���0 .��%�

)������*���*����

0 %�����.���5�$%����&�

A��B-���!%7�A������(��$���������/�@!-�!����!-����/���-�!�3�%���� ����)�*�������

��*������/��C��*�7�0 %�����.������/���� D������*����C��*7��

0 %�����.������/����4�*��0�-��$%�����!�

*����+*��,���+��!��!*���������-+�%+%��%

�����)�*����"���,���"##���

Page 20: Fabrication of Self-organized Metal-Polymer Hybrid

E�

'����A������(��*��A���!�����%�

Water droplet manipulation by electric stimuli �

Page 21: Fabrication of Self-organized Metal-Polymer Hybrid

Multi Functional Properties Based on

Hierarchically Structured Biological Surfaces.

- Toward Biomimetic Material Design - ��

������3�F��%4 !9�*��4����!����G�!�"##����

Page 22: Fabrication of Self-organized Metal-Polymer Hybrid

���7HH!�4����G��%������H!�4�H)�*��@ ����!%�����%��I�!-��'���*����������������!%�I�!%�4���/�*���'�*���� �#�����*���

Page 23: Fabrication of Self-organized Metal-Polymer Hybrid