44
Extinction Simulation of a Diffusion Flame Established in Microgravity presented by Guillaume Legros (1) ( [email protected] ) in collaboration with A. Fuentes (1) , B. Rollin (1) , P. Joulain (1) , J.P. Vantelon (1) , and J.L. Torero (2) (1) Laboratoire de Combustion et de Détonique (UPR 9028 du CNRS) – Poitiers (France) (2) School of Engineering and Electronics, The University of Edinburgh – Edinburgh (United Kingdom) 4 th International Conference on Computational Heat and Mass Transfer Cachan, May, 19 th , 2005

Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Extinction Simulation of a Diffusion FlameEstablished in Microgravity

presented by Guillaume Legros(1)

( [email protected] )

in collaboration withA. Fuentes(1), B. Rollin(1), P. Joulain(1),

J.P. Vantelon(1), and J.L. Torero(2)

(1) Laboratoire de Combustion et de Détonique (UPR 9028 du CNRS) – Poitiers (France)(2) School of Engineering and Electronics, The University of Edinburgh – Edinburgh (United

Kingdom)

4th International Conference on Computational Heat and Mass Transfer Cachan, May, 19th, 2005

Page 2: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Plausible Spacecraft Fire Scenario:

INTRODUCTION

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

condensed fuel

oxidizer blowingvelocity: Vox

Page 3: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Plausible Spacecraft Fire Scenario:

INTRODUCTION

condensed fuel

oxidizer blowingvelocity: Vox

extinction !

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 4: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Investigating extinction:

O2 level

oxidizer balance gaz

VOX

condensed fuel nature

INTRODUCTION

need of valuable numerical simulations

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 5: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Investigating extinction:

O2 level

oxidizer balance gaz

VOX

condensed fuel nature

INTRODUCTION

need of valuable numerical simulations

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 6: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Investigating extinction:

O2 level

oxidizer balance gaz

VOX

condensed fuel nature

INTRODUCTION

need of valuable numerical simulations

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 7: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Investigating extinction:

O2 level

oxidizer balance gaz

VOX

condensed fuel nature

INTRODUCTION

need of valuable numerical simulations

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 8: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Investigating extinction:

O2 level

oxidizer balance gaz

VOX

condensed fuel nature

INTRODUCTION

need of valuable numerical simulationsfor steady-state phenomena

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 9: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Environment:

Parabolic flights

microgravity duration = 22 s

a parabola every 2 minutes

EXPERIMENTAL PROCEDURE

easy ignition

+ fast transition to steady-state

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 10: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

EXPERIMENTAL PROCEDURE

easy ignition

+ fast transition to steady-state

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 11: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Environment:

Parabolic flights

microgravity duration = 22 s

a parabola every 2 minutes

EXPERIMENTAL PROCEDURE

easy ignition

+ fast transition to steady-state

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 12: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Environment:

Parabolic flights

microgravity duration = 22 s

a parabola every 2 minutes

EXPERIMENTAL PROCEDURE

easy ignition

+ fast transition to steady-state

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 13: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Environment:

Parabolic flights

microgravity duration = 22 s

a parabola every 2 minutes

EXPERIMENTAL PROCEDURE

easy ignition

+ fast transition to steady-state

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 14: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Environment:

EXPERIMENTAL PROCEDURE

easy ignition

+ fast transition to steady-state

oxidizer blowingvelocity: Vox

ethylene injectionvelocity: VF

1 cm

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 15: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Measurement:

EXPERIMENTAL PROCEDURE

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 16: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Measurement:

CH* chemiluminescence

Iflame(λ=431 nm) α ICH* [1]

[1] Berg et al. (2000)

EXPERIMENTAL PROCEDURE

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 17: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Measurement:

CH* chemiluminescence

ICH* α volumetric combustion rate [2]

[2] McManus et al. (1995)

EXPERIMENTAL PROCEDURE

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 18: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Measurement:Map by CH* chemiluminescence

EXPERIMENTAL PROCEDURE

oxidizer blowingvelocity: Vox

ethylene injectionvelocity: VF

1 cm

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 19: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Experimental Measurement:Map by CH* chemiluminescence

EXPERIMENTAL PROCEDURE

oxidizer blowingvelocity: Vox

1 cm

α map of volumetric combustion rate

INTRODUCTION

EXPERIMENTEnvironmentMeasurement

SIMULATION

COMPARISON

CONCLUSIONS

Page 20: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Validating numerical extinction:

O2 level = 35%

oxidizer balance gaz = N2

fuel = C2H4

Vox = parameter

comparison based on volumetric combustion rate

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 21: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Validating numerical extinction:

O2 level = 35%

oxidizer balance gaz = N2

fuel = C2H4

Vox = parameter

comparison based on volumetric combustion rate

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 22: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Validating numerical extinction:

O2 level = 35%

oxidizer balance gaz = N2

fuel = C2H4

Vox = parameter

comparison based on volumetric combustion rate

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 23: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Validating numerical extinction:

O2 level = 35%

oxidizer balance gaz = N2

fuel = C2H4

Vox = parameter

comparison based on volumetric combustion rate

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 24: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Validating numerical extinction:

O2 level = 35%

oxidizer balance gaz = N2

fuel = C2H4

Vox = parameter

comparison based on the mapof volumetric combustion rate

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 25: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Numerical Tool:Variant of Fire Dynamics Simulator (FDS):

transient 3D Navier-Stokes equations (low Mach number approximation)

allowing large density and temperature changes Direct Numerical Simulation mixture fraction / finite kinetics – no soot model Radiative Transfer Equation (non-scattering approximation)

RTE

Finite Volume Method Wideband model ( H2O + CO2 )

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 26: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Numerical Tool:Variant of Fire Dynamics Simulator (FDS):

transient 3D Navier-Stokes equations (low Mach number approximation)

allowing large density and temperature changes Direct Numerical Simulation mixture fraction / finite kinetics – no soot model Radiative Transfer Equation (non-scattering approximation)

RTE

Finite Volume Method Wideband model ( H2O + CO2 )

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 27: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Numerical Tool:Variant of Fire Dynamics Simulator (FDS):

transient 3D Navier-Stokes equations (low Mach number approximation)

allowing large density and temperature changes Direct Numerical Simulation mixture fraction / finite kinetics – no soot model Radiative Transfer Equation (non-scattering approximation)

RTE

Finite Volume Method Wideband model ( H2O + CO2 )

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 28: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Numerical Tool:Variant of Fire Dynamics Simulator (FDS):

transient 3D Navier-Stokes equations (low Mach number approximation)

allowing large density and temperature changes Direct Numerical Simulation mixture fraction / finite kinetics – no soot model Radiative Transfer Equation (non-scattering approximation)

RTE

Finite Volume Method Wideband model ( H2O + CO2 )

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 29: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Numerical Tool:Variant of Fire Dynamics Simulator (FDS):

transient 3D Navier-Stokes equations (low Mach number approximation)

allowing large density and temperature changes Direct Numerical Simulation mixture fraction / finite kinetics – no soot model Radiative Transfer Equation (non-scattering approximation)

RTE

Finite Volume Method Wideband model ( H2O + CO2 )

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 30: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Numerical Tool:Variant of Fire Dynamics Simulator (FDS):

transient 3D Navier-Stokes equations (low Mach number approximation)

allowing large density and temperature changes Direct Numerical Simulation mixture fraction / finite kinetics – no soot model Radiative Transfer Equation (non-scattering approximation)

RTE

Finite Volume Method Wideband model ( H2O + CO2 )

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 31: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Methodology:choice of the iso-contour value?

Sum of volumetric

combustion rate

threshold

Max

10 % of Max

Iso-contour value

COMPARISON

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISONMethodologyStand-off distanceFlame lengthSoot role

CONCLUSIONS

Page 32: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Stand-off Distance:iso-contours

VOX

VF

COMPARISON

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISONMethodologyStand-off distanceFlame lengthSoot role

CONCLUSIONS

Page 33: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Flame Length:

COMPARISON

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISONMethodologyStand-off distanceFlame lengthSoot role

CONCLUSIONS

Page 34: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Flame length:

INTRODUCTION

INTRODUCTION

CURSUS

ENSEIGNEMENTCadreExpériences

RECHERCHECadreExpériences

CONCLUSIONS

Page 35: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Discrepancy Evolution:

COMPARISON

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISONMethodologyStand-off distanceFlame lengthSoot role

CONCLUSIONS

Page 36: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Discrepancy Evolution:

VOX=150 mm.s-1 VOX=250 mm.s-1

(b)

(a)

characteristic residence time

VOX

COMPARISON

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISONMethodologyStand-off distanceFlame lengthSoot role

CONCLUSIONS

Page 37: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

This study achieved :

coupling of radiative transfer and finite kinetics, leading to flame extinction simulation, thus better flame shape predictions

highlight the soot keyrole in the extinction at the flame trailing edge

This study needs to achieve :

incorporation of a soot model

CONCLUSIONS

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 38: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

This study achieved :

coupling of radiative transfer and finite kinetics, leading to flame extinction simulation, thus better flame shape predictions

highlight the soot keyrole in the extinction at the flame trailing edge

This study needs to achieve :

incorporation of a soot model

CONCLUSIONS

INTRODUCTION

EXPERIMENT

SIMULATION

COMPARISON

CONCLUSIONS

Page 39: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Enjeu: utilisation de l’échelle des temps de résidence pour l’étude de l’extinction de la réaction par les pertes radiatives

Techniques expérimentales

Analyse dimensionnellede la couche-limite réactive:

Foxsox

sf VV~,

,

ττ

Résultats:

fraction volumique de suie mesurée et rapportée à FoxVV

expérimental

théorie

Page 40: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Techniques expérimentalesEchéance: caractérisation des conditions ( Tsuie , fsuie ) dans la zone de quenching Incandescence Induite par Laser Emission/Absorptio

n Modulée

étalonnage

z y

x

z y

x

Page 41: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Enjeu: appréhender la dynamique de l’interaction flamme non- prémélangée / particules

Techniques expérimentales

touverture caméra

flash laser

Résultats:

Echéance:couplage de techniques pour cerner le couplage aérodynamique des flammes / formation des suies

LIF

LII

intensité induite

Page 42: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

APPENDIX

X=0,1 X=0,5 X=0,98 X=1,1

Vox =100 mm.s-1

flxX =

Page 43: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

Computational Domain:

NUMERICAL PROCEDURE

INTRODUCTION

EXPERIMENT

SIMULATIONGoalToolDomain

COMPARISON

CONCLUSIONS

Page 44: Extinction Simulation of a Diffusion Flame Established in ...docs.gdrfeux.univ-lorraine.fr/Nancy1/LCD1.pdf · Extinction Simulation of a Diffusion Flame Established in Microgravity

oijkI

z = 0:u = 0T = Tw

εw = 0,95

y = 0:grad u = 0T = Ta

ε = 1

x = 0:u = Vox

T = Ta

ε = 1

y = ymax:grad u = 0T = Ta

ε = 1

z = zmax:grad u = 0T = Ta

ε = 1

x = xmax:grad u = 0T = Ta

ε = 1

g = 0