Experimental investigation and extended simulation of ... · PDF fileTurbocharging isnowadaysconsidered the most commonly used method of engine ... The present research workaimsat

  • Upload
    dohuong

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

  • Experimental investigation and extended simulation of turbocharger non-adiabatic performance

    Vom Fachbereich Maschinenbau der Universitt Hannover

    zur Erlangung des akademischen Grades Doktor-Ingenieur

    genehmigte Dissertation

    von

    MSc Eng. Sameh Shaaban geboren am 01.02.1970 in Kairo, gypten

    2004

  • Stichworte fr die Dokumentation:

    Turbolader, diabatisches Verhalten, Simulation, Radialverdichter, radiale Turbine

    Key words:

    Turbocharger, non-adiabatic performance, simulation, centrifugal compressor, radial

    turbine, micro compressor.

    1. Referent: Prof. Dr.-Ing. J. Seume

    2. Referent: Prof. Dr.-Ing. H. Pucher

    Tag der Promotion: 14.12.2004

  • i

    Abstract

    Turbocharging is nowadays considered the most commonly used method of engine

    supercharging. One of the important factors affecting the turbocharger performance

    is the heat transfer inside the turbocharger and from the turbocharger to the ambient.

    Heat transfer takes place due to the high temperature gradient between the turbine

    and the other components of the turbocharger as well as between the turbine and the

    ambient. This heat transfer causes underestimation of the measured compressor

    efficiency and overestimation of the turbine efficiency. This results in an inaccurate

    estimation of the compressor power and the turbine power. Therefore, the measured

    turbocharger performance maps are not accurate enough to simulate the

    turbocharger performance in engine simulation programs. Furthermore, the

    measured turbocharger performance maps provide the turbocharger performance for

    very few operating points in comparison with the engine operating points.

    The present research work aims at investigating the turbocharger non-adiabatic

    performance. It also aims at extending the simulation of the turbocharger

    performance down to very low turbocharger rotational speeds as well as compressor

    operation in the fourth quadrant of the performance map. The turbocharger

    performance simulation is based on physically meaningful models for the

    aerodynamic performance of radial turbomachines. The aerodynamic performance of

    micro radial compressors is also experimentally investigated.

    Three different turbochargers are investigated in the present research work. The

    experimental investigation is conducted using two different combustion chamber test

    rigs. Models and correlations for the estimation of the amount of heat transfer

    between the components of the turbocharger as well as between the turbine and the

    ambient are developed. Empirical loss correlations are obtained for micro radial

    compressors. Correlations for estimating the slip factor of radial compressors are

    also presented. A program for predicting the actual performance of micro radial

    compressors in low rotational speed operating range is introduced. A turbocharger

    performance simulation program is also presented. This program is designed to

    operate as a stand alone program or as two subroutines in the engine simulation

    programs.

  • ii

    Kurzfassung

    Turboaufladung ist heutzutage die am hufigsten verwendete Methode fr die

    Aufladung von Verbrennungsmotoren. Wrmebertragung innerhalb des Turboladers

    und vom Turbolader an die Umgebung ist einer der wichtigen Faktoren, die das

    Turboladerverhalten beeinflussen. Sie findet wegen des hohen

    Temperaturgradienten zwischen der Turbine und den anderen

    Turboladerbestandteilen sowie zwischen der Turbine und der Umgebung statt. Diese

    Wrmebertragung fhrt zur Unterschtzung des Verdichterwirkungsgrades und

    berschtzung des Turbinenwirkungsgrades. Die berechnete Verdichter- bzw.

    Turbinenleistung mit Hilfe der gemessenen Kennfelder wird deswegen zu gro

    geschtzt. Das bedeutet, dass die gemessenen Kennfelder nicht genau genug fr die

    Simulation des Turboladerverhaltens in Motorsimulationsprogrammen sind.

    Auerdem stellen die gemessenen Kennfelder das Turboladverhalten nur fr wenige

    Betriebspunkte dar.

    Ziel der vorliegenden Arbeit ist, das diabate Verhalten des Turboladers zu

    untersuchen und die Simulation des Turboladers bis zu sehr niedrigen Drehzahlen zu

    erweitern. Die Simulation des Verdichters deckt auch den Verdichterbetrieb im

    vierten Quadranten des Kennfeldes ab. Die Erweiterung der Kennfelder basiert auf

    physikalisch sinnvollen Modellen fr das aerodynamische Verhalten der

    Radialturbomaschinen. Das aerodynamische Verhalten der Mikroradialverdichter

    wird auch untersucht.

    Drei Turbolader werden im Rahmen der vorliegenden Arbeit untersucht. Die

    experimentelle Untersuchung wird mit zwei unterschiedlichen

    Brennkammerprfstnden durchgefhrt. Modelle bzw. empirische Korrelationen fr

    die Bestimmung der Wrmebertragung innerhalb des Turboladers und vom

    Turbolader an die Umgebung werden entwickelt. Des Weiteren werden empirische

    Korrelationen fr die Bestimmung der aerodynamischen Verluste und des

    Minderleistungsfaktors erstellt. Ein Programm fr die Vorhersage des

    Radialverdichterverhaltens im niedrigen Drehzahlbereich wird erstellt. Ein anderes

    Programm fr die Erweiterung der gemessenen Kennfelder bis zu sehr niedrigen

    Drehzahlen wird erarbeitet. Dieses Programm dient sowohl als Stand-Alone

    Programm als auch als Subroutinen in Programmen zur Simulation des Motors.

  • iii

    Acknowledgment

    The present research work is developed during my work as research assistance in

    the institute of turbomachinery (IfS), Hanover University. The research work was

    supervised by Prof. Dr.-Ing. J. Seume.

    I would like to express my thanks and gratitude to Prof. Dr.-Ing. J. Seume for the

    continuous support, the helpful advice, and the valuable guidance throughout the

    present research work.

    I thank Prof. Dr.-Ing. M. Rautenberg for the discussions during the research work. I

    also thank Prof. Dr.-Ing. H. Pucher and Prof. Dr.-Ing. J. Linnhoff for the support

    during the development of the TC_2003 program. My thanks are also to Dr.-Ing. R.

    Baar, VW-company, for the support.

    I would like to express my thanks and gratitude to Prof. Dr.-Ing. H. Heikal and Prof.

    Dr. Eng. A. Abdelhafiz for the continuous support during my study in Egypt. I would

    also like to thank Prof. Dr.-Ing. A. Mobarak for the information and discussions during

    his visit to Germany.

    I thank all my colleagues in the institute of turbomachinery for the valuable

    discussions. My thanks are also to the technical staff of the institute of

    turbomachinery for the technical support during my research work.

    Finally, I would like to express my special thanks to my family for the patience and

    encouragement.

    Hanover, December 2004

    Sameh Shaaban

  • iv

  • Table of contents

    v

    Table of contents

    Abstract .......................................................................................................................i

    Kurzfassung...............................................................................................................ii

    Acknowledgment......................................................................................................iii

    Table of contents.......................................................................................................v

    List of figures..........................................................................................................viii

    List of tables ............................................................................................................xx

    List of symbols .......................................................................................................xxi

    1. INTRODUCTION.....................................................................................................1

    1.1 Introduction .......................................................................................................1

    1.2 Turbocharging...................................................................................................3

    1.3 Mechanical design of the turbocharger .............................................................4

    1.3.1 The radial compressor of the turbocharger.................................................4

    1.3.2 The radial turbine of the turbocharger.........................................................5

    1.3.3 Turbocharger bearing system.....................................................................6

    1.4 Methods of controlling the turbocharger............................................................6

    1.4.1 By-pass control ...........................................................................................7

    1.4.2 Variable geometry control...........................................................................7

    1.5 Turbocharger performance maps......................................................................8

    1.5.1 Compressor performance map ...................................................................8

    1.5.2 Turbine performance map ..........................................................................9

    1.6 Adiabatic versus non-adiabatic turbocharger performance.............................11

    1.7 Methods of turbocharger performance simulation...........................................13

    1.8 Importance of the present