43
Methods & Models for fMRI Analysis 2017 Experimental design of fMRI studies Sara Tomiello With many thanks for slides & images to: Sandra Iglesias, Klaas Enno Stephan, FIL Methods group, Christian Ruff

Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Methods & Models for fMRI Analysis 2017

Experimental design of fMRI studies

Sara Tomiello

With many thanks for slides & images to:

Sandra Iglesias,Klaas Enno Stephan,FIL Methods group, Christian Ruff

Page 2: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Overview of SPM

Realignment Smoothing

Normalisation

General linear model

Statistical parametric map (SPM)Image time-series

Parameter estimates

Design matrix

Template

Kernel

Gaussian field theory

p <0.05

Statisticalinference

1/42

Page 3: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Research question:Which neuronal structures support face recognition?

Hypothesis:The fusiform gyrus is

implicated in face recognition

Experimental design

General linear model

Statistical parametric map (SPM)

Parameter estimates

Design matrix

Gaussian field theory

p <0.05

Statisticalinference

Overview of SPM2/42

Page 4: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

General linear model

Statistical parametric map (SPM)

Parameter estimates

Design matrix

Gaussian field theory

p <0.05

Statisticalinference

Overview of SPM

Research question:Which neuronal structures support face recognition?

Hypothesis:The fusiform gyrus is

implicated in face recognition

Experimental design

3/42

Page 5: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

• Categorical designsSubtraction - Pure insertion, evoked / differential responsesConjunction - Testing multiple hypotheses

• Parametric designsLinear - Adaptation, cognitive dimensionsNonlinear - Polynomial expansions, neurometric functions

• Factorial designsCategorical - Interactions and pure insertionParametric - Linear and nonlinear interactions

- Psychophysiological interactions

Overview Experimental Designs4/42

Page 6: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

– =

Categorical DesignsSubtraction

• Aim: Find neuronal structures underlying a single process P

• Procedure: Under the critical assumption of „pure insertion“

[task with P ] – [control task without P ] = P

5/42

Page 7: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

• Aim: Find neuronal structures underlying a single process P

• Procedure: Under the critical assumption of „pure insertion“

[task with P ] – [control task without P ] = P

Categorical DesignsSubtraction

6/42

Page 8: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

F.C. Donders 1868

Categorical DesignsSubtraction, Example

Cognitive subtraction originated with reaction time experiments (F. C. Donders).

Measure the time for a process to occur by comparing two reaction times, one which has the same components as the other + the process of interest.

Example:

T1: Hit a button when you see a lightT2: Hit a button when the light is green but not redT3: Hit the left button when the light is green and the right button

when the light is red

T2 – T1 = time to make discrimination between light color

T3 – T2 = time to make a decision

Assumption of pure insertion:You can insert a component process into a task without disrupting the other components. 7/42

7/42

Page 9: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

-

„Queen!“ „Aunt Jenny?“

• „Related“ stimuli

-

• „Distant“ stimuli

Name Person! Name Gender!

-

• Same stimuli, different task

Which neuronal structures support face recognition ?

Categorical DesignsSubtraction: Baseline problem

è Several components differ!

è P implicit in control condition?

è Interaction of task and stimuli

(i.e. do task differences depend on stimuli chosen)?

-

-

8/42

Page 10: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Experimental design

Face viewing: FObject viewing: O

F - O = Face recognitionO - F = Object recognition

…under assumption of pure insertion

Categorical DesignsSubtraction, Example

Kanwisher et al., 1997, J. Neurosci.

9/42

Page 11: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Categorical DesignsSubtraction, Example SPM

Task 1Task 2

Session

10/42

Page 12: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

• Categorical designsSubtraction - Pure insertion, evoked / differential responsesConjunction - Testing multiple hypotheses

• Parametric designsLinear - Adaptation, cognitive dimensionsNonlinear - Polynomial expansions, neurometric functions

• Factorial designsCategorical - Interactions and pure insertionParametric - Linear and nonlinear interactions

- Psychophysiological interactions

Overview Experimental Designs11/42

Page 13: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Categorical DesignsConjunction

• One way to minimize the baseline/pure insertion problem is to isolate the same process by two or more separate comparisons, and inspect the resulting simple effects for commonalities

• A test for such activation common to several independent contrasts is called “conjunction”

• Conjunctions can be conducted across a whole variety of different contexts:• tasks• stimuli• senses (vision, audition)• etc.

• Note: the contrasts entering a conjunction must be orthogonal (this is ensured automatically by SPM)

12/42

Page 14: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Task (1/2)

Viewing Naming

Stim

uli (A

/B)

Obje

cts

C

olo

urs

Visual Processing: V Object Recognition: RPhonological Retrieval: P

A1 A2

B1 B2

Categorical DesignsConjunction, Example

Which neural structures support object recognition, independent of task (naming vs. viewing)?

13/42

Page 15: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Common object recognition response (R)

(Object - Colour viewing) [B1 - A1] &

(Object - Colour naming) [B2 – A2]

[ V,R - V ] & [ P,V,R - P,V ] = R & R = R

A1 B1 A2 B2

A1

Visual Processing V

B1

Visual Processing V Object Recognition R

B2

Visual Processing V Phonological Retrieval PObject Recognition R

A2

Visual Processing V Phonological Retrieval P

Stim

uli (A

/B)

Obje

cts

C

olo

urs

Task (1/2)

Viewing Naming

Categorical DesignsConjunction, Example

Which neural structures support object recognition, independent of task (naming vs. viewing)?

Price et al. 1997, NeuroImage

14/42

Page 16: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Categorical DesignsConjunction, Example SPM

15/42

Page 17: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

A1-A2

B1-B2 p(A1-A2) < a

+p(B1-B2) < a

+

Categorical DesignsTypes of Conjunctions

• Test of global null hypothesis: Significant set of consistent effectè“Which voxels show effects of similar direction

(but not necessarily individual significance) across contrasts?”

èH1: k > 0èH0: No contrast is significant: k = 0èDoes not correspond to a logical AND !

• Test of conjunction null hypothesis: Set of consistently significant effectsè“Which voxels show, for each specified contrast,

significant effects?”èH1: k = nèH0: Not all contrasts are significant: k < nèCorresponds to a logical AND

Friston et al., 2005, NeuroImageNichols et al., 2005, NeuroImage

k = effectsn = contrasts

16/42

Page 18: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Categorical DesignsConjuction, Global Null Hypothesis

• Based on the "minimum t statistic":

• imagine a voxel where contrast A gives t=1 and contrast B gives t=1.4

• neither t-value is significant alone, but the fact that both values are larger than zero suggests that there may be a real effect

• Test: compare the observed minimum t value to the null distribution of minimal t-values fora given set of contrasts

• assuming independence between the tests, one can find uncorrected and corrected thresholds for a minimum of two or more t-values (Worsley & Friston, Stat. Probab. Lett., 2000, 47 (2), 135–140)

• this means the contrasts have to be orthogonal!

17/42

Page 19: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

grey area:bivariate t-distriutionunder global null hypothesis

è H1: k > 0è H0: No contrast is significant: k = 0

Categorical DesignsF-test vs. Conjunction based on global null

Friston et al., 2005, NeuroImage

18/42

Page 20: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

• Categorical designsSubtraction - Pure insertion, evoked / differential responsesConjunction - Testing multiple hypotheses

• Parametric designsLinear - Adaptation, cognitive dimensionsNonlinear - Polynomial expansions, neurometric functions

• Factorial designsCategorical - Interactions and pure insertionParametric - Linear and nonlinear interactions

- Psychophysiological interactions

Overview Experimental Designs19/42

Page 21: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Parametric Designs

• Parametric designs approach the baseline problem by:

• varying the stimulus-parameter of interest on a continuum, in multiple (n>2) steps...

• ... and relating measured BOLD signal to this parameter

• Possible tests for such relations are manifold:• Linear• Nonlinear: Quadratic/cubic/etc. (polynomial expansion)• Model-based (e.g. predictions from learning models)

20/42

Page 22: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Büchel et al., 1998, NeuroImage

Parametric DesignsParametric modulation of regressors by time

21/42

Page 23: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Polynomial expansion&

orthogonalisation

Parametric DesignsParametric modulation of regressors

Büchel et al., 1998, NeuroImage

22/42

Page 24: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Stimulusawareness

Stimulusintensity

Painintensity

Pain threshold: 410 mJ

P1 P2 P3 P4

P0-P4: Variation of intensity of a laser stimulus applied to the right hand (0, 300, 400, 500, and 600 mJ)

P0 P0 P1 P2 P3 P4

Parametric DesignsInvestigating neurometric functions

P0 P1 P2 P3 P4 P0 P1 P2 P3 P4

Büchel et al., 1998, NeuroImage

23/42

Page 25: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Ú Stimulus awarenesscingulate sulcus aACC

Ú Pain intensityventral pACC

Ú Stimulus intensitydorsal pACC

Parametric DesignsInvestigating neurometric functions

Büchel et al., 1998, NeuroImage

24/42

Page 26: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Parametric DesignsModel-based regressors

• General idea:generate predictions from a computational model, e.g. of learning or decision-making

• Commonly used models:• Rescorla-Wagner learning model• Temporal difference (TD) learning model• Bayesian models

• Predictions used to define regressors

• Inclusion of these regressors in a GLM and testing for significant correlations with voxel-wise BOLD responses

25/42

Page 27: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Parametric DesignsModel-based fMRI analysis, Example

Gläscher & O‘Doherty, 2010, WIREs Cogn. Sci.

26/42

Page 28: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Parametric DesignsModel-based fMRI analysis, Example

Gläscher & O‘Doherty, 2010, WIREs Cogn. Sci.

27/42

Page 29: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Hierarchical prediction errors about sensory outcome and its probability

0 50 100 150 200 250 3000

0.5

1

prediction800/1000/1200 ms

target150/300 ms

cue300 ms

orITI

2000 ± 500 ms

time

p(F

|HT)

trials

Parametric DesignsModel-based fMRI analysis, Example

Iglesias et al., 2013, Neuron

28/42

Page 30: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

!"($%")

', )

*

!+($%")

!,($%")

!+($)

!,($)

!"($)

p(x3(k)) ~ N(x3

(k-1),ϑ)

p(x2(k)) ~ N(x2

(k-1), exp(κx3+ω))

p(x1=1) = s(x2)

∆./ ∝ 23/%"2/

45/%"

6, = 8,$ 9"$

6+ ∝ 8+($)9,($)

Parametric DesignsModel-based fMRI analysis, Example

The Hierarchical Gaussian Filter (HGF)

Mathys et al., 2011, Front Hum Neurosci.

29/42

Page 31: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

6, in midbrain (N=45)

p<0.05, whole brain FWE correctedp<0.05, SVC FWE corrected

6, = 8,$ 9"$

6+ in basal forebrain (N=45)

p<0.05, SVC FWE correctedp<0.001, uncorrected

6+ ∝ 8+($)9,($)

Hierarchical prediction errors about sensory outcome and its probability

Parametric DesignsModel-based fMRI analysis, Example

Iglesias et al., 2013, Neuron

30/42

Page 32: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

• Categorical designsSubtraction - Pure insertion, evoked / differential responsesConjunction - Testing multiple hypotheses

• Parametric designsLinear - Adaptation, cognitive dimensionsNonlinear - Polynomial expansions, neurometric functions

• Factorial designsCategorical - Interactions and pure insertionParametric - Linear and nonlinear interactions

- Psychophysiological interactions

Overview Experimental Designs31/42

Page 33: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Factorial DesignsMain effects and Interactions

interaction effect(Stimuli x Task)

Viewing Naming

Objects

Is the inferotemporal region implicated inphonological retrieval during object naming?

Colours

• Main effect of task: (A1 + B1) – (A2 + B2)

• Main effect of stimuli: (A1 + A2) – (B1 + B2)

• Interaction of task and stimuli: Can show a failure of pure insertion

(A1 – B1) – (A2 – B2)

Task (1/2)

Viewing Naming

Stim

uli (A

/B)

Obje

cts

C

olo

urs

A1 A2

B1 B2

ObjectsColours

32/42

Page 34: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

A1B1A2B2

Main effect of task: (A1 + B1) – (A2 + B2)

Task (1/2)

Viewing Naming

Stim

uli (A

/B)

Obje

cts

C

olo

urs

A1 A2

B1 B2

Factorial DesignsMain effect, Example SPM

33/42

Page 35: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

A1B1A2B2

Main effect of stimuli: (A1 + A2) – (B1 + B2)

Task (1/2)

Viewing Naming

Stim

uli (A

/B)

Obje

cts

C

olo

urs

A1 A2

B1 B2

Factorial DesignsMain effect, Example SPM

34/42

Page 36: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

A1B1A2B2

Interaction of task and stimuli: (A1 – B1) – (A2 – B2)

Task (1/2)

Viewing Naming

Stim

uli (A

/B)

Obje

cts

C

olo

urs

A1 A2

B1 B2

Factorial DesignsInteraction, Example SPM

35/42

Page 37: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Tricomi et al., 2010, Nature

Factorial DesignsExample

36/42

Page 38: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

We can replace one main effect in the GLM by the time series of an area that shows this main effect.

E.g. let's replace the main effect of stimulus type by the time series of area V1.

TaskfactorTaskA TaskB

Stim1

Stim2

Stim

ulusfactor TA/S1 TB/S1

TA/S2 TB/S2

eβVTT

βVTT y

BA

BA

+-+

+-=

3

2

1

1 )(1

)( b

eβSSTT

βSSTT y

BA

BA

+--+

-+-=

321

221

1

)( )()(

)( b

GLMofa2x2factorialdesign:

main effectof task

main effectof stim. type

interaction

main effectof task

V1 time series »main effect of stim. type

PPI

Factorial DesignsPsycho-Physiological Interactions (PPIs)

37/42

Page 39: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

R1

R5

cognitive process

Factorial DesignsPsycho-Physiological Interactions (PPIs)

38/42

Page 40: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Radially moving dots

Conditions:- Stationary- Motion and attention

(“detect changes”)- Motion without attention

V1 V5

attention

Factorial DesignsPPI, Example

39/42

Page 41: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

V1

V1x

attention

=

V5

V5

attention

Friston et al. 1997, NeuroImage

Büchel & Friston, 1997, Cereb. Cortex

Factorial DesignsPPI, Example

40/42

Page 42: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Two possibleinterpretations of the

PPI term

V1

Modulation of V1 ® V5 by attention Modulation of attention ® V5 by V1

V1 V5 V1 V5

attention

V1

attention

eβVTT

βVTT y

BA

BA

+-+

+-=

3

2

1

1 )(1

)( b

Factorial DesignsPPI, Example

41/42

Page 43: Experimental design of fMRI studies · 2019. 8. 18. · Overview Experimental Designs 11/42. Categorical Designs Conjunction •One way to minimize the baseline/pure insertion problem

Questions?

• Categorical designsSubtraction - Pure insertion, evoked / differential responsesConjunction - Testing multiple hypotheses

• Parametric designsLinear - Adaptation, cognitive dimensionsNonlinear - Polynomial expansions, neurometric functions

• Factorial designsCategorical - Interactions and pure insertionParametric - Linear and nonlinear interactions

- Psychophysiological interactions