7
NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Exergy Analysis - DiPippo 1984

  • Upload
    onuoha

  • View
    8

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Exergy Analysis - DiPippo 1984

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material.

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Page 2: Exergy Analysis - DiPippo 1984

Geothermal Resources Council, TRANSACTIONS, Vol. 8, August 1984

EXERGY ANALYSIS OF GEOTHERMAL POWER PLANTS

by

Ronald DiPippo(l) and David F. Marci l le (2)

Mechanical Engineering Department Southeastern Massachusetts Univers i ty

North Dartmouth, MA 02747

ABSTRACT

The thermodynamic b a s i s f o r t h e use of ex- ergy is presented. Exergy is shown. t o be a powerful t o o l i n the assessment of t h e perfor- mance of geothermal power p l a n t s r e g a r d l e s s of t h e type of energy conversion system employed. A methodology is presented t o permit t h e use of exergy a n a l y s i s i n a sys temat ic fashion. The method is i l l u s t r a t e d wi th t h r e e d e t a i l e d exam- p l e s using a dry-steam, a double-flash, and a b inary p lan t . Overal l Second Law e f f i c i e n c i e s are ca lcu la ted f o r s e v e r a l a c t u a l geothermal p l a n t s i n var ious count r ies .

INTRODUCTION

The concept of a v a i l a b l e work o r exergy was proposed long ago as a means of a s s e s s i n g t h e performance of thermal power p l a n t s [l-41. I n recent years t h e idea h a s been used t o c a l c u l a t e so-cal led “Second Law e f f i c i e n c i e s , ‘’ and has been appl ied i n p r i n c i p l e t o a wide assortment of engineer ing and s c i e n t i f i c systems [ 5-71. Despi te r igorous thermodynamic advantages over ana lyses based s o l e l y on F i r s t Law p r i n c i p l e s , exergy ana lyses have not achieved wide usage and acceptance wi th in t h e t e c h n i c a l community. Whereas t h e a p p l i c a t i o n of Second Law ana lyses is c e r t a i n l y b e n e f i c i a l , a l b e i t o p t i o n a l , i n t h e case of conventional power p l a n t s such as coal-, o i l - , gas-, o r nuclear-fueled p l a n t s , i t s use i n t h e c a s e of geothermal p l a n t s is e s s e n t i a l i f one wishes t o gauge t h e performance i n a thermo- dynamically r igorous fashion. Futhermore, i t a l lows v a l i d d i r e c t comparisons wi th conven- t i o n a l , o r non-conventional a l t e r n a t e energy systems. Several a u t h o r s have r e c e n t l y w r i t t e n on t h e a p p l i c a t i o n of exergy a n a l y s i s t o geo- thermal systems [8-111.

OBJECTIVES

The purpose of our paper is: (1) To o f f e r a s i m p l i f i e d thermodynamic basis f o r t h e use of exergy as a proper measure of geothermal power p l a n t performance r e g a r d l e s s of t h e type of energy conversion system employed; ( 2 ) To des-

( l )Also , Div. of Engrg., Brown U., Providence.,

(*)Current address: M.E. Dept. , Georgia I n s t . R. I.

of Tech., Atlanta , GA

c r i b e a methodology f o r a sys temat ic exergy a n a l y s i s of a geothermal power system; (3) To i l l u s t r a t e t h e method wi th d e t a i l e d sample cal- c u l a t i o n s f o r t h r e e a c t u a l p l a n t s - a dry-steam plan t , a double-flash p l a n t , and a binary p l a n t ; and l a s t l y , (4) To g i v e a summary of o v e r a l l Second Law p l a n t e f f i c i e n c i e s f o r many geo- thermal p l a n t s now i n opera t ion o r under con- s t r u c t i o n .

EXERGY AS A MEASURE OF PLANT PERFORMANCE

Regardless of t h e s p e c i f i c des ign f e a t u r e s of a geothermal power p l a n t , i.e., dry-steam, s ing le- f lash , double-flash, binary, etc., i n a l l c a s e s a stream of geof lu id (steam, b r i n e , two-phase mixture) is brought t o t h e s u r f a c e of t h e e a r t h from a deep r e s e r v o i r by some means ( a r t e s i a n flow, pumped, etc.). Once a t t h e sur- f a c e t h e f l u i d has a pressure and a temperature t h a t exceed those of the . atmosphere, and thus has a p o t e n t i a l t o perform u s e f u l work. The f l u i d passes through a series of processes de- signed t o e x t r a c t a s much u s e f u l work from t h e f l u i d a s is f e a s i b l e , given t e c h n i c a l and eco- nomic c o n s t r a i n t s . During t h e series of pro- cesses undergone by t h e f l u i d , h e a t may be t r a n s f e r r e d between the f l u i d and t h e surround- ings. I n t h e end, t h e f l u i d is discharged t o the surroundings i n a s t a t e t h a t is inf luenced by t h e p r e v a i l i n g ambient condi t ions.

The e s s e n t i a l po in t is t h a t t h e geof lu id does not experience a cyc le , but r a t h e r a series of processes from some i n i t i a l set of c o n d i t i o n s ( i n i t i a l s t a t e ) t o some f i n a l set of c o n d i t i o n s ( f i n a l s t a t e ) . This i s t r u e even i n t h e case where a n i n t e r n a l c y c l e is p a r t of t h e energy conversion process as i n t h e c a s e of b inary p lan ts . . _

A genera l ized , but somewhat s i m p l i f i e d re- presenta t ion of a system opera t ing as descr ibed above is shown i n Fig. 1. Only one i n l e t and one o u t l e t f o r mass f lows a r e included, but more could be assumed without d i f f i c u l t y . An impor- t a n t condi t ion f o r our a n a l y s i s is t h a t t h e sys- t e m must opera te i n a s teady-s ta te manner.

The F i r s t Law of thermodynamics f o r t h e sys- tem can be w r i t t e n a s

47

Page 3: Exergy Analysis - DiPippo 1984

DiPippo and Marcille The a c t u a l power developed by a system can

now be compared with t h e maximum p o s s i b l e power and a Seco?d,Law e f f i c i e n c y may be def ined as

rl(I1) = W/El (12)

I f t h e k i n e t i c energy o r t h e p o t e n t i a l en- e rgy is important, one must augment t h e enthalpy of t h e geof lu id with these terms; i.e., r e p l a c e

( h i ) with (hl +yV1 + gzl). SURROUNDINGS ( TEMPERATURE * 1.1 make a cont r ibu t ion i f state 1 is a t t h e bottom

of a very deep geothermal w e l l and t h e p l a n t is

2 1 2 The (gz)-term may

Fig. 1. Open system i n s teady-s ta te operat ion. on t h e sur face .

I f we ignore, f o r t h e moment, t h e kinetic-energy and potential-energy d i f f e r e n c e terms r e l a t i v e t o t h e enthalpy d i f f e r e n c e , we can s i m p l i f y t h i s t o

6-fi = m(h2-hl)- (2)

The Second Law f o r t h e system and t h e sur- roundings can be expressed a s

Q .

TO

. . 8 = m(s2-sl) - - (3)

The entropy product ion w i l l be reduced t o zero i n t h e i d e a l limit of r e v e r s i b l e opera t ion , and r e p r e s e n t s t h e upper l i m i t on t h e performance of the p l a n t f o r a given i n i t i a l and f i n a l s ta te of t h e geof lu id . For t h i s s p e c i a l case , eqn. (3) becomes

6 = To(S2-S1). (4 1

imaX = A[ (h 1 -h 2 ) - T 0 ( s 1 - s 2 ~ l *

By combining eqns. ( 2 ) and (4), we w i l l ob ta in an expression f o r t h e maximum thermodynamic work

(5)

I f we so design t h e system t h a t t h e f i n a l s t a t e of t h e geof lu id is i d e n t i c a l i n every way wi th the ambient surroundings, then t h e maximum p o s s i b l e work w i l l be e x t r a c t e d from t h e geo- f l u i d , f o r a given i n i t i a l s tate. This u l t imate work?s c a l l e d the exergy and i s given by

The s p e c i f i c exergy is defined a s e -- E/&, o r simply

E = h[hl-ho - To(S1-So)]. (6 1 . el = hl-ho - To(s - s ). 1 0 (7 )

Values f o r the enthalpy and entropy a r e r e a d i l y obtained from property t a b l e s .

For the c a s e of binary p l a n t s , o r i n cases where the geof lu id is u t i l i z e d s o l e l y a s a l i q - u id , eqn. ( 7 ) may be s implied s i n c e

(8 1 (9 1

Thus, t h e exergy of a l i q u i d having a constant s p e c i f i c hea t , c , may be expressed as

sl-so = c Iln(T1/To),

and hl-ho = c(T1-To).

e l ( l i q u i d ) = c[T1-To-To 2n(T1/To)l. (10)

It fol lows t h a t t h e maximum power t h a t can be obtained from a l i q u i d being cooled from a tem- pera ture T 1 t o a temperature T2 is given by

Gmax ( l i q u i d ) = k[T1-T2-To kn(Tl/T2)]. (11)

EXERGY METHODOLOGY FOR GEOTHERMAL PLANTS

A geothermal power p l a n t may be represented by t h e func t iona l schematic given in Fig. 2. The phases of opera t ion are broken down as: Production (of t h e geof lu id) , t ransmiss ion , pre- p a r a t i o n , u t i l i z a t i o n , and d isposa l . Within each catagory t h e r e may be a v a r i e t y of compo- nents and processes. The bas ic i d e a of a Second Law a n a l y s i s is t o compute the exergy of the geof lu id (and any o t h e r f l u i d used i n t h e p l a n t ) a t a l l Important s t a t e s , and t o examine each ma- j o r component t o determine t h e change i n exergy.

I - - -

I ;I; RESERVOIR

Fig. 2. Block diagram of geothermal power p lan t .

Unlike energy, exergy is not a conserved quant i ty . Exergy is destroyed by d i s s i p a t i v e processes such a s f r i c t i o n , tu rbulence , mixing and hea t t r a n s f e r . Any process t h a t is thermo- dynamically i r r e v e r s i b l e robs t h e f l u i d of exer- gy and diminishes i ts p o t e n t i a l t o produce use- f u l work.

Any p l a n t component may be eva lua ted on a Second Law b a s i s by applying the fo l lowing equa- t i o n : (exergy i n ) - (exergy o u t ) = (exergy l o s t ) . (13) The f i r s t term c o n s i s t s of exergy c a r r i e d i n t o t h e component by means of mass f low and hea t flow (See Fig. 1 ) ; t h e second term is found from exergy c a r r i e d out with mass flow and produced as work. The exergy assoc ia ted wi th work is p r e c i s e l y equal t o t h e work; t h e exergy associ- ated with hea t is equal t o the product of the hea t times t h e Carnot e f f i c i e n c y w r i t t e n f o r the temperature of the system a t the p o i n t where t h e hea t is received and t h e temperature of t h e sur- roundings ( t h e dead-state temperature) . Thus,

48

Page 4: Exergy Analysis - DiPippo 1984

eqn. (13) may be w r i t t e n as .. m LL I

2 - T I Q ~ 0 ' - i= 1 i i n

+ C kjej -o:tQk = AE. (14 )

DiPippo and Marcille C. Mechancial power developed by

0 Turbine i n t e r n a l Second Law

0 Turbine absolu te Second Law

turbines... . .................... 123.02 MW

ef f ic iency . ..................... 79.23

The exergy l o s t , AE, must always be p o s i t i v e . e f f i c i e n c y ...... i......,........ 62.1%

With regard t o t h e assessment of t h e per- formance of t h e power p l a n t a s a whole, t h e ne t power de l ivered by t h e p l a n t s.hould be compared with t h e r a t e of exergy ex t rac ted from t h e re- s e r v o i r , i n preference t o the r a t e a t which ex- ergy i s de l ivered t o t h e p lan t . With re ference t o Fig. 2, some exergy w i l l be expended dur ing the geof lu id product ion phase, t h e exergy of t h e geof lu id a t the wellhead being less than t h a t i n t h e r e s e r v o i r f o r a self-f lowing w e l l . Not a l l of t h i s d e c l i n e i n exergy can be taken as a l o s s , however, because some of t h i s exergy sup- p l i e s t h e work needed t o l i f t t h e geof lu id t o the sur face .

D. Exergy r a t e i n e j e c t o r steam...... 15.99 MW

steam........................... 0.26 MW

steam........................... 0.23 MW

steam........................... 16.48 MW

Exergy r a t e i n H2S a u x i l i a r y

Exergy rate i n t u r b i n e gland -

0 Tota l exergy rate in a u x i l i a r y

E. N e t power de l ivered t o busbar . . . . . 1 13.43 MW 0 N e t p lan t Second Law e f f ic iency:

Based on r e s e r v o i r exergy....... 43.2% Based on exergy received a t

p l a n t boundary............. ... 52.8%

It might be argued t h a t basing t h e e f f i c i e n - cy of a geothermal p l a n t on t h e r e s e r v o i r exergy puts such p l a n t s a t a disadvantage when being compared t o convent ional power p l a n t s which are evaluated on t h e b a s i s of t h e exergy of t h e f u e l burned a t the p lan t . Thus, the convent ional p l a n t s a r e not burdened wi th t h e pena l ty of t h e work required t o br ing t h e f u e l t o s u r f a c e and t ransmit i t t o t h e p l a n t . The geof lu id wellhead exergy would i n f a c t be a b e t t e r b a s i s f o r such inter-technology comparisons. Within t h e realm of geothermal p l a n t s , however, the most meaning- f u l comparisons ought t o be based on r e s e r v o i r exergy t o account f o r d i f f e r e n c e s among p l a n t s i n methods of producing t h e geofluid.

SAMPLE CALCULATIONS Fin. 3. Simplif ied schematic of PGLE Geysers

To i l l u s t r a t e t h e method we have chosen Units Nos'. 16-18. W = wells; T/G = t u r b i n e / t h r e e d i f f e r e n t types of p lan t : (1) PGLE Units genera tor ; C 1 = condenser; E = steam je t ejec- 16, 17, and 18 a t The Geysers, Cal i forn ia ; (2) t o r s , i n t e r - and af ter-condensers ; C2 = a f t e r - Kraf la Unit 1, Iceland; and ( 3 ) Nigorikawa p i l o t condenser d r a i n cooler ; S = H2S abatement sys- binary p l a n t , Hokkaido, Japan. tem; C3 = var ious coolers ; CT = cool ing tower.

1. PGLE Geysers Uni t s 1'6, 1 7 , 18

These u n i t s a r e e s s e n t i a l l y i d e n t i c a l and may be considered a "standard" PGLE Geysers u n i t . A s impl i f ied schematic i s shown i n Fig. 3. Table 1 conta ins a summary of s ta te -poin t values f o r "100% Guaranteed Flow" condi t ions [12]. The dead s t a t e was taken a t t h e des ign wet bulb temperature, i.e., To 65OF = 524.67OR. Based on t h e s e c a l c u l a t i o n s , w e may summarize t h e a n a l y s i s i n the fol lowing way:

A. Exergy e x t r a c t i o n rate from reservoir.......................262.75 MW

bounda ry........................ 214.75 MW wells and pipelines., 48.00 MW

Exergy rate received a t p l a n t

0 Exergy drop:

B . Exergy rate e n t e r i n g turbines.....198.26 MW Exergy r a t e leav ing turbines . . . . . . 42.99 MW

0 Exergy drop through turbines....,.155.27 MW

S t a t e p o i n t

R 1 2

3

4

5

6

7

8

9

1 0

0

Table 1 . Summary of s t a t e - p o i n t data and exergy v a l u e s for PG&E Geysers Uni t s 16, 1 7 and 1 8 . See F i g . 3 for l o c a t i o n s of s t a t e p o i n t s .

- - o: Dtuylbm

460 1 2 0 5 . 3

337 1190.0 337 1190.0

337 1190.0

135 103 .0 337 1190.0

113 9 7 2 . 1

113 8 1 . 0 103 7 1 . 0

7 9 . 5 4 8 . 1

7 9 . 5 4 8 . 1

6 5 3 3 . 1

B t uy lbm°F

1 . 4 7 1 2

1 . 5 9 3 3

1 .5933 1 .5933

0 . 1 9 0 2

1 . 5 9 3 3

1 .7083

0 . 1 5 2 5

0 . 1 3 5 0

0 .0924

0 .0924

0 . 0 6 5 1

e Btu/lbm

434.5

3 5 5 . 1

3 5 5 . 1 3 5 5 . 1

4 . 2 9

3 5 5 . 1

.76 .9

2 .07

1 .26

0 . 7 1

0 . 7 1

0

1 0 3 1 L / h

2 0 6 3 . 9 2 0 6 3 . 9

1905.6 1 5 3 . 7

1 9 2 . 8

2 . 5

1907.7

2053.2

8 4 3 6 4 . 2

82314 - 0 6 9 8 7 5 . 0

--

E . Mw

262.75

214.75

1 9 8 . 2 6 1 5 . 9 9

0 .24

0 . 2 6

42 .99

1 . 2 5

31 .06

1 7 . 1 9

14 .59 --

49

Page 5: Exergy Analysis - DiPippo 1984

DiPippo and M a r c i l l e One w i l l observe t h a t these u n i t s are very

e f f i c i e n t . The e f f i c i e n c y based on r e s e r v o i r exergy is s i g n i f i c a n t l y g r e a t e r than t h a t ob- ta ined on s ta te-of- the-ar t f o s s i l and nuc lear p l a n t s , and t h e e f f i c i e n c y based on exergy re- ceived a t t h e p l a n t fa r exceeds even that claimed f o r t h e la tes t combined steam and g a s t u r b i n e p lan ts . This is achieved i n s p i t e of r e l a t i v e l y low t u r b i n e e f f i c i e n c i e s ; on ly 62% of t h e exergy i n t h e incoming steam is converted i n t o u s e f u l output . The Second Law e f f i c i e n c y va lues may be compared d i r e c t l y with t h e usua l thermal ( o r F i r s t Law) e f f i c i e n c i e s f o r t h e con- vent iona l p l a n t s [13]. From t h e PGdE Heat Bal- ance Diagram [12], a t o t a l of 6.52 MW of elec- t r ic power i s used f o r p a r a s i t i c s ; t o t h i s we should add t h e 16.48 MW of exergy represented by a u x i l i a r y steam, making a t o t a l of 23 MW f o r s t a t i o n power. It should a l s o be not iced t h a t 48 MW go i n t o steam production and t ransmission.

2. Kraf la Unit 1, Iceland

This p l a n t is a double-flash p l a n t r a t e d a t 30 MW. The a n a l y s i s i s based on t h e des ign s p e c i f i c a t i o n s [14] , a l though t h e p l a n t has ye t t o achieve f u l l output due t o l a c k of steam. Figure 4 shows t h e p l a n t schematic and Table 2 l i s ts t h e s ta te -poin t da ta . The Second Law

A.

0

B.

0

C.

0

D.

0

E.

0

0

F. 0

a n a l y s i s may be summarized as follows:

Exergy e x t r a c t i o n rate from reservoir....................... 86.42 MW

Exergy rate received a t separa tor . 78.52 MW Exergy drop: wells and 2-phase

pipel ines . . ..................... 7.90 MW

Exergy rate i n steam leaving separator....................... 49.93 MW

Exergy ra te received a t t u r b i n e inlet........................... 45.64 MW

Exergy rate i n a u x i l i a r y steam.... 2.38 MW Exergy l o s s : main steam pipe l ine . 1 .91 MW

Exergy rate i n hot water from

Exergy rate i n secondary steam a t

Exergy rate i n h o t water from

Exergy l o s s :

separator....................... 28.63 MW

turbine......................... 13.30 MW

flasher......................... 13.15 MW

p i p e l i n e ........................ 2.18 MW f l a s h e r and LP steam

Exergy rate e n t e r i n g turbine...... 58.94 MW Exergy r a t e leav ing turbine....... 18.99 MW Exergy drop through turbine....... 39.95 MW

Mechanical power developed by

Turbine i n t e r n a l Second Law

Turbine a b s o l u t e Second Law

Net power de l ivered t o busbar..... 28.5 MW N e t p l a n t Second Law ef f ic iency:

Based on r e s e r v o i r exergy....... 33.0% Based on exergy received a t

separator..................... 36.3%

turbine......................... 31.11 MW

efficiency........... ........... 77.9%

eff ic iency. . . . .................. 52.8%

50

Fig. 4. Simplif ied schematic of Kraf la double- f l a s h p lan t . W = wells; S1, S2 = separa tor , f lasher / separa tor ; T/G = turbine/generator ; C 3 condenser; E = steam j e t e j e c t o r s and inter-con- densers ; CT = cool ing tower.

Tablc 2. Summary of statc-point data and cxcrqy valucs for Kratla doublc-tlash ?lant. SCC Fig. 4 for locations OP state points.

state point

R 1 2 3 4 5 6 7 8

9 10 11 0

t 0 - 518 344 344 253 344 329 247 329 121 72 91 113 52

h Btullbm

509.6 509.6 315.3 221.8 1191.7 1188.2 1163.3 1188.2 998.8 39.6 59.3 81.4 20.1

B t u lbm°F

0.7109 0.7371 0.1953 0.3723 1.5859 1.6019 1.7037 1.6019 1.7342 0.0776 0.1138 0.1532 0.0400

e Dtu/lbm

146.2 132.9 62.3 31.8

380. G 368.9 292.0 368.9 111.9 0.27 1.43 3.35 0

1 0 3 1 % 1 h

2017.2 2017.2 1569.5 1413.2 447 * 8 422.2 155.4 22.0 579.2

12259.9 877.4

13715.0 --

i blw

86.42 78.52 28.63 13.15 49.93 45.64 13.30 2.38 18.99 0.98 0.37 13.48 --

One w i l l n o t i c e t h a t 57.8% of t h e exergy ex- t r a c t e d from t h e r e s e r v o i r is c a r r i e d i n t h e main steam a s it leaves t h e separa tor , and that 15.4% of t h e r e s e r v o i r exergy i s c a r r i e d i n t h e f lashed o r low-pressure steam. Thus, t h e steam production, t ransmission and prepara t ion phases may be viewed a s 73.2% e f f i c i e n t . Over 1.9 MW of a v a i l a b l e work is l o s t dur ing t h e t ransmission of t h e high-pressure steam from t h e separa tor t o t h e t u r b i n e along t h e 1640 f t of piping

3. " This p l a n t was b u i l t , t e s t e d , and even-

t u a l l y dismantled i n t h e l a t e 1970's under Ja- pan's Sunshine P r o j e c t [15] . The power c y c l e working f l u i d was dichlorotetrafluoroethane (R-114). The p l a n t schematic i s given i n Fig. 5; t h e s ta te -poin t d a t a i n Table 3. The r a t i n g of t h e p lan t was 1.0 MW ; i t achieved s l i g h t l y more than t h i s dur ing some test runs. The ana l - y s i s i s summarized below:

A. Exergy rate i n b r i n e received a t

Exergy r a t e l e a v i n g evaporator.. . . 3.02 MW

0 Exergy drop through evaporator.. . . 1.85 MW 0 Exergy drop through preheater.. . . . 1.06 MW

p l a n t ........................... 4.87 MW

Exergy r a t e leav ing prehea ter . .... 1.96 MW

Page 6: Exergy Analysis - DiPippo 1984

B. Exergy rate i n R-114 e n t e r i n g preheater................ ........ 0.026 MW

Exergy r a t e i n R-114 leaving

Exergy r a t e i n R-114 leaving preheater;......; ............... 0.562 MW

evaporator...................... 2.27 MW 0.536 MW 1.708 MW

0 Exergy rise through preheater.. . .. 0 Exergy rise through evaporator....

C. Prehea ter Second Law e f f ic lency . . . 92.3%

D. Evaporator Second Law e f f ic iency . . 50.6%

E. Exergy rate e n t e r i n g turbine... . . . 2.21 MW 0.642 MW 1.568 MW

Exergy rate leaving turbine....... 0 Exergy drop through turbine.......

F. Mechanical power developed by

0 Turbine i n t e r n a l Second Law

0 Turbine absolu te Second Law

turbine......................... 1.00 MW

e f f i c i e n c y ...................... 63.8%

efficiency...................... 45.3%

G. N e t electrical power de l ivered t o

0 Net p l a n t Second Law e f f ic iency: busbar.......................... 0.975 MW

Based on i n l e t b r i n e exergy..... Based on br ine exergy drop ...... 20.0%

33.5X

0 T/G

FROM CT

Fig. 5. Simplif ied schematic of Nigorikawa pi- l o t binary p l a n t . PW, IW = production, i n j e c - t i o n w e l l s ; PH = preheater ; E = evaporator ; T/G = tu rb ine /genera tor ; MC, AC = main, a u x i l i a r y condensers; CP = condensate pump; CT = cool ing tower.

State point

1 2 3 4 5 6 7 8 9 10 11 * O

0

Table 3. Summary of state-point data and exergy values for Nigorikawa pilot binary plant. See Fig. 5' for locations of state points.

- 05

284 230 198 77 178 212 209 139 59 64 72 50 50

h Btu/lbm

253.3 198.3 166.1 96.4

121.1 167.0 166.7 160.3 27.1 32.1 40.1 18.1 90.1

B t u? 1 bm°F

0.4154 0.3388 0.2910 0.2591 0.3008 0.3693 0.3695 0.3767 0.0536 0.0632 0.0794 0.0361 0.2471

e Btu/lbm I - -

41.90 25.95 18.10 0.164 3.61 14.60 14.20 4.13 0.075 0.187 0.461 0 0

n L 0 lbm/ h

396.8 396.8 396.8 531.3 531.3 531.3 531.3 531.3

2431.7 2431.7 2431.7 -- --

E Mw

4.87 3.02 1.96 0.026 0.562 2.27 .2.21 0.642 0.054 0.134 0.328 -- --

Note: @ applies to R-114 at dead-state temperature; we ignore the chemical availability of R-114 relative to the atmosphere.

DiPippo and Marcille The o v e r a l l e f f i c i e n c y i s r e l a t i v e l y low f o r

a geothermal p lan t . It should be noted t h a t on ly 2.91 MW of exergy are taken from t h e geo- f l u i d , a t h i r d of which ends up as u s e f u l out- put . The R-114 picked up 2.24 MW while passing through the two h e a t exchangers making t h e pro- cess 77.1% e f f i c i e n t on t h e whole.

OVERALL PLANT EFFICIENCIES

I n Table 4 we l ist t h e o v e r a l l Second Law e f f i c i e n c y f o r s e v e r a l geothermal p lan ts . The va lues are based on r e s e r v o i r condi t ions, e i t h e r taken d i r e c t l y from the l i t e r a t u r e o r c a l c u l a t e d us ing d a t a on sur face condi t ions and assuming i s e n t h a l p i c w e l l flow. '

Table 4. Overall plant second law efficiency based on reservoir conditions.

. . CountryfPlant Name Plant Type '(I1) =

El Salvador Ahuachapan:

33.1% 1-Elash Units 1 E, 2 combined Units 1, 2 & 3 combined I-, 2-flash 38.2

Iceland Krafla Unit 1 Z-flash 33.0

Italy Lagoni Rossi:

Unit 1 dry steam 39.7

Unit 3 dry steam 48.4 Unit 2 dry steam 24.7

Larderello Cycle 3 dry steam 52.1 Molinetto dry steam 24.2

Japan Hatchobaru Kakkonda Matsukawa Nigorikawa Otake

2-f lash 41.6 1-flash 26.5 dry-steam 43.1

1-flash 29.0 binary 20.0

Kenya Oklaria Unit 1 1-flash 50.6

Mexico Cerro Prieto I

Philippines Mak-Ban Unit 1 Tiwi Unit 1

1-, 2-Elash 33.2

2-Elash") 43.5 2-flash"' 32.3

United States Geysers, PGSE Unit 5 dry steam 55.7 Geysers, PGSE Unit 13 dry steam 39.9

dry steam 43.2 Geysers, SMUDGE0 No. 1 dry steam 51.7 iieber Demonstration binary 29.7

Geysers, PGSE Unit 16-18

Magmamax binary 34.9

("Original design: currently running as 1-flash.

CONCLUSIONS

The method out l ined i n t h i s paper can be e a s i l y appl ied t o geothermal power p l a n t s t o g a i n a sharper understanding of t h e real l o s s e s involved i n var ious energy conversion systems. The Second Law e f f i c i e n c i e s of some geothermal p l a n t s f a r exceed those of convent ional p l a n t s . S i g n i f i c a n t expendi ture of exergy occurs i n pro- ducing, t ransmi t t ing , and preparing g e o f l u i d s p r i o r t o t h e i r in t roduct ion i n t o t h e power gen- e r a t i n g equipment. I n binary p l a n t s , a consid- e r a b l e l o s s of exergy can occur i n t h e h e a t ex- changers owing t o l a r g e temperature d i f f e r e n c e s between t h e b r i n e and t h e c y c l e working f l u i d , l ead ing t o r e l a t i v e l y low o v e r a l l p l a n t e f f i - c i e n c i e s .

51

Page 7: Exergy Analysis - DiPippo 1984

DiPippo and Marcille

ACKNOWLEDGEMENTS

The a u t h o r s thank C.J . Weinberg and S.G. Sharp of PG&E f o r providing us with h e a t balance diagrams f o r s e v e r a l Geysers u n i t s .

REFERENCES

Darr ieus . G.J .M. "The Rational d e f i n i t i o n of Steam Turbine Eff ic ienc ies" , Engineer- %, 1930, pp. 283-285.

Keenan. J.H. "A Steam Chart f o r Second Law Analysis", Mech. Engineering, v. 54, 1932, pp. 195-204.

Bosnjakovic, F., Technische Thermodynamik, v. 1, Ste inkopff , Dresden, 1935. *

Keenan, J .H. , Thermodynamics, John Wiley & Sons, I n c . , New York, 1941.

Bruges, E.A. , Available Energy and t h e Second Law Analysis, Butterworths Sc ien t i - f i c Pub., London, 1959.

Haywood, R.W., "A Crit ical Review of t h e Theorems of Thermodynamic A v a i l a b i l i t y , with Concise Formulations", J. Mech. Engr. Sci., V. 16, 1974, pp. 160-173 amd pp. 258-267. -

Moran, M.J., A v a i l a b i l i t y Analysis: A Guide t o E f f i c i e n t Energy Use, Prent ice- Hal l , Englewood C l i f f s , N J , 1982.

Milora , S.L. and Tester, J . W . , Geothermal Energy as a Source of Electric Power, MIT Press , Cambridge, MA, 1976.

Kes t in , J., "Available Work i n Geothermal Energy'' , i n Sourcebook on t h e Production of Geothermal Energy, J.Kestin, edi tor- in- c h i e f , R.DiPippo, H.E. Khalifa , and D.J.

DiPippo, R., Geothermal Energy a s a Source of E l e c t r i c i t y , U.S. Dept. of Energy, Washington

B i l i c k i , Z., DiPippo, R. , Kest in , J. , Maeder, P.F. , and Michaelides, E.E. , "Available Work Analysis i n t h e Design of Geothermal Wells", Proc. I n t ' l . C s Geoth. Energy, BHRA Flu id Engineering,

1982, pp. 227-248.

PG&E, "Mechanical Heat Balance Diagram, Uni t s No. 16, 17, 18, The Geysers Power Plant" , Rev. 2, March 10, 1982, San Fran- c i s c o , CA.

Khal i fa , H.E., "Hybrid Fossil-Geothermal Systems", i n Sourcebook on t h e Production of E l e c t r i c i t y from Geothermal Energy, J. Kest in , edi tor- in-chief , R.DiPippo, H.E. Khal i fa , and D.J. Ryley, e d i t o r s , U.S. Dept. of Energy, Washington, DC, 1980.

Gudmundsson, J.S., Thorhallsson, S., and Ragnars. K.. "Sta tus of Geothermal Elec- t r i c Power i n Iceland 1980", Proc. F i f t h Annual Geoth. Con€. and Workshop, Electric Power Research I n s t . . Rep. No. EPRI AP-2098, P.alo Alto, CA, 1981, pp. 7.52-7.65.

"Development of S p e c i f i c Hot Water Type Binary Cycle Test Plant" , Annual Report, Sunshine P r o j e c t , M.I .T.I . , Tokyo, Japan, June 1977, pp. 104-108.

Ryley, e d i t o r s , U.S. Dept. of Energy, Washington, DC, 1980.

52