Example Chap1

Embed Size (px)

Citation preview

  • 8/16/2019 Example Chap1

    1/14

       C   h  a  p

       t  e  r   1

    1

  • 8/16/2019 Example Chap1

    2/14

    CHAPTER I EXANPLE

    2

  • 8/16/2019 Example Chap1

    3/14

       C   h  a  p

       t  e  r   1

    3

    1.1 Illustrative Example: Blending system

    Notation:

    •  w1, w2 and w are mass flow rates

    •   x1, x2 and x are mass fractions of component A

  • 8/16/2019 Example Chap1

    4/14

       C   h  a  p

       t  e  r   1

    4

    Assumptions: 

    1. w1 is constant

    2.  x2 = constant = 1 (stream 2 is pure A)

    3. Perfect mixing in the tank 

    Control Objective:

    eep x at a desired !alue (or "set point#) xsp, despite !ariations in x1(t ). $low rate w2 can %e ad&usted for this purpose.

    Terminology:

    •  'ontrolled !aria%le (or "output !aria%le#) x

    •  anipulated !aria%le (or "input !aria%le#) w2

    •  *istur%ance !aria%le (or "load !aria%le#) x

  • 8/16/2019 Example Chap1

    5/14

       C   h  a  p

       t  e  r   1

    5

     Design Question. +hat !alue of is reuired to ha!e2w

    -SP  x x=

    Overall balance:

    Component A balance:

    1 2 (1/1)w w w= + −

    1 1 2 2 (1/2)w x w x wx+ − =

    (0he o!er%ars denote nominal stead/state design !alues.)

    •  At the design conditions, . u%stitute . 1/2,

    and , then sol!e . 1/2 for

    SP  x x= SP  x x=

    2 1 x   = 2w

    12 1   (1/3)

    1

    SP 

    SP 

     x xw w

     x

    −=

  • 8/16/2019 Example Chap1

    6/14

       C   h  a  p

       t  e  r   1

    6

    • uation 1/3 is the design euation for the %lending

    sstem.

    • 4f our assumptions are correct, then this !alue of will keep

    at . 5ut what if conditions change-

     x

    SP  x

    Control Question. Suppose that the inlet concentration x1 

    changes with time. How can we ensure that x remains at or near

    the set point ?

    As a specific example, if and , then x 6 xSP.

    SP  x

    1 1 x x> 2 2w w=

    Some Possible Control Strategies:

    Method 1 Measure x and adjust w2.

    •  4ntuiti!el, if x is too high, we should reduce w27

    2w

  • 8/16/2019 Example Chap1

    7/14

       C   h  a  p

       t  e  r   1

    7

    •  Proportional feed%ack control law,

    ( ) ( )2 2

      (1/8)c SP 

    w t w K x x t   = + −

    1. where K c is called the controller gain.

    2. w2(t ) and x(t ) denote !aria%les that change with time t .

    3. 0he change in the flow rate, is proportional tothe de!iation from the set point, xSP  9 x(t ).

    ( )2 2 ,w t w−

  • 8/16/2019 Example Chap1

    8/14

       C   h  a  p

       t  e  r   1

    8

  • 8/16/2019 Example Chap1

    9/14

       C   h  a  p

       t  e  r   1

    9

    Method ! Measure x1 and adjust w2.

    • 0hus, if x1 is greater than , we would decrease w2 so that

    • One approach 'onsider . (1/3) and replace and with

     x1(t ) and w2(t ) to get a control law

    1 x

    2 27w w<

    1 x 2w

    ( )

      ( )12 1   (1/:)1

    SP 

    SP 

     x x t 

    w t w  x

    = −

  • 8/16/2019 Example Chap1

    10/14

       C   h  a  p

       t  e  r   1

    10

  • 8/16/2019 Example Chap1

    11/14

       C   h  a  p

       t  e  r   1

    11

    • 5ecause . (1/3) applies onl at stead state, it is not clear

    how effecti!e the control law in (1/:) will %e for transient

    conditions.

    Method "  Measure x1 and x, adjust w2.

    •  0his approach is a com%ination of ethods 1 and 2.

    Method # Use a larger tan.

    • 4f a larger tank is used, fluctuations in x1 will tend to %e damped

    out due to the larger capacitance of the tank contents.

    •;owe!er, a larger tank means an increased capital cost.

  • 8/16/2019 Example Chap1

    12/14

       C   h  a  p

       t  e  r   1

    12

    1! Classi$ication o$ Control Strategies

     Method Measured!aria"le

     Manipulated!aria"le

    #ategor$

    1  x w2 $5a

    2  x1 w2 $$

    3  x1 and x w2 $$

  • 8/16/2019 Example Chap1

    13/14

       C   h  a  p

       t  e  r   1

    13

    • 4t is important to make a distinction %etween negati%e &eed"ac

    and positi%e &eed"ac .

     ngineering sage !s. ocial ciences

    • Advantages:

     'orrecti!e action is taken regardless of the source of the

    distur%ance.

     >educes sensiti!it of the controlled !aria%le todistur%ances and changes in the process (shown later).

    • 'isadvantages:

     ?o correcti!e action occurs until after the distur%ance hasupset the process, that is, until after x differs from  x sp.

     @er oscillator responses, or e!en insta%ilit

  • 8/16/2019 Example Chap1

    14/14

       C   h  a  p

       t  e  r   1

    14

    %eed$or(ard Control:

    *istinguishing feature measure a distur%ance

    !aria%le

    •  Advantage:

    'orrect for distur%ance %efore it upsets the process.

    •  'isadvantage:

    ust %e a%le to measure the distur%ance.

     ?o correcti!e action for unmeasured distur%ances.