6
FSc-II / Ex 2.4 - 1 mathcity.org Merging man and maths Exercise 2.4 (Solutions) Calculus and Analytic Geometry, MATHEMATICS 12 Available online @ http://www.mathcity.org, Version: 1.1.0 Question # 1 (i) 1 1 x y x - = + Put 1 1 x u x - = + So y u = 1 2 y u = Now diff. u w.r.t. u 1 1 du d x dx dx x - = + L l ( ) ( ) ( ) ( ) ( ) 2 1 1 1 1 1 d d x x x x dx dx x + - - - + = + ( ) ( ) ( ) ( ) ( ) 2 1 1 1 1 1 x x x + - - - = + ( ) 2 1 1 1 x x x -- - + = + ( ) 2 2 1 du dx x - = + Now diff. y w.r.t. u 1 2 dy d u du du = 1 2 1 2 u - = 1 2 1 1 21 x x - - = + L l 1 2 1 1 2 1 dy x du x + = - L l Now by chain rule dy dy du dx du dx = ( ) 2 1 2 1 1 2 21 1 x x x + - = - L l + ( ) ( ) ( ) 2 1 2 1 2 1 1 1 1 x x x + - = + - ( ) ( ) 1 2 2 1 2 1 1 1 x x - - = - + ( ) 3 2 1 1 1 x x - = - + Answer Question # 1(ii) y x x = + Let u x x = + 1 2 x x = + y u = 1 2 u = Diff. u w.r.t. x 1 2 du d x x dx dx = + L l 1 2 1 1 2 x - = + 1 1 2 x = + 2 1 2 x x + = Now diff. y w.r.t. x 1 2 dy d u du du = 1 2 1 2 u - = 1 2 1 2u = ( ) 1 2 1 2 x x = + 1 2 dy du x x = + Now by chain rule dy dy du dx du dx = 1 2 1 2 2 x x x x + = + 2 1 4 x x x x + = + Answer Question # 1 (iii) a x y x a x + = - Put a x u a x + = - So y x u = () 1 2 xu = Diff. w.r.t. x ( ) 1 2 dy d xu dx dx = ( ) ( ) 1 1 2 2 d d x u u x dx dx = + ( ) ( ) 1 1 2 2 1 (1) 2 du x u u dx - = + ( ) ( ) 1 1 2 2 2 dy x du u u dx dx - = + ……. (i) Now diff. u w.r.t. x

Ex_2_4_FSC_part2

Embed Size (px)

Citation preview

Page 1: Ex_2_4_FSC_part2

FSc-II / Ex 2.4 - 1

mathcity.org Merging man and maths

Exercise 2.4 (Solutions) Calculus and Analytic Geometry, MATHEMATICS 12

Available online @ http://www.mathcity.org, Version: 1.1.0

Question # 1 (i)

11

xyx

−=

+

Put 11

xux

−=

+

So y u= 12y u⇒ =

Now diff. u w.r.t. u

11

du d xdx dx x

− = +

( ) ( ) ( ) ( )

( )2

1 1 1 1

1

d dx x x xdx dx

x

+ − − − +=

+

( )( ) ( )( )( )2

1 1 1 11

x xx

+ − − −=

+

( )2

1 11

x xx

− − − +=

+

( )2

21

dudx x

−⇒ =

+

Now diff. y w.r.t. u

12dy d u

du du=

121

2u−

= 121 1

2 1xx

−− = +

121 1

2 1dy xdu x

+ ⇒ = −

Now by chain rule dy dy dudx du dx

= ⋅

( )2

121 1 2

2 1 1xx x

+ − = ⋅ − +

( )( ) ( )2

12

12

1 111

xxx

+ −= ⋅

+−

( ) ( )

1221

2

1

1 1x x −

−=

− +

( )

32

1

1 1x x

−=

− + Answer

Question # 1(ii)

y x x= +

Let u x x= + 12x x= +

y u⇒ =12u=

Diff. u w.r.t. x

12du d x x

dx dx = +

1211

2x

−= + 11

2 x= +

2 12

xx+

=

Now diff. y w.r.t. x

12dy d u

du du=

121

2u

−= 1

2

1

2u=

( )12

1

2 x x=

+

1

2

dydu x x

⇒ =+

Now by chain rule

dy dy dudx du dx

= ⋅

1 2 122

xxx x

+= ⋅

+

2 1

4

x

x x x

+=

⋅ + Answer

Question # 1 (iii) a xy xa x

+=

Put a xua x

+=

So y x u= ( )12x u=

Diff. w.r.t. x

( )12dy d x u

dx dx=

( ) ( )1 12 2d dx u u x

dx dx= +

( ) ( )1 12 21 (1)

2dux u udx

−= +

( ) ( )1 12 2

2dy x duu udx dx

−⇒ = + ……. (i)

Now diff. u w.r.t. x

Page 2: Ex_2_4_FSC_part2

FSc-II / Ex 2.4 - 2

du d a xdx dx a x

+ = −

( ) ( ) ( ) ( )

( )2

d da x a x a x a xdx dx

a x

− + − + −=

( )( ) ( )( )( )2

0 1 0 1a x a xa x

− + − + −=

( )( ) ( )( )( )2

1 1a x a xa x

− − + −=

( )2

a x a xa x

− + +=

( )22a

a x=

Using value of u and dudx

in eq. (i)

( )2

1 12 22

2x a x a a x

a x a xa xdydx

−+ ++

− −− =

( )( ) ( )

( )( )

2

1 12 2

1 12 2

a x a xaxa xa x a x

+ += ⋅ +

−− −

( ) ( )( )( )2

12

1 1 12 2 2

a xax

a x a x a x−

+= +

+ − −

( ) ( )( )( )

12

3 1122 2

a xax

a xa x a x

+= +

−+ −

( ) ( )31

2 2

( )( )ax a x a x

a x a x

+ + −=

+ −

( ) ( )

2 2

312 2

dy ax a xdx a x a x

+ −⇒ =

+ −

Question # 1 (iv) & (v) Do yourself as above

Question # 2 (i) 3 4 7 0x y+ + =

Diff. w.r.t. x .

( )3 4 7 (0)d dx ydx dx

+ + =

3(1) 4 0 0dydx

⇒ + + =

4 3dydx

⇒ = − 34

dydx

⇒ = −

Question # 2 (ii) 2 2xy y+ = Differentiating w.r.t. x

( ) ( )2 2d dxy ydx dx

+ =

( ) 2 0d dxy ydx dx

⇒ + =

2 0dy dx dyx y ydx dx dx

⇒ + + =

( )2 (1) 0dyx y ydx

⇒ + + =

( )2 dyx y ydx

⇒ + = −

( )2 dyx y ydx

⇒ + = −

2

dy ydx x y

−⇒ =

+

Question # 2 (iii) Do yourself

Question # 2(iv) 2 24 2 2 2 0x hxy by gx fy c+ + + + + = Differentiating w.r.t. x

( )2 24 2 2 2 (0)d d

x hxy by gx fy cdx dx

+ + + + + =

2 24 ( ) 2 ( ) ( )d d dx h xy b ydx dx dx

⇒ + +

2 ( ) 2 ( ) ( ) 0d d dg x f y cdx dx dx

+ + + =

4(2 ) 2 (1) 2dy dyx h x y b ydx dx

⇒ + + + ⋅

2 (1) 2 0 0dyg fdx

+ + + =

8 2 2 2dy dyx hx hy bydx dx

⇒ + + +

2 2 0dyg fdx

+ + =

( ) ( )2 2 4 0dy

hx by f x hy gdx

⇒ + + + + + + =

( ) ( )2 2 4dyhx by f x hy gdx

⇒ + + =− + + +

( ) ( )4dyhx by f x hy gdx

⇒ + + = − + + +

4dy x hy gdx hx by f

+ + +⇒ = −

+ +

Page 3: Ex_2_4_FSC_part2

FSc-II / Ex 2.4 - 3 Question # 2 (v)

1 1 0x y y x+ + + = ( ) ( )1 12 21 1 0x y y x⇒ + + + =

Differentiating w.r.t. x

( ) ( )1 12 21 1 (0)

d d dx y y x

dx dx dx⇒ + + + =

( ) ( )1 12 21 1d dxx y y

dx dx⇒ + + + ( ) ( )

1 12 21 1 0d dyy x x

dx dx+ + + + =

( ) ( )1 12 21 1 1 (1)

2dyx y ydx

−⇒ ⋅ + + + ( ) ( )1 12 21 1 (1) 1 0

2dyy x xdx

−+ ⋅ + + + =

( )( )

12

12

12 1

x dy ydxy

⇒ + ++

( )

( )12

12

1 02 1

y dyxdxx

+ + + =+

( )( )

12

12

12 1

x dyxdxy

⇒ + + +

( )( )

12

12

12 1

yyx

= − + + +

( ) ( )( )

1 12 2

12

2 1 1

2 1

x x y dydxy

+ + + ⇒ +

( ) ( )( )

1 12 2

12

2 1 1

2 1

x y y

x

+ + + = − +

2 (1 )(1 )2 1

x x y dydxy

+ + +⇒

+

2 (1 )(1 )2 1x y y

x

+ + += −

+

2 (1 )(1 ) 2 12 1 2 (1 )(1 )x y y ydy

dx x x x y+ + + +

⇒ = − ⋅+ + + +

( )( )

1 2 (1 )(1 )

1 2 (1 )(1 )

y x y ydydx x x x y

+ + + +⇒ = −

+ + + + Answer

Question # 2 (vi)

( )2 21 4y x x x− = +

Differentiating w.r.t x

( ) ( )2 2121 4d dy x x x

dx dx− = +

( ) ( ) ( ) ( )2 2 2 21 12 21 1 4 4d dy d dxy x x x x x

dx dx dx dx⇒ − + − = + + +

( ) ( ) ( ) ( )2 2 21 12 212 1 4 (2 ) 4 (1)

2dyy x x x x x xdx

−⇒ + − = + + +

( )( )

( )2

2 2

2

12

12

2 1 44

dy xxy x xdx x

⇒ + − = + ++

( )( )

( )2

2 2

2

12

12

1 4 24

dy xx x xydx x

⇒ − = + + −+

( )( )

( )2

2 2

2

12

12

1 4 24

dy xx x xydx x

⇒ − = + + −+

( ) ( )( )

2 2 22

212

4 2 41

4

x x xy xdyxdx x

+ + − +⇒ − =

+

( )( )2 2

2 2

2 4 2 4

1 4

x xy xdydx x x

+ − +⇒ =

− +

Page 4: Ex_2_4_FSC_part2

FSc-II / Ex 2.4 - 4

Question # 3 (i)

Since 1x θθ

= +

1x θ θ −⇒ = + Differentiating x w.r.t. θ

( )1dx dd d

θ θθ θ

−= +

21 θ −= − 211

θ= −

2

21θ

θ−

=

2

2 1ddxθ θ

θ⇒ =

Now 1y θ= + Diff. w.r.t. θ

( )1dy dd d

θθ θ

= + 1dydθ

⇒ =

Now by chain rule dy dy ddx d dx

θθ

= ⋅

dy dd dx

θθ

= ⋅ 2

211

θθ

= ⋅−

2

2 1dydx

θθ

⇒ =−

Question # 3 (ii)

Since ( )2

2

11

a tx

t−

=+

*Correction

Diff. w.r.t. t

2

211

dx d tadt dt t

−= +

( ) ( ) ( ) ( )

( )

2 2 2 2

22

1 1 1 1

1

d dt t t tdt dta

t

+ − − − +=

+

( )( ) ( )( )

( )

2 2

22

1 2 1 2

1

t t t ta

t

+ − − −=

+

( )

3 3

22

2 2 2 2

1

t t t tat

− − − +=

+

( )22

4

1

dx atdt t

−⇒ =

+

( )2214tdt

dx at+

⇒ =−

Now 22

1btyt

=+

y

Diff. w.r.t. t

22

1dy d btdt dt t

= +

( ) ( )

( )

2 2

22

1 2 2 1

1

d dt bt bt tdt dt

t

+ − +=

+

( ) ( )( )

2

22

1 2 (1) 2 2

1

t b bt t

t

+ −=

+

( )

2 2

22

2 2 4

1

b bt bt

t

+ −=

+ ( )2

22

2 2

1

b bt

t

−=

+

( )( )

2

22

2 1

1

b t

t

−=

+

Now by chain rule

dy dy dtdx dt dx

= ⋅

( )

( )( )22 2

22

2 1 141

b t tatt

− += ⋅

−+

( )212

b tdydx at

−⇒ = −

Question # 4

Since 2

211

txt

−=

+

Differentiating w.r.t. t , we get (solve yourself as above)

24

1dx tdt t

−=

+

214

dt tdx t

+⇒ =

Now 22

1btyt

=+

Differentiating w.r.t. t , we get (solve yourself as above)

( )

( )

2

22

2 1

1

tdydt t

−=

+

Now by chain rule dy dy dtdx dt dx

= ⋅

( )

( )( )22 2

22

2 1 141

t ttt

− += ⋅

−+

21

2dy tdx t

−⇒ = −

Multiplying both sides by y

21

2dy ty ydx t

−⇒ = − ⋅

2

22 1

1 2t tt t

−= − ⋅

+

Page 5: Ex_2_4_FSC_part2

FSc-II / Ex 2.4 - 5

2

211

dy tydx t

−⇒ = −

+

dyy xdx

⇒ = − 2

211

txt

−=

+∵

0dyy xdx

⇒ + = Proved.

Question # 5(i)

Suppose 22

1y xx

= − and 4u x=

Diff. y w.r.t x 2

21dy d x

dx dx x = −

( )2 2d x xdx

−= − 32 2x x−= +

312 xx

= +

4

312dy x

dx x +

⇒ =

Now diff. u w.r.t x

( )4du d xdx dx

=

34du xdx

⇒ =

Now by chain rule dy dy dxdu dx du

= ⋅

1dydudxdx

= ⋅

4

3 31 12

4dy xdu x x

+⇒ = ⋅

4

61

2dy xdu x

+⇒ =

Question # 4(ii)

Let ( )21n

y x= + and 2u x= Differentiation y w.r.t x

( )21ndy d x

dx dx= +

( ) ( )12 21 1n dn x x

dx−

= + +

( ) ( )121 2

nn x x

−= +

( ) 122 1n

nx x−

= + Now differentiating u w.r.t x

2du d xdx dx

=

2x= 12

dxdu x

⇒ =

Now by chain rule

dy dy dxdu dx du

= ⋅

( ) 12 12 12

ndy nx xdu x

−⇒ = + ⋅

( ) 121ndy n x

du−

⇒ = +

Question # 5 (iii)

Let 2

211

xyx

+=

− and 1

1xux

−=

+

Diff. y w.r.t x

2

211

dy d xdx dx x

+= −

= Solve yourself ( )2

41

xx−

=−

Now diff. u w.r.t x

11

du d xdx dx x

− = +

= Solve yourself ( )2

21x

=+

( )212

xdudx

+⇒ =

Now by chain rule

dy dy dxdu dx du

= ⋅

( )

( )2

2

1421

xxx

+−= ⋅

( ) ( ) ( )22 1

1 1x x

x x−

= ⋅ +− +

( )( )2 1

1x xdy

dx x− +

⇒ =−

Question # 5(iv)

Let ax bycx d

+=

+ and

2

2ax buax d

+=

+

Diff. y w.r.t. x dy d ax bdx dx cx d

+ = +

Page 6: Ex_2_4_FSC_part2

FSc-II / Ex 2.4 - 6

( ) ( ) ( ) ( )

( )2

d dcx d ax b ax b cx ddx dx

cx d

+ + − + +=

+

( )( ) ( )( )( )2

cx d a ax b ccx d

+ − +=

+

( )2

acx ad acx bccx d

+ − −=

+

( )2

dy ad bcdx cx d

−⇒ =

+

Now diff. u w.r.t x 2

2du d ax bdx dx ax d

+= +

( )2 2 2 2

22

( ) ( ) ( ) ( )d ddx dxax d ax b ax b ax d

ax d

+ + − + +=

+

( )( ) ( )( )

( )

2 2

22

2 2ax d ax ax b ax

ax d

+ − +=

+

( )

( )

2 2

22

2ax ax d ax b

ax d

+ − −=

+

( )( )22

2ax d b

ax d

−=

+

( )( )

22

2ax ddx

du ax d b+

⇒ =−

Now by chain rule

dy dy dxdu dx du

= ⋅

( )( )

( )

22

2 2ax dad bcax d bcx d

+−= ⋅

−+

( )( )

( ) ( )

22

22

ad bc ax ddydx ax cx d d b

− +⇒ =

+ −

Question # 5 (v)

Let 2

211

xyx

+=

− and 3u x=

Diff. y w.r.t x

2

211

dy d xdx dx x

+= −

= Solve yourself

( )22

4

1

x

x

−=

Now diff. u w.r.t x

3du d xdx dx

=

23x=

21

3dxdu x

⇒ =

Now by chain rule dy dy dxdu dx du

= ⋅

( )2 22

4 131

xxx

−= ⋅

( )22

4

3 1

dydx x x

−⇒ =

² ---- The End --- ²

Note: If you find any mistake in these notes, please inform to correct it.