14
1 1-1 EE143 – Fall 2016 Microfabrication Technologies Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) 1-2 Yesterday’s Transistor (1947) Today’s Transistor (2006) Evolution of Devices

Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

1

1-1

EE143  – Fall  2016Microfabrication  Technologies

Prof.  Ming  C.  Wu  

[email protected]

511  Sutardja Dai  Hall  (SDH)

1-2

Yesterday’s Transistor (1947) Today’s Transistor (2006)

Evolution  of  Devices

Page 2: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

2

1-3

Why  “Semiconductors”?

• Conductors  – e.g.  Metals

• Insulators  – e.g.  Sand  (SiO2)

• Semiconductors– Conductivity  between  conductors  and  insulators– Generally  crystalline  in  structure

• In  recent  years,  non-­crystalline  semiconductors  have  become  commercially  very  important

Polycrystalline amorphous crystalline

1-4

What  are  semiconductors?

Elements:  Si,  Ge,  CBinary:  GaAs,  InSb,  SiC,  CdSe,  etc.Ternary+:  AlGaAs,  InGaAs,  etc.

Page 3: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

3

1-5

Silicon  Crystal  Structure

• Unit  cell  of  silicon  crystal  is  cubic.

• Each  Si  atom  has  4  nearest  neighbors.

5.43

Å

Å

1-6

Silicon  Wafers  and  Crystal  Planes

Silicon  wafers  are  usually  cut  along  the  (100)  plane  with  a  flat  or  notch  to  help  orient  the  wafer  during  IC  fabrication.

The  standard  notation  for  crystal  planes  is  based  on  the  cubic  unit  cell.  

(100) (011) (111)x

y y y

z z z

x x

(100)plane

(011)

flat

Si (111) plane

Page 4: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

4

1-7

Bond  Model  of  Electrons  and  Holes  (Intrinsic  Si)

Simplified  view  of  silicon  crystal  in  a  two-­dimensional  representation.  

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Si

Si Si Siconduction

When  an  electron  breaks  loose  and  becomes  a  conduction  electron,  a  “hole”  is  also  created

1-8

Dopants  in  Silicon

Si Si Si

Si Si

Si Si Si

Si Si Si

Si Si

Si Si Si

As B

N-type Si P-type Si

• As  (Arsenic),  a  Group  V  element,  introduces  conduction  electrons  and  creates  N-­type  silicon, and  is  called  a  donor.  

• B  (Boron),  a  Group  III  element,  introduces  holes  and  creates  P-­type  silicon, and  is  called  an  acceptor.

• Donors  and  acceptors  are  known  as  dopants.

Page 5: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

5

1-9

Types  of  charges  in  semiconductors

Slide  1-­9

Ionized Donor

IonizedAcceptor

Immobile  Chargesthey    DO  NOTcontribute  to  current  flow  with  electric  field  is  applied.  However,  they  affect  the  local  electric  field

Hole

Electron

Mobile  Charge  Carriersthey  contribute  to  current  flow  with  electric  field  is  applied.

1-10

Doped  Si  and  Charge

• What  is  the  net  charge  of  your  Si  when  it  is  electron  and  hole  doped?

Page 6: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

6

1-11

GaAs,  III-­V  Compound  Semiconductors,  and  Their  Dopants

Ga

As

As AsGa

Ga GaAs

AsGa Ga

• GaAs  has  the  same  crystal  structure  as  Si.• GaAs,  GaP,  GaN are  III-­V  compound  semiconductors,  important  for  optoelectronics.

• Which  group  of  elements  are  candidates  for  donors?  acceptors?

1-12

From  Atoms  to  Crystals

Decreasing atomic separation

Ene

rgy

p

s

isolated atoms lattice spacing

valence band

conduction bandPauli exclusion principle

• Energy  states  of  Si  atom  (a)  expand  into  energy  bands  of  Si  crystal  (b).  

• The  lower  bands  are  filled  and  higher  bands  are  empty  in  a  semiconductor.

• The  highest  filled  band  is  the  valence  band.• The  lowest  empty  band  is  the  conduction  band

(a) (b)

Page 7: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

7

1-13

Energy  Band  Diagram

Conduction band Ec

Ev

Eg Band gap

Valence band

• Energy band diagram shows the bottom edge of conduction band, Ec , and top edge of valence band, Ev .

• Ec and Ev are separated by the band gap energy, Eg .

1-14

Measuring  the  Band  Gap  Energy  by  Light  Absorption

photons

photon energy: hv > Eg

Ec

Ev

Eg

electron

hole

Bandgap  energies  of  selected  semiconductors

• Eg can be determined from the minimum energy (hn) of photons that are absorbed by the semiconductor.

Material PbTe Ge Si GaAs GaP DiamondE g (eV) 0.31 0.67 1.12 1.42 2.25 6.0

Page 8: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

8

1-15

Semiconductors,  Insulators,  and  Conductors

Ec

Ev

Eg=1.1 eV

Ec

Eg= 9 eV empty

Si (Semiconductor) SiO2

(Insulator) Conductor

Ecfilled

Top ofconduction band

Ev

• Totally  filled  bands  and  totally  empty  bands  do  not  allow  current  flow.  • Just  as  there  is  no  motion  of  liquid  in  a      totally  filled  or  totally  empty  bottle.

• Metal  conduction  band  is  half-­filled.• Semiconductors  have  lower  Eg's than  insulators  and  can  be  doped  

1-16

Donor  and  Acceptor  Levels  in  the  Band  Model

Conduction Band Ec

EvValence Band

Donor Level

Acceptor Level

Ed

Ea

Donor ionization energy

Acceptor ionization energy

Ionization energy of selected donors and acceptors in siliconAcceptors

Dopant Sb P As B Al InIonization energy, E c –E d or E a –E v (meV) 39 44 54 45 57 160

Donors

Hydrogen: Eionm0 q4

13.6 eV==8e02h2

Page 9: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

9

1-17

Dopants  and  Free  Carriers

Dopant ionizationenergy ~50meV (very low).

Donorsn-type

Acceptorsp-type

1-18

General  Effects  of  Doping  on  n  and  p

Charge neutrality: da NpNn --+ +_= 0

da NpNn --+ = 0

Assuming total ionization of acceptors and donors:

aN_

: number of ionized acceptors /cm3

dN +: number of ionized donors /cm3

aN : number of acceptors /cm3

dN : number of donors /cm3

Page 10: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

10

1-19

Density  of  StatesE

g c

g v

Ec

Ev

g(E)Ec

Ev

DE

3cmeV1

volumein states ofnumber )(

EEEgc

( )

2)( 32

**

hEEmm

Eg cnnc

( )

2)( 32

**

hEEmm

Eg vppv

1-20

Thermal  Equilibrium

Page 11: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

11

1-21

Thermal  EquilibriumAn  Analogy  for  Thermal  Equilibrium

There  is  a  certain  probability  for  the  electrons  in  the  conduction  band  to  occupy  high-­energy  states  under  the  agitation  of  thermal  energy  (vibrating  atoms,  etc.)

Dish

Vibrating Table

Sand particles

1-22

At  E=EF,  f(E)=1/2

Fermi-­Dirac  Distribution

Page 12: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

12

1-23

Effect  of  Temperature  on  f(E)

T=0K

1-24

Question

• If  f(E)  is  the  probability  of  a  state  being  occupied  by  an  electron,  what  is  the  probability  of  a  state  being  occupied  by  a  hole?

Page 13: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

13

1-25

Nc is called the effective density of states (of the conduction band) .

Carrier  Concentration  at  Equilibrium:Electrons

1-26

Nv is called the effective density of states of the valence band.

Carrier  Concentration  at  Equilibrium:Holes

Page 14: Evolution%of%Devicesinst.eecs.berkeley.edu/~ee143/fa16/lectures/Lecture02...6 1-11 GaAs,III UVCompound% Semiconductors,%and%Their%Dopants Ga As As Ga As Ga As Ga Ga As Ga • GaAshasthesamecrystalstructureasSi

14

1-27

Intrinsic  Semiconductor

Material Ge Si GaAsEg (eV) 0.67 1.12 1.42ni (1/cm3) 2 x 1013 1 x 1010 2 x 106

• Extremely  pure  semiconductor  sample  containing  an  insignificant  amount  of  impurity  atoms.

n = p = ni

Ef lies in the middle of the band gap