74
Evaluating game trees in the priced information model Ferdinando Cicalese Martin Milaniˇ c AG Genominformatik Technische Fakult¨ at Universit¨ at Bielefeld Workshop on Discrete Mathematics, TU Wien November 21, 2008 Cicalese–Milani ˇ c Evaluating game trees with priced variables

Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Evaluating game treesin the priced information model

Ferdinando Cicalese Martin Milanic

AG GenominformatikTechnische FakultatUniversitat Bielefeld

Workshop on Discrete Mathematics, TU WienNovember 21, 2008

Cicalese–Milani c Evaluating game trees with priced variables

Page 2: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The function evaluation problem

f = (x and y) or (x and z)

x , y , z: binary variables

for some inputs it is possible to evaluate f without readingall variables

Example:

(x , y , z) = (0, 1, 1)

It is enough to know the value of x

Cicalese–Milani c Evaluating game trees with priced variables

Page 3: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The function evaluation problem

f = (x and y) or (x and z)

x , y , z: binary variables

for some inputs it is possible to evaluate f without readingall variables

Example:

(x , y , z) = (0, 1, 1)

It is enough to know the value of x

Cicalese–Milani c Evaluating game trees with priced variables

Page 4: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The function evaluation problem

Input:

• a function f over the variables x1, . . . , xn

• each variable has a positive cost of reading its value

Goal:

Devise an algorithm for evaluating f which incurs as littlecost as possible reading its variables

Cicalese–Milani c Evaluating game trees with priced variables

Page 5: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Applications

Applications of the function evaluation problem:

Reliability testing / diagnosisTelecommunications: testing connectivity of networks

Manufacturing: testing machines before shipping

DatabasesQuery optimization

Artificial IntelligenceFinding optimal derivation strategies in knowledge-based systems

Decision-making strategies (AND-OR trees)

Computer-aided game playing for two-player zero-sum games with

perfect information, e.g. chess (game trees)

Cicalese–Milani c Evaluating game trees with priced variables

Page 6: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Algorithms for evaluating f

• Dynamically select the next variable based on the values ofthe variables read so far

• Stop when the value of f is determined

y

z x

x

0 1

0 10

1010

10

10

f = (x and y) or (x and z)

Cicalese–Milani c Evaluating game trees with priced variables

Page 7: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Evaluation measure

Evasive Functions

• For any possible algorithm, all the variables must be readin the worst case.

• f = (x and y) or (x and z)

• Some important functions are evasive (e.g. game trees,AND/OR trees and threshold trees).

Worst case analysis cannot distinguish among theperformance of different algorithms.

Instead, we use competitive analysis (Charikar etal. 2002)

Cicalese–Milani c Evaluating game trees with priced variables

Page 8: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Evaluation measure

Evasive Functions

• For any possible algorithm, all the variables must be readin the worst case.

• f = (x and y) or (x and z)

• Some important functions are evasive (e.g. game trees,AND/OR trees and threshold trees).

Worst case analysis cannot distinguish among theperformance of different algorithms.

Instead, we use competitive analysis (Charikar etal. 2002)

Cicalese–Milani c Evaluating game trees with priced variables

Page 9: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Cost of evaluation

f = (x and y) or (x and z)cost(x) = 3, cost(y) = 4, cost(z) = 5

Asignment (x , y , z) Value of f Cheapest Proof Cost(0,0,0) 0 {x} 3(1,1,0) 1 {x,y} 3+4=7

Cicalese–Milani c Evaluating game trees with priced variables

Page 10: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The competitive ratio

(x, y , z) f (x, y , z) Cost of Algorithm Ratio

Cheapest Cost

Proof

(0,0,0) 0 3 9 3(1,0,0) 0 9 9 1(0,1,0) 0 3 7 7/3(0,0,1) 0 3 12 4(1,1,0) 1 7 7 1(1,0,1) 1 8 12 3/2(0,1,1) 0 3 7 7/3(1,1,1) 1 7 7 1

y

z x

x

0 1

0 10

1010

10

10

4

5

9

Cicalese–Milani c Evaluating game trees with priced variables

Page 11: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The competitive ratio

(x, y , z) f (x, y , z) Cost of Algorithm Ratio

Cheapest Cost

Proof

(0,0,0) 0 3 9 3(1,0,0) 0 9 9 1(0,1,0) 0 3 7 7/3(0,0,1) 0 3 12 4(1,1,0) 1 7 7 1(1,0,1) 1 8 12 3/2(0,1,1) 0 3 7 7/3(1,1,1) 1 7 7 1

y

z x

x

0 1

0 10

1010

10

10

4

3

7

Cicalese–Milani c Evaluating game trees with priced variables

Page 12: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The competitive ratio

(x, y , z) f (x, y , z) Cost of Algorithm Ratio

Cheapest Cost

Proof

(0,0,0) 0 3 9 3(1,0,0) 0 9 9 1(0,1,0) 0 3 7 7/3(0,0,1) 0 3 12 4(1,1,0) 1 7 7 1(1,0,1) 1 8 12 3/2(0,1,1) 0 3 7 7/3(1,1,1) 1 7 7 1

y

z x

x

0 1

0 10

1010

10

10

4

5

3

3

9 7

12

7

12

Cicalese–Milani c Evaluating game trees with priced variables

Page 13: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The competitive ratio

(x, y , z) f (x, y , z) Cost of Algorithm Ratio

Cheapest Cost

Proof

(0,0,0) 0 3 9 3(1,0,0) 0 9 9 1(0,1,0) 0 3 7 7/3(0,0,1) 0 3 12 4(1,1,0) 1 7 7 1(1,0,1) 1 8 12 3/2(0,1,1) 0 3 7 7/3(1,1,1) 1 7 7 1

y

z x

x

0 1

0 10

1010

10

10

4

5

3

3

9 7

12

7

12

Cicalese–Milani c Evaluating game trees with priced variables

Page 14: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Measures of algorithm’s performance

Competitive ratio of algorithm A for (f , c):

maxall assignments σ

cost of A to evaluate f on σ

cost of cheapest proof of f on σ

In this talk:Extremal competitive ratio of A for f :

maxall assignments σ,all cost vectors c

cost of A to evaluate f on (σ, c)

cost of cheapest proof of f on (σ, c)

Cicalese–Milani c Evaluating game trees with priced variables

Page 15: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Measures of algorithm’s performance

Competitive ratio of algorithm A for (f , c):

maxall assignments σ

cost of A to evaluate f on σ

cost of cheapest proof of f on σ

In this talk:Extremal competitive ratio of A for f :

maxall assignments σ,all cost vectors c

cost of A to evaluate f on (σ, c)

cost of cheapest proof of f on (σ, c)

Cicalese–Milani c Evaluating game trees with priced variables

Page 16: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Measure of function’s complexity

Extremal competitive ratio of f :

minall deterministic algorithms A

that evaluate f

{

extremal competitive ratio of A for f}

Cicalese–Milani c Evaluating game trees with priced variables

Page 17: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The function evaluation problem

Given:a function f over the variables x1, x2, . . . , xn

Combinatorial Goal:

• Determine the extremal competitive ratio of f

Algorithmic Goal:• Devise an algorithm for evaluating f that:

1. achieves the optimal (or close to optimal) extremalcompetitive ratio

2. is efficient (runs in time polynomial in the size of f )

The algorithm knows the reading costs.

Cicalese–Milani c Evaluating game trees with priced variables

Page 18: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The function evaluation problem

Given:a function f over the variables x1, x2, . . . , xn

Combinatorial Goal:

• Determine the extremal competitive ratio of f

Algorithmic Goal:• Devise an algorithm for evaluating f that:

1. achieves the optimal (or close to optimal) extremalcompetitive ratio

2. is efficient (runs in time polynomial in the size of f )

The algorithm knows the reading costs.

Cicalese–Milani c Evaluating game trees with priced variables

Page 19: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Related work - other models/measures

Non-uniform costs & competitive analysisCharikar et al. [STOC 2000, JCSS 2002]

Unknown costsCicalese and Laber [SODA 2006]

Restricted costs (selection and sorting)Gupta and Kumar [FOCS 2001], Kannan and Khanna [SODA 2003]

Randomized algorithmsSnir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004]

Stochastic modelsRandom input, uniform probabilities

Tarsi [JACM 1983], Boros and Unluyurt [AMAI 1999]Charikar et al. [STOC 2000, JCSS 2002], Greiner et al. [AI 2005]

Random input, arbitrary probabilitiesKaplan et al. [STOC 2005]

Random costsAngelov et al. [LATIN 2008]

Cicalese–Milani c Evaluating game trees with priced variables

Page 20: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

How to evaluate general functions?

Good algorithms are expected to test. . .

• cheap variables - well defined

• important variables ???

Cicalese and Laber createda linear program that captures the impact of the variables

Cicalese–Milani c Evaluating game trees with priced variables

Page 21: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The minimal proofs

f - a function over V = {x1, . . . , xn}

R - range of f

DefinitionLet r ∈ R. A minimal proof for f (x) = r is a minimal set ofvariables P ⊆ V such that there is an assignment σ of values tothe variables in P such that fσ is constantly equal to r .

Example: f (x1, x2, x3) = (x1 and x2) or (x1 and x3), R = {0, 1}

minimal proofs for f (x) = 1: {{x1, x2}, {x1, x3}}

minimal proofs for f (x) = 0: {{x1}, {x2, x3}}

Cicalese–Milani c Evaluating game trees with priced variables

Page 22: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The minimal proofs

f - a function over V = {x1, . . . , xn}

R - range of f

DefinitionLet r ∈ R. A minimal proof for f (x) = r is a minimal set ofvariables P ⊆ V such that there is an assignment σ of values tothe variables in P such that fσ is constantly equal to r .

Example: f (x1, x2, x3) = (x1 and x2) or (x1 and x3), R = {0, 1}

minimal proofs for f (x) = 1: {{x1, x2}, {x1, x3}}

minimal proofs for f (x) = 0: {{x1}, {x2, x3}}

Cicalese–Milani c Evaluating game trees with priced variables

Page 23: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The Linear Program by Cicalese-Laber

LP(f )

Minimize∑

x∈V s(x)s.t.∑

x∈P s(x) ≥ 1 for every minimal proof P of fs(x) ≥ 0 for every x ∈ V

Intuitively, s(x) measures the impact of variable x .

The feasible solutions to the LP(f ) are precisely the fractionalhitting sets of the set of minimal proofs of f .

Cicalese–Milani c Evaluating game trees with priced variables

Page 24: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The Linear Program by Cicalese-Laber

LP(f )

Minimize∑

x∈V s(x)s.t.∑

x∈P s(x) ≥ 1 for every minimal proof P of fs(x) ≥ 0 for every x ∈ V

Intuitively, s(x) measures the impact of variable x .

The feasible solutions to the LP(f ) are precisely the fractionalhitting sets of the set of minimal proofs of f .

Cicalese–Milani c Evaluating game trees with priced variables

Page 25: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

LP(f ): example

f (x1, x2, x3) = (x1 and x2) or (x1 and x3)

minimal proofs for f = 1: {{x1, x2}, {x1, x3}}

minimal proofs for f = 0: {{x1}, {x2, x3}}

LP(f )

Minimize s1 + s2 + s3

s.t.s1 + s2 ≥ 1s1 + s3 ≥ 1

s1 ≥ 1s2 + s3 ≥ 1

s1, s2, s3 ≥ 0

Optimal solution: s = (1, 1/2, 1/2)

Cicalese–Milani c Evaluating game trees with priced variables

Page 26: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The Linear Programming Approach

LPA(f : function)

While the value of f is unknown

Select a feasible solution s() of LP(f )

Read the variable u which minimizes c(x)/s(x)(cost/impact)

c(x) = c(x)− s(x)c(u)/s(u)

f ← restriction of f after reading u

End While

Cicalese–Milani c Evaluating game trees with priced variables

Page 27: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The LPA bounds the extremal competitive ratio

The selection of solution s determines both the computationalefficiency and the performance (extremal competitive ratio) ofthe algorithm.

Key Lemma (Cicalese-Laber 2006)

Let K be a positive number. If

ObjectiveFunctionValue(s) ≤ K ,

for every selected solution s

then

ExtremalCompetitiveRatio(f ) ≤ K .

Cicalese–Milani c Evaluating game trees with priced variables

Page 28: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The fractional cover number

The fractional cover number of a function f is defined as

∆(f ) = maxf ′ restriction of f

{

opt-value(LP(f′))}

Key Lemma (Cicalese-Laber 2006)

For every function f ,

ExtremalCompetitiveRatio(f ) ≤ ∆(f ) .

Cicalese–Milani c Evaluating game trees with priced variables

Page 29: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Cross-intersecting families

A

B

• cross-intersecting: A ∈ A, B ∈ B ⇒ A ∩ B 6= ∅

Cicalese–Milani c Evaluating game trees with priced variables

Page 30: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Minimal proofs and cross-intersecting families

f : S1 × · · · × Sn → S, a function over V = {x1, . . . , xn}

R - range of f

For r ∈ R, let P(r) denote the set of minimal proofs forf (x) = r .

Then:

each P(r) is a non-empty Sperner family

for every r 6= r ′, the families P(r) and P(r ′) arecross-intersecting

Cicalese–Milani c Evaluating game trees with priced variables

Page 31: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The Linear Program by Cicalese-Laber

LP(f )

Minimize∑

x∈V s(x)s.t.∑

x∈P s(x) ≥ 1 for every P ∈ Ps(x) ≥ 0 for every x ∈ V

P = ∪r∈RP(r)

union of pairwise cross-intersecting Sperner families

For every function f : S1 × · · · × Sn → S, the LP(f ) seeks aminimal fractional hitting set of a union of pairwisecross-intersecting Sperner families.

Cicalese–Milani c Evaluating game trees with priced variables

Page 32: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Cross-intersecting lemma

Cross-Intersecting Lemma (Cicalese-Laber 2008)

Let A and B be two non-empty cross-intersecting families ofsubsets of V .Then, there is a fractional hitting set s of A ∪ B such that

‖s‖1 =∑

x∈V

s(x) ≤ max{|P| : P ∈ A ∪ B} .

• geometric proof

• generalizes to any number of pairwise cross-intersectingfamilies

Cicalese–Milani c Evaluating game trees with priced variables

Page 33: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Applications of the cross-intersecting lemma

1 f : S1 × · · · × Sn → S, nonconstant:ExtremalCompetitiveRatio(f ) ≤ PROOF (f ) [Cicalese-Laber 2008]

(PROOF (f ) = size of the largest minimal proof of f )

2 Monotone Boolean functions:ExtremalCompetitiveRatio(f ) = PROOF (f ) [Cicalese-Laber 2008]

3 Game trees: ExtremalCompetitiveRatio(f ) ≤ TBA

Cicalese–Milani c Evaluating game trees with priced variables

Page 34: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Applications of the cross-intersecting lemma

1 f : S1 × · · · × Sn → S, nonconstant:ExtremalCompetitiveRatio(f ) ≤ PROOF (f ) [Cicalese-Laber 2008]

(PROOF (f ) = size of the largest minimal proof of f )

2 Monotone Boolean functions:ExtremalCompetitiveRatio(f ) = PROOF (f ) [Cicalese-Laber 2008]

3 Game trees: ExtremalCompetitiveRatio(f ) ≤ TBA

Cicalese–Milani c Evaluating game trees with priced variables

Page 35: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Applications of the cross-intersecting lemma

1 f : S1 × · · · × Sn → S, nonconstant:ExtremalCompetitiveRatio(f ) ≤ PROOF (f ) [Cicalese-Laber 2008]

(PROOF (f ) = size of the largest minimal proof of f )

2 Monotone Boolean functions:ExtremalCompetitiveRatio(f ) = PROOF (f ) [Cicalese-Laber 2008]

3 Game trees: ExtremalCompetitiveRatio(f ) ≤ TBA

Cicalese–Milani c Evaluating game trees with priced variables

Page 36: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Game trees

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

game tree

Cicalese–Milani c Evaluating game trees with priced variables

Page 37: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Game trees

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

2

8 6

5 7 4 5

91

game tree

Cicalese–Milani c Evaluating game trees with priced variables

Page 38: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Game trees

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

2 8

8 6

5 7 4 59

91

game tree

Cicalese–Milani c Evaluating game trees with priced variables

Page 39: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Game trees

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN5 42

2 8

8 6

5 7 4 59

91

game tree

Cicalese–Milani c Evaluating game trees with priced variables

Page 40: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Game trees

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

5

5 42

2 8

8 6

5 7 4 59

91

game tree

Cicalese–Milani c Evaluating game trees with priced variables

Page 41: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Minterms of game trees

Minterm : minimal set A ⊆ V of variables such that

value of f ≥ value of A := min value of variables in A

Minterms can prove a lower bound for the value of f .

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

Cicalese–Milani c Evaluating game trees with priced variables

Page 42: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Minterms of game trees

Minterm : minimal set A ⊆ V of variables such that

value of f ≥ value of A := min value of variables in A

Minterms can prove a lower bound for the value of f .

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

Cicalese–Milani c Evaluating game trees with priced variables

Page 43: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Minterms of game trees

Minterm : minimal set A ⊆ V of variables such that

value of f ≥ value of A := min value of variables in A

Minterms can prove a lower bound for the value of f .

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

Cicalese–Milani c Evaluating game trees with priced variables

Page 44: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Maxterms of game trees

Maxterm : minimal set B ⊆ V of variables such that

value of f ≤ value of B := max value of variables in B

Maxterms can prove an upper bound for the value of f .

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

Cicalese–Milani c Evaluating game trees with priced variables

Page 45: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Maxterms of game trees

Maxterm : minimal set B ⊆ V of variables such that

value of f ≤ value of B := max value of variables in B

Maxterms can prove an upper bound for the value of f .

x3

x1 x5x4

x2

x9

x8

x6

x7

MIN MIN

MAX

MAX

MAX

MIN

Cicalese–Milani c Evaluating game trees with priced variables

Page 46: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Lower bound for the extremal competitive ratio

• k(f ) = max{|A| : A minterm of f}

• l(f ) = max{|B| : B maxterm of f}

Theorem (Cicalese-Laber 2005)

Let f be a game tree with no minterms or maxterms of size 1.Then,

ExtremalCompetitiveRatio(f ) ≥ max{k(f ), l(f )} .

Cicalese–Milani c Evaluating game trees with priced variables

Page 47: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Minimal proofs of game trees

To prove that the value of f is b, we need:

• a minterm of value b [proves f ≥ b]

• a maxterm of value b [proves f ≤ b]

Every minimal proof = union of a minterm and a maxterm

A - minterm

B - maxterm

x9

x4

x1

x7 x6

Cicalese–Milani c Evaluating game trees with priced variables

Page 48: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

A first upper bound

It follows that

PROOF (f ) = size of the largest minimal proof of f= k(f ) + l(f )− 1.

Theorem (Cicalese-Laber 2008)

f : S1 × · · · × Sn → S, nonconstant:ExtremalCompetitiveRatio(f ) ≤ PROOF (f )

For a game tree f ,ExtremalCompetitiveRatio(f ) ≤ k(f ) + l(f )− 1.

Lower bound: max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 49: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

A first upper bound

It follows that

PROOF (f ) = size of the largest minimal proof of f= k(f ) + l(f )− 1.

Theorem (Cicalese-Laber 2008)

f : S1 × · · · × Sn → S, nonconstant:ExtremalCompetitiveRatio(f ) ≤ PROOF (f )

For a game tree f ,ExtremalCompetitiveRatio(f ) ≤ k(f ) + l(f )− 1.

Lower bound: max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 50: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

A first upper bound

It follows that

PROOF (f ) = size of the largest minimal proof of f= k(f ) + l(f )− 1.

Theorem (Cicalese-Laber 2008)

f : S1 × · · · × Sn → S, nonconstant:ExtremalCompetitiveRatio(f ) ≤ PROOF (f )

For a game tree f ,ExtremalCompetitiveRatio(f ) ≤ k(f ) + l(f )− 1.

Lower bound: max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 51: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Can we close the gap?

Yes:

Claim

For every restriction f ′ of f , there is a fractional hitting set s ofthe set of minimal proofs of f ′ such that

‖s‖1 ≤ max{k(f ), l(f )} .

∆(f ) = maxf ′ restriction of f

{

opt-value(LP(f′))}

≤ max{k(f ), l(f )}

By the Key Lemma ,

ExtremalCompetitiveRatio(f ) ≤ max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 52: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Can we close the gap?

Yes:

Claim

For every restriction f ′ of f , there is a fractional hitting set s ofthe set of minimal proofs of f ′ such that

‖s‖1 ≤ max{k(f ), l(f )} .

∆(f ) = maxf ′ restriction of f

{

opt-value(LP(f′))}

≤ max{k(f ), l(f )}

By the Key Lemma ,

ExtremalCompetitiveRatio(f ) ≤ max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 53: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Restrictions of game trees

x3

7 x5

6

x9

x8

15

x7

MIN MIN

MAX

MAX

MAX

MIN

3

restriction of f

f ′(x3, x5, x7, x8, x9)

Cicalese–Milani c Evaluating game trees with priced variables

Page 54: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Restrictions of game trees

x3

7 x5

6

x9

x8

15

x7

MIN MIN

MAX

MAX

MAX

MIN

3

f (x3, x5, x7, x8, x9) ≥ 6

Cicalese–Milani c Evaluating game trees with priced variables

Page 55: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Restrictions of game trees

x3

7 x5

6

x9

x8

15

x7

MIN MIN

MAX

MAX

MAX

MIN

3

f (x3, x5, x7, x8, x9) ≤ 15

Cicalese–Milani c Evaluating game trees with priced variables

Page 56: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Restrictions of game trees

x3

7 x5

6

x9

x8

15

x7

MIN MIN

MAX

MAX

MAX

MIN

3

f (x3, x5, x7, x8, x9) ∈ [6, 15] = [LB, UB]

Cicalese–Milani c Evaluating game trees with priced variables

Page 57: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Minimal proofs of a restriction of a game tree

minterm

maxterm

15

7

3

x7 x9

minterm

maxterm

x7 x9

x8

3

7

15

maxterm proofs minterm proofs

combined proofs

b = LB b = UB

minterm

maxterm

7

x9

x3

33

minterm

maxterm

6 7

x3

x9

3

LB ≤ b ≤ UB

Cicalese–Milani c Evaluating game trees with priced variables

Page 58: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Case 1: No maxterm has been fully evaluated yet

minterm

maxterm

15

7

3

x7 x9

minterm

maxterm

x7 x9

x8

3

7

15

maxterm proofs minterm proofs

combined proofs

minterm

maxterm

7

x9

x3

33

minterm

maxterm

6 7

x3

x9

3

Cicalese–Milani c Evaluating game trees with priced variables

Page 59: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Case 1: No maxterm has been fully evaluated yet

minterm

maxterm

15

7

3

x7 x9

minterm

maxterm

x7 x9

x8

3

7

15

maxterm proofs minterm proofs

combined proofs

x7 x9

x8

3

7

15

minterm

maxterm

7

x9

x3

33

minterm

maxterm

6 7

3

x7

x8

x7

x8

x7

x8

x3

x9

x7

x8

x7

x8

Let s be (the characteristic vector of) a minimal hitting set ofthe shaded sets .

‖s‖1 ≤ k(f ) ≤ max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 60: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Case 2: There is a fully evaluated maxterm

minterm

maxterm

15

7

3

x7 x9

minterm

maxterm

x7 x9

x8

3

7

15

maxterm proofs minterm proofs

combined proofs

minterm

maxterm

7

x9

x3

33

minterm

maxterm

6 7

x3

x9

3

Cicalese–Milani c Evaluating game trees with priced variables

Page 61: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Case 2: There is a fully evaluated maxterm

minterm

maxterm

x7 x9

x8

3

7

15

maxterm proofs minterm proofs

combined proofs

x7 x9

x8

3

7

15

minterm

maxterm

7

x9

minterm

maxterm

15

7

3

x7 x9

x3

33

minterm

maxterm

6 7

3

x7

x8

x3

x9

x7

x8

x7

x8

R: the family of the minterm proofs

B: the family of the maxterm parts of the non-minterm proofs

Cicalese–Milani c Evaluating game trees with priced variables

Page 62: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Case 2: There is a fully evaluated maxterm

R and B are non-empty sets

R and B are cross-intersecting

every minimal proof contains a member of R ∪ B

By the Cross-intersecting lemma , there exists a feasiblesolution s to the LP(f′) such that

‖s‖1 ≤ max{|P| : P ∈ R ∪ B} ≤ max{k(f ), l(f )} .

Putting together the two cases, it follows that

∆(f ) ≤ max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 63: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Case 2: There is a fully evaluated maxterm

R and B are non-empty sets

R and B are cross-intersecting

every minimal proof contains a member of R ∪ B

By the Cross-intersecting lemma , there exists a feasiblesolution s to the LP(f′) such that

‖s‖1 ≤ max{|P| : P ∈ R ∪ B} ≤ max{k(f ), l(f )} .

Putting together the two cases, it follows that

∆(f ) ≤ max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 64: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Case 2: There is a fully evaluated maxterm

R and B are non-empty sets

R and B are cross-intersecting

every minimal proof contains a member of R ∪ B

By the Cross-intersecting lemma , there exists a feasiblesolution s to the LP(f′) such that

‖s‖1 ≤ max{|P| : P ∈ R ∪ B} ≤ max{k(f ), l(f )} .

Putting together the two cases, it follows that

∆(f ) ≤ max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 65: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The extremal competitive ratio for game trees

TheoremLet f be a game tree with no minterms or maxterms of size 1.Then,

ExtremalCompetitiveRatio(f ) = max{k(f ), l(f )} .

TheoremLet f be a game tree. Let p (q) denote the number of minterms(maxterms) of f of size 1. Then

ExtremalCompetitiveRatio(f ) =

max{k(f ), l(f )}, if p = q = 0 or p = q = 1;max{k(f ), l(f ) − p}, if p ≥ 1 and q = 0;max{k(f ) − q, l(f )}, if p = 0 and q ≥ 1.

There is a polynomial-time algorithm for evaluating game treeswith optimal extremal competitiveness.

Cicalese–Milani c Evaluating game trees with priced variables

Page 66: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The extremal competitive ratio for game trees

TheoremLet f be a game tree with no minterms or maxterms of size 1.Then,

ExtremalCompetitiveRatio(f ) = max{k(f ), l(f )} .

TheoremLet f be a game tree. Let p (q) denote the number of minterms(maxterms) of f of size 1. Then

ExtremalCompetitiveRatio(f ) =

max{k(f ), l(f )}, if p = q = 0 or p = q = 1;max{k(f ), l(f ) − p}, if p ≥ 1 and q = 0;max{k(f ) − q, l(f )}, if p = 0 and q ≥ 1.

There is a polynomial-time algorithm for evaluating game treeswith optimal extremal competitiveness.

Cicalese–Milani c Evaluating game trees with priced variables

Page 67: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Value dependent costs

Suppose that the cost of reading a variable can depend onthe variable’s value:

c(x) =

{

50, if x = 0;1000, if x = 1.

TheoremLet f be a monotone Boolean function or a game tree. Then,

ExtremalCompetitiveRatio(f , r) = r · ECR(f )− r + 1 ,

where

r = maxx∈V

cmax (x)

cmin(x).

Cicalese–Milani c Evaluating game trees with priced variables

Page 68: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Value dependent costs

Suppose that the cost of reading a variable can depend onthe variable’s value:

c(x) =

{

50, if x = 0;1000, if x = 1.

TheoremLet f be a monotone Boolean function or a game tree. Then,

ExtremalCompetitiveRatio(f , r) = r · ECR(f )− r + 1 ,

where

r = maxx∈V

cmax (x)

cmin(x).

Cicalese–Milani c Evaluating game trees with priced variables

Page 69: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

LPA has a very broad applicability

LPA does not depend on the structure of f

It can be used to derive upper bounds on the extremalcompetitive ratios of very different functions :

f = minimum of a list:ExtremalCompetitiveRatio(f ) ≤ n − 1 [Cicalese-Laber 2005]

f = the sorting function: ExtremalCompetitiveRatio(f ) ≤ n − 1[Cicalese-Laber 2008]

f : S1 × · · · × Sn → S, nonconstant:ExtremalCompetitiveRatio(f ) ≤ PROOF (f ) [Cicalese-Laber 2008]

f = monotone Boolean function:ExtremalCompetitiveRatio(f ) = PROOF (f ) [Cicalese-Laber 2008]

f = game tree: ExtremalCompetitiveRatio(f ) ≤ max{k(f ), l(f )}

Cicalese–Milani c Evaluating game trees with priced variables

Page 70: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Summary

We have seen:

the Linear Programming Approach for the development ofcompetitive algorithms for the function evaluation problem,

the related combinatorial notion of thefractional cover number ,

the extremal competitive ratio for game trees ,

the more general model of value dependent costs.

Cicalese–Milani c Evaluating game trees with priced variables

Page 71: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Some Open Questions

Is the extremal competitive ratio always integer?

Find the extremal comp. ratio of general Boolean functions.

Is there a polynomial algorithm with optimal extremalcomp. ratio for evaluating monotone Boolean functions(given by an oracle/by the list of minterms)?

Cicalese–Milani c Evaluating game trees with priced variables

Page 72: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Some Open Questions

Is the extremal competitive ratio always integer?

Find the extremal comp. ratio of general Boolean functions.

Is there a polynomial algorithm with optimal extremalcomp. ratio for evaluating monotone Boolean functions(given by an oracle/by the list of minterms)?

Cicalese–Milani c Evaluating game trees with priced variables

Page 73: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

Some Open Questions

Is the extremal competitive ratio always integer?

Find the extremal comp. ratio of general Boolean functions.

Is there a polynomial algorithm with optimal extremalcomp. ratio for evaluating monotone Boolean functions(given by an oracle/by the list of minterms)?

Cicalese–Milani c Evaluating game trees with priced variables

Page 74: Evaluating game trees in the priced information modeldmg.tuwien.ac.at/nfn/WDM2008/talks/milanic.pdf · Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004] Stochastic

The end

THANK YOU

Cicalese–Milani c Evaluating game trees with priced variables