34
National Aeronautics and Space Administration www.nasa.gov National Aeronautics and Space Administration Evalua’ng Performance of UAS DetectAndAvoid System Using a FastTime Simula’on Tool Seung Man Lee, Associate Research Scien’st Separa’on Assurance/Sense and Avoid Interoperability Seminar at UCSC 06/04/2015

Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

National Aeronautics and Space Administration

www.nasa.gov

National Aeronautics and Space Administration    

Evalua'ng  Performance  of  UAS  Detect-­‐And-­‐Avoid  System  Using  a  Fast-­‐Time  Simula'on  Tool  

Seung  Man  Lee,  Associate  Research  Scien'st  Separa'on  Assurance/Sense  and  Avoid  Interoperability  

Seminar  at  UCSC  06/04/2015  

Page 2: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Agenda  

•  Background  and  Research  Goals  

•  Airspace  SeparaAon  Assurance  for  UAS  

•  Concept  of  Well  Clear  SeparaAon  Standard  

•  Modeling  and  SimulaAon  Research  CapabiliAes  

•  UAS  Missions  and  VFR  Traffic  Scenarios  

•  Accomplished  and  On-­‐going  UAS  SimulaAon  Studies  

•  Preliminary  SimulaAon  Results  

•  Future  Research  Areas  

2  

Page 3: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Background    

•  Increasing  Demand  of  UAS  operaAons  in  Civil  Airspace  and  UAS  operaAons  are  currently  very  restricAve  to  operate  in  the  NAS  –  The  FAA  believes  that  there  may  be  as  many  as  30,000  unmanned  aircraT  

flying  in  the  NAS  by  as  early  as  2025.  

•  AccommodaAng  UAS  operaAons  will  cause  increasing  complexity  of  the  NAS  and  changing  the  roles  and  responsibiliAes  of  ATC  

•  One  of  the  most  important  research  efforts  is  to  improve  safety  and  reducing  technical  barriers  and  operaAonal  challenges  associated  with  flying  unmanned  aircraT  in  airspace  shared  by  commercial  and  civil  air  traffic.  

3  

Page 4: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Some  of  Challenges  to  Integrate  UAS  into  the  NAS  

•  Ensuring  separaAon  assurance    •  Ensuring  adequate  collision  avoidance  •  Ensuring  robust  and  secure  communicaAons  technologies  •  Solving  the  constraints  of  frequency  spectrum  allocaAon  •  Designing  and  evaluaAng  ground  control  staAon  displays    •  Defining  airworthiness  and  operaAonal  standards  •  Defining  pilot  cerAficaAons  requirements  •  Developing  cerAficaAon  standards  for  automated  systems  •  Defining  appropriate  level  of  safety  through  systemaAc  safety  analysis  •  Developing  cerAficaAon  standards  for  a  wide  range  and/or  type  of  UAS  •  Developing  integrated  soluAons  for  off-­‐nominal  operaAons  •  Defining  operaAonal  requirements  for  current  and  future  missions  sets  •  DefiniAons  of  roles  and  responsibiliAes  between  pilots  and  controllers  

4  

Page 5: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Primary Research Objectives

•  Develop  and  evaluate  concepts  of  operaAons,  procedures,  regulaAons,  and  advanced  technologies  to  support  safe  and  efficient  UAS  operaAons  in  the  NAS  

 •  InvesAgate  how  the  integraAon  of  UAS  into  the  current  ground-­‐

based  ATM  system  operaAons  affect  safety,  capacity  and  efficiency  of  the  NAS    –  Evaluate  the  impacts  of  UAS  operaAons  (wide  range  of  UAS  missions  and  

vehicle  performance  characterisAcs)  on  the  NAS    

•  Assess  the  acceptability  of  the  concepts  and  to  evaluate  the  effecAveness  of  the  associated  technologies  and  procedures  through  fast-­‐Ame,  human-­‐in-­‐the-­‐loop  simulaAons,  and  field  tests    

•  Support  FAA  and  RTCA  SC-­‐228  to  develop  the  minimum  operaAonal  performance  standards  (MOPS)  for  UAS  Detect-­‐And-­‐Avoid  (DAA)  systems  and  traffic  displays  

5

Page 6: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Unmanned  AircraT  System  (UAS)  

6  Source:  FAA  Report,  IntegraAon  of  Civil  Unmanned  AircraT  Systems  (UAS)  in  the  NaAonal  Airspace  System  (NAS)  Roadmap,  2013  

Page 7: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Human Systems Integration

UAS ground control station

Noncooperative aircraft

Cooperative aircraft

ADS–B an

d TCAS–II

Air traffic control centers (en route)

Detect and Avoid

Radar

Communications satellite

Line

-of-s

ight

link

DAA

data

link

Beyond line-of-sight link

Air traffic services (TRACONs)

Air traffic controller interaction

Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS)

LEGEND Detect and Avoid (DAA Technologies) Air Traffic Services Control and Non-Payload Communications (CNPC) Network Legacy Command and Control (C2) Links

ACRONYMS ADS–B: Automatic Dependent Surveillance—Broadcast DAA: Detect and Avoid TCAS–II: Traffic Alert and Collision Avoidance System TRACON – Terminal Radar Approach Control Facilities

Page 8: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Video  Clip  for  IntegraAng  UAS  into  the  NAS  

8  Source:  haps://www.youtube.com/watch?v=7hBcugTsWRQ  

Page 9: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Separation Assurance in the NAS

•  To  ensure  safe  separaAon  between  two  or  more  aircraT  flying  under  IFR  

•  To  ensure  avoidance  of  bad  weather,  special  use  of  airspace,  terrain,  or  other  hazards  

•  ATC  separaAon  standards  (typically  in  Class  A  airspace):  

9

ATC Separation Assurance

5 NM

1000ft

Tactical Separation Assurance

(up to 3~5min) Strategic Separation Assurance/Management (up to 15~20min to LOS)

Page 10: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Airspace  SeparaAon  Assurance  for  UAS  

10  

•  FAA  Regulatory  requirements  (14CFR  Part  91,  §91.111  and  §91.113)  to  “see  and  avoid”  and  to  remain  “well  clear”  of  other  aircraT.  

•  UAS  will  be  required  to  equip  with  a  new  system  in  order  to  fulfill  the  regulatory  requirement  “see  and  avoid”  to  maintain  a  safe  separaAon  from  other  air  traffic.  

Collision  Avoidance  

Self-­‐SeparaAon  

0  sec  ….…….…35  sec…….……….~2  min  

Sense  and  Avoid  (Detect  and  Avoid)  

Separa'on  Assurance  

…………………………………………………………………………………  

ATC Provided Separation Assurance (SA) UAS Detect-And-Avoid

Page 11: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

UAS  Detect-­‐And-­‐Avoid  (DAA)  System  

•  DAA  is  defined  as  “the  capability  of  a  UAS  to  remain  well  clear  from,  and  avoid  collisions  with,  other  airborne  traffic.  DAA  provides  the  intended  funcAons  of  self  separaAon  and  collision  avoidance  compaAble  with  expected  behavior  of  aircraT  operaAng  in  the  NAS.”    –  Self-­‐SeparaAon  FuncAon,  which  keeps  the  aircraT  “well  clear”  of  other  

airborne  traffic;    –  Collision  Avoidance  FuncAon,  which  avoids  near-­‐mid  air  collisions  (NMAC)  

•  DAA  system  will  replace  the  “see-­‐and-­‐avoid”  funcAon  provided  by  pilots  in  manned  aircraT,  which  is  an  important  contributor  to  today’s  safe  air  traffic  operaAons.  

11  

Page 12: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Concept  of  Well  Clear  SeparaAon  Standard  

12  

•  Airborne  separaAon  standard  for  DAA  Self-­‐SeparaAon  system  

•  A  well  clear  separaAon  standard  should  be  large  enough  to  –  Avoid  collision  avoidance  maneuvers  by  intruders,    –  Minimize  traffic  alert  issuances  by  air  traffic  control,  

•  Time  and  distance-­‐based  definiAon  of  “Loss  of  Well  Clear  (LoWC)”      –  When  two  aircraT  are  within  distance  thresholds  –  When  the  projected  horizontal  range  at  closest  point  of  approach  (CPA)  of  two  

aircraT  is  within  a  distance-­‐based  volume  in  a  parAcular  Ame  threshold  (Tau)  

Ver'cal  threshold  

Horizontal  threshold  

“Well  Clear”  Distance  Thresholds  

Modified  Tau  “Well  Clear”  Time  Thresholds  

Horizontal  threshold  at  CPA  

Page 13: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

DefiniAon  of  Well  Clear  (RTCA  Special  Commiaee)  

Parameters   Values   Descrip'ons  

Modified  Tau*   35  sec   RaAo  of  range  to  range  rate  with  DMOD  

DMOD   4,000  T   Distance  modificaAon  that  represents  a  minimum  desirable  range  between  two  aircraT  

HMD*   4,000  T   Horizontal  distance  at  the  predicted  horizontal  CPA  

ZTHR   450  T   VerAcal  separaAon  threshold  

13  

[0 ≤ τmod ≤ τ*mod and HMD ≤ HMD*] and [−ZTHR* ≤ dz ≤ ZTHR

*]

τmod : Modified Tau −Rxy

2 −DMOD2

RxyRxy

for Rxy > DMOD

0 for Rxy ≤ DMOD

#

$%%

&%%

Page 14: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Self-­‐SeparaAon  AlerAng  Threshold  

•  Self-­‐separaAon  declare  threshold  (SST),  at  which  the  DAA  Self-­‐SeparaAon  (SS)  funcAon  declares  that  an  acAon  is  needed  to  preclude  a  threat  aircraT  from  causing  a  well  clear  violaAon.    

•  Several  ways  of  defining  SST  as  alerAng  criteria  (zone)  –  Time-­‐based  alerAng  threshold  parameters  

•  Time  to  Loss  of  Well  Clear  (LoWC)    •  Time  to  Predicted  Closest  Point  of  Approach  

–  Distance-­‐based  alerAng  threshold  parameters  •  DMOD,  HMD*,  ZTHR*  

•  Meaningful  DAA  performance  must  alert  the  UAS  pilot  to  potenAal  threats  at  ranges  sufficient  for  reacAon  Ame  and  avoidance  acAons  by  safe  margins  

 

14  

Page 15: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Self-­‐SeparaAon  AlerAng  Threshold  

15  

•  SST:  Time  to  predicted  LoWC  

Predicted  Trajectory  

SS  Alert  

EsAmated  Time  to  LoWC  <=  SST  

.      .      .  

Predicted  LoWC    

{Rxy (tcpa ) ≤ HMDand 0 ≤ τmod ≤ τ*mod}

Δh < ZTHR

ownship  intruder  

Page 16: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

AlerAng  and  ResoluAon  Performance  of  DAA  System  

•  The  performance  of  DAA  system  will  be  dependent  upon  how  SST  is  defined  and  how  the  values  of  the  alerAng  threshold  parameters  are  set  –  Large  alerAng  zone:  excessive  number  of  nuisance  alerts    –  Small  alerAng  zone:  not  be  able  to  avoid  LoWC  within  a  short  period  of  

Ame  

•  InvesAgaAon  of  the  effects  of  different  alerAng  thresholds  on  the  safety  and  performance  of  DAA  system    –  Number  of  LoWC  (Success  Rate)  –  Probability  of  correct  alerts,  nuisance  alerts,  late  alerts  and  missed  alerts  –  Actual  Ame  to  LoWC  given  correct  alerts  –  Etc.  

16  

Page 17: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Modeling  and  Simula'on  Research  Capabili'es  

17  

Page 18: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Research  CapabiliAes  

18  

UAS-­‐NAS  integraAon  concepts  

ACES:  Flight  plan  and  NAS-­‐agent  modeling  system  Traffic  displays,  DAA  algorithms,  ATC,  Ground  Control  StaAon  

Human-­‐in-­‐the-­‐Loop  and  Flight  Test  Evalua'on  NAS-­‐wide  Simula'on  

17  UAV  types  UAS  models,  

 comm.  link  models  18  UAS  mission  profiles   DAA  algorithms  

New  UAS-­‐related  modeling  and  simulaAon  capabiliAes  

DAA  sensor  models  

Page 19: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Fast-­‐Time  SimulaAon  Environment  

4-DOF Trajectory Model Aerodynamic models of aircraft User-definable uncertainty characteristics

NAS-­‐wide  Simula'on  •  Gate-­‐to-­‐gate  simula'on  of  

ATM  opera'ons      •  Full  flight  schedule  with  

flight  plans  •  Sector  and  center  models  

with  some  airspace  procedures  

Simula'on  Agents  •  Air  traffic  controller  decision  making  •  Traffic  flow  management  models  •  Individual  aircraZ  characteris'cs  •  UAS  Detect  and  Avoid  algorithms  •  UAS  pilot  response  model  

Na'onal  Traffic  Management   Regional  Traffic  Management  Local  Approach  and  Departure  

Traffic  Management  

Airport  and  Surface  Traffic  Management  

Airspace  Concepts  Evalua'on  System  (ACES)  

19  

Page 20: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Overview  of  UAS  Missions  

•  Developed  under  contract  with  Intelligent  AutomaAon  Inc.  (IAI)  

20  

UAS$Mission Total$Number$of$Flights

Total$Flight$Time$(hr)

1 Aerial$Imaging$and$Mapping 295 182.602 Air$Qualtiy$Monitoring 1044 2393.493 OnJDemand$Air$Taxi$Cirrus 8720 6240.124 OnJDemand$Air$Taxi$Mustang 3180 1107.765 Airborne$Pathogen$Tracking 1308 3002.246 Border$Patrol 867 3357.907 Cargo$Delivery 1317 1966.078 Flood$Inund.$Mapping 127 275.029 Flood$Stream$Flow 200 368.5110 Law$Enforcement 300 859.1111 Maritime$Patrol 1512 11267.7412 Point$Source$Emission$Monitoring 432 648.0513 Spill$Monitoring 836 2078.0714 Strategic$Fire$Monitoring 312 4959.8515 Tactical$Fire$Monitoring 2496 3373.8816 Traffic$Monitoring 1043 1953.0517 Weather$Data$Collection 2401 13324.8618 Wildlife$Monitoring 308 189.34

Total 26698 57547.66

Page 21: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Mission  CharacterisAcs  

21  

UAV  group   Dura'on  (per  flight)  

Flights  per  day   Cruise  Alt.     Flight  Pa[ern  

Air  Quality  Monitoring     Shadow-­‐B     1-­‐4  hrs.   104-­‐1044   4k,5k,  and  6k    T  AGL  

Radiator  Grid  Paaern  

Cargo  Transport    

Cessna  208      

varies   1.4k   2k-­‐16k   Point  to  Point  

Atmospheric  Sampling   Global  Hawk   1.5-­‐13  hrs.   2352   5k-­‐35k  T  AGL   Radiator  Grid  Paaern  

On-­‐demand  Remote  Air  Taxi  -­‐Cirrus  

 

Cirrus  SR22T   varies   8k   6k-­‐11k   Point  to  Point  

On-­‐demand  Remote  Air  Taxi  -­‐  Mustang  

 

Cessna  Mustang  

varies   2k-­‐4k   9k-­‐20k   Point  to  Point    

Strategic    Fire  Monitoring    

Predator-­‐B   20  hrs.   74-­‐324   31k  T  MSL   Radiator  Grid  Paaern  

Tac'cal  Fire  Monitoring    

Shadow-­‐B   1-­‐1.5  hrs.   varies   varies   Circular  Loitering  Orbit  

Flood  Inunda'on  Mapping    

Aerosonde   1-­‐4  hrs.   varies   4k  T  AGL   Radiator  Grid  Paaern  Point  to  Point  

Flow  Stream  Monitoring      

Aerosonde   1-­‐4  hrs.   20-­‐200   4k     Radiator  Grid  Paaern  Point  to  Point  

Page 22: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

VFR  Traffic  (courtesy  of  84th  RADES)  

•  The  84th  Radar  EvaluaAon  Squadron  (RADES)  data  were  used.  –  The  data  contain  the  radar  hits  collected  from  hundreds  of  radar  sites  in  U.S,  and  each  

hit  provide  Amestamp,  laAtude,  longitude  and  others  but  does  not  always  provide  Mode  3  code,  Mode  C  code.  

–  All  cooperaAve  VFR  has  the  same  Mode  3  code,  1200.  –  Extracted  and  generated  naAon-­‐wide  VFR  flight  paths  that  VFR  aircraT  actually  flown  

from  the  historical  Air  Defense  84th  Radar  EvaluaAon  Squadron  (RADES)  radar  data  

•  CooperaAve  VFR  tracks  were  processed  using  –  A  clustering  method  based  on  a  modified  minimum  spanning  tree  algorithm,  –  The  quadraAc  regression  to  esAmate  the  aircraT  posiAon  within  a  Ame  window,  –  A  Kalman  filter  to  generate  smooth  trajectories,  –  Filters  to  categorize  each  track  into  IFR  or  VFR:  alAtude,  speed,  and  Mode  3  code.  

•  Non-­‐cooperaAve  VFR  tracks  were  processed  –  Using  algorithm  developed  by  Honeywell  to  process  non-­‐cooperaAve  VFR  tracks  and  

esAmates  alAtude  measurements  

22  

Page 23: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

 Track  EvaluaAon  

             

Evaluate/PrioriAze/Declare    

Surveillance  System                  

Detect  and  Track  

A  SchemaAc  of  DAA  System  Model  

23  

Onboard  Radar  

     

Maneuver  Guidance              

Determine        

Threat  Evaluator  

AlerAng  Algorithm  

Fused/Integrated  

Track   Alert  

ResoluAon  

AcAve  Mode-­‐C/S  Transponder  

ADS-­‐B  In  

Intruders  

Command   UAS  Pilot  Model  

Avoidance  Algorithm  

original  path  

new  path    with  maneuver  

Page 24: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

A  StochasAc  Pilot  Response  Model  •  Pilot  total  response  Ame  is  the  Ame  from  the  first  self-­‐separaAon  alert  to  the  

Ame  pilot  uploads  maneuver  to  prevent  loss  of  well  clear.  –  NASA  HSI  team  breaks  this  down  by  different  measures  

•  Use  total  pilot  response  Ame  data  from  HITL  to  build  a  pilot  response  Ame  model,  so  there  are  realisAc  responses  to  SS  alerts  in  ACES  simulaAons  –  Sample  from  a  distribuAon,  and  “wait”  that  amount  of  Ame  before  commanding  

maneuver  

24  

Distributions fit to IHITL Results

 Perceive  a  new  Self  SeparaAon  Alert  

 Evaluate  Remaining  Time  to  LoWC  (Urgency)  

Determine  Pilot  Response  Delay  

High  Urgency  

Mid  Urgency  

Low  Urgency  

Page 25: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Preliminary  Simula'on  Results  of  On-­‐going  UAS  DAA  Study  Using  ACES  Simula'on  

25  

Page 26: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Accomplished  ACES  Fast-­‐Time  SimulaAon  Studies  

•  DAA  Surveillance  Performance  Study  –  To  evaluate  the  performance  of  a  surveillance  system  with  different  

parameters,  such  as  the  raAo  of  undetected  and  late-­‐detected  LoWC,  and  the  Ame  to  LoWC  at  first  detecAon  for  given  surveillance  parameters  

•  Well  Clear  DefiniAon  SimulaAon  Study  –  To  evaluate  the  effect  of  different  Well  Clear  definiAons  on  LoWC  rates  by  

measuring  the  LoWC  rates  per  UAS  flight  hour    

•  Airspace  Safety  Threshold  Study  –  To  evaluate  the  safety  of  current  airspace  based  on  encounter  rates  of  

simulated  UAS  missions  with  historical  IFR  and  VFR  flight  tracks  

*  All  accomplished  studies  were  unmiAgated  studies  in  which  no  UAS  or  VFR  flights  were  maneuvered  to  avoid  potenAal  Loss  of  Well  Clear.  

26  

Page 27: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

On-­‐going  UAS  DAA  SimulaAon  Study  

•  DAA  Alert  and  ResoluAon  Performance  Study  –  To  invesAgate  encounter  characterisAcs  at  alerts  and  at  LoWC  (e.g.  range,  

relaAve  speed,  relaAve  heading,  and  verAcal  closure  rate)  

–  To  invesAgate  the  effects  of  different  SST  sevngs  on  the  performance  of  DSS  SS  system  by  measuring  metrics  such  as  correct/nuisance/late/missed  alerts,  Ame  to  LoWC  at  first  alerts,  alerAng  duraAon,  and  resoluAon  success  rates  

–  To  derive  required  surveillance  volumes  to  detect  all/some  intruders  and  threats  as  a  funcAon  of  different  SST  sevngs  with/without  execuAon  delays  

•  Surveillance  volume  in  terms  of  surveillance  detecAon  range,  horizontal  field  of  regard,  and  verAcal  field  of  regard  

–  To  invesAgate  the  effects  of  realisAc  sensor  models  with  uncertainty  (Range,  Bearing,  ElevaAon  Noise)  of  airborne  radar  sensor  on  the  safety  and  on  the  DAA  performance  

 

27  

Page 28: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Sample  Results:  Loss  of  Well  Clear  on  CONUS  

28  

•  SimulaAng  UAS  missions  without  DAA  system  and  ATC  separaAon  provision  services  on  cooperaAve  VFR  traffic  on  April  4,  2012,  –  2,664  Loss  of  Well  Clears.  –  LoWCs  occurred  mostly  in  the  regions  that  have  high  VFR  density.  

Page 29: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Encounter  CharacterisAcs  of  Intruders  at  LoWC  

29  

•  RelaAve  posiAon,  Bearing  distribuAon,  and  Horizontal  Closure  Rate  

!!!Heading!Direc,on!(nmi)!

Lateral!Direc,on!

!(nmi)!

100#Knots#

DMOD#circle##

Page 30: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

RelaAve  Range  and  Bearing  Angle  at  SS  Alerts    

30  

5

10

15

20

30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

180° 0°

5

10

15

20

30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

180° 0°

5

10

15

20

30°

210°

60°

240°

90°

270°

120°

300°

150°

330°

180° 0°

SST*$=$75$sec$ SST*$=$60$sec$ SST*$=$45$sec$

99% 90% 80% 60%

99% 90% 80% 60%

Page 31: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

CDF  for  Actual  Time  to  LoWC  from  Alerts  

31  

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

Actual Time to LoWC (sec)

Perc

enta

ge o

f thr

eats

with

in a

giv

en ra

nge

at fi

rst S

S al

ert (

%)

Buffer=0 SST = 45secBuffer=0 SST = 60secBuffer=0 SST = 75secBuffer=30 SST = 45secBuffer=30 SST = 60secBuffer=30 SST = 75sec

Page 32: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Probability  of  Correct  and  Nuisance  Alerts  

32  

Correct AlertsNuisance Alerts

SST (sec) / Buffer Size (%)

45 60 75 45 60 75 45 60 750 15 30

Prop

ortio

n of

Ale

rts

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

Page 33: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

Summary  

•  ACES  is  used  to  simulate  NAS-­‐wide  operaAons  of  UAS  and  VFR  flights  –  UAS  missions  and  background  VFR  traffic  –  DAA  alerAng  and  resoluAon  algorithms  –  StochasAc  pilot  response  model  

•  Fast-­‐Ame  simulaAon  studies  have  been  accomplished  –  Airborne  encounter  characterisAcs,  alerAng  performance,  and  airspace  safety  

have  been  invesAgated    –  The  simulaAon  results    were  provided  to  RTCA  SC-­‐228  for  developing  

minimum  operaAonal  performance  standard  (MOPS)  for  DAA  systems  

•  Keep  working  on  improving  ACES  simulaAon  fidelity  and  capabiliAes  to  simulate  more  realisAcally  and  invesAgate  the  impact  of  UAS  integraAon  into  the  NAS  on  the  safety  and  performance  of  the  NAS.  

33  

Page 34: Evalua’ng!Performance!of!UAS!Detect6And6Avoid! System

PotenAal  Research  Area  

•  High-­‐fidelity  Surveillance  Sensor  Models  with  Uncertainty  –  Tracking  Algorithms  

•  AlerAng  and  ResoluAon  Algorithms  –  Trajectory  PredicAon  Algorithms  –  AlerAng  Logics  and  criteria  –  Avoidance  algorithms    –  Performance  evaluaAon  methodology  and  metrics    

•  Interoperability  with  TCAS  II  System  of  Manned  AircraT  and  with  Advanced  NextGen  SeparaAon  Assurance  systems  

•  Decision  Support  Systems  and  Displays  for  UAS  Pilot  –  To  help  UAS  pilot  to  make  a  beaer  decision  on  avoidance  maneuver  –  ComputaAonal  agent  models  for  UAS  pilot  

•  Assessment  of  Different  FuncAonal  AllocaAons  –  Controller/Pilot-­‐provided  aircraT  separaAon  –  Autonomous  airborne  self-­‐separaAon  

34