58
Euler’s elastic problem Yuri Sachkov Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia E-mail: [email protected] University Milano Bicocca January 20, 2009 Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 1 / 58

Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Euler’s elastic problem

Yuri Sachkov

Program Systems InstituteRussian Academy of Sciences

Pereslavl-Zalessky, RussiaE-mail: [email protected]

University Milano BicoccaJanuary 20, 2009

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 1 / 58

Page 2: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Summary of the talk

1 Statement and history of Euler’s elastic problem

2 Optimal control problem

3 Attainable set and existence of optimal solutions

4 Extremal trajectories

5 Local and global optimality of extremal trajectories

6 Stability of elasticae

7 Solution to Euler’s elastic problem

8 Movies

9 Comparison of experimantal and mathematical data

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 2 / 58

Page 3: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Problem statement: Stationary configurations of elastic rod

a1

lv1

a0

v0

γ(t) R2

Given: l > 0, a0, a1 ∈ R2, v0 ∈ Ta0R2, v1 ∈ Ta1R2, |v0| = |v1| = 1.Find: γ(t), t ∈ [0, t1]:γ(0) = a0, γ(t1) = a1, γ(0) = v0, γ(t1) = v1. |γ(t)| ≡ 1 ⇒ t1 = l

Elastic energy J =1

2

∫ t1

0k2 dt → min, k(t) — curvature of γ(t).

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 3 / 58

Page 4: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

XIII century: Jordanus de Nemore

De Ratione Ponderis,Book 4, Proposition 13:

All elastic curves are circles.

(False solution).

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 4 / 58

Page 5: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1691: James (Jacob) Bernoulli, rectangular elastica

dy =x2 dx√1− x4

, ds =dx√

1− x4, x ∈ [0, 1]

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 5 / 58

Page 6: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1742: Daniel Bernoulli

Elastic energy

E = const ·∫

ds

R2,

R — radius of curvature,

Attempts to solve the variational problem

E → min .

Letter to Leonhard Euler: proposal to solve this problem.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 6 / 58

Page 7: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1744: Leonhard Euler

“Methodus inveniendi lineas curvas maximi minimive proprietategaudentes, sive Solutio problematis isoperimitrici latissimo sensuaccepti”, Lausanne, Geneva, 1744,

Appendix “De curvis elasticis”,

“That among all curves of the same length which not only passthrough the points A and B, but are also tangent to given straightlines at these points, that curve be determined in which the value of∫ B

A

ds

R2be a minimum.”

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 7 / 58

Page 8: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1744: Leonhard Euler

Problem of calculus of variations,

Euler-Lagrange equation,

Reduction to quadratures

dy =(α + βx + γx2) dx√a4 − (α + βx + γx2)2

, ds =a2 dx√

a4 − (α + βx + γx2)2,

Qualitative analysis of the integrals

Types of solutions (elasticae)

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 8 / 58

Page 9: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Euler’s sketches

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 9 / 58

Page 10: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1807: Pierre Simon Laplace

Profile of capillary surface between vertical planes:

Figures by J. Maxwell (Encyclopaedia Britannica, 1890.)

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 10 / 58

Page 11: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1859: G. R. Kirchoff

Kinetic analogue: mathematical pendulum

ss?

β

m

mg

LS

SS

S

β = −r sinβ, r =g

L

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 11 / 58

Page 12: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1880: L.Saalchutz

The first explicit parametrization of Euler elasticae by Jacobi’s functions:

L.Saalschutz, Der belastete Stab unter Einwirkung einer seitlichen Kraft,1880.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 12 / 58

Page 13: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1906: Max Born

Ph.D. thesis “Stability of elastic lines in the plane and the space”

Euler-Lagrange equation ⇒

x = cos θ, y = sin θ,

Aθ + B sin(θ − γ) = 0, A, B, γ = const,

equation of pendulum,

elastic arc without inflection points ⇒ stable,

elastic arc with inflection points ⇒ numerical investigation,

numeric plots of elasticae.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 13 / 58

Page 14: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1906: Max Born

Experiments on elastic rods:

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 14 / 58

Page 15: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1993: Velimir Jurdjevic

Euler elasticae in the ball-plate problem:Rolling of sphere on a plane without slipping or twisting

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 15 / 58

Page 16: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

1993: Roger Brockett and L. Dai

Euler elasticae in the nilpotent sub-Riemannian problem with the growthvector (2,3,5):

q = u1X1 + u2X2, q ∈ R5, u = (u1, u2) ∈ R2,

q(0) = q0, q(t1) = q1,

l =

∫ t1

0

√u21 + u2

2 dt → min,

[X1,X2] = X3, [X1,X3] = X4, [X2,X3] = X5.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58

Page 17: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Applications of planar and space elasticae

elasticity theory and strength of materials (modeling of columns,beams, elastic rods),

size and shape in biology (maximal height of a tree, curvature ofpalms under the action of wind, curvature of the spine, mechanics ofinsect wings),

analogues of splines in approximation theory (G. Birkhoff, K.R. deBoor, 1964),

recovery of images in computer vision (D. Mumford, 1994),

modeling of optical fibers and flexible circuit boards inmicroelectronics (V. Jairazbhoy et al., 2008)

dynamics of vortices and cubic Schroedinger equation (H. Hasimoto,1971),

modeling of DNA molecules (R.S. Manning, 1996), . . .

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 17 / 58

Page 18: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Euler’s problem: Coordinates in R2 × S1

a1

a0

γ(t) θ(t)

θ0θ1

x

y

(x , y) ∈ R2, θ ∈ S1,

γ(t) = (x(t), y(t)), t ∈ [0, t1],

a0 = (x0, y0), a1 = (x1, y1),

v0 = (cos θ0, sin θ0), v1 = (cos θ1, sin θ1).

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 18 / 58

Page 19: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Optimal control problem

x = cos θ,

y = sin θ,

θ = u,

q = (x , y , θ) ∈ R2x ,y × S1

θ , u ∈ R,q(0) = q0 = (x0, y0, θ0), q(t1) = q1 = (x1, y1, θ1), t1 fixed.

k2 = θ2 = u2 ⇒ J =1

2

∫ t1

0u2 dt → min .

Admissible controls u(t) ∈ L2[0, t1],trajectories q(t) ∈ AC [0, t1]

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 19 / 58

Page 20: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Left-invariant problem on the group of motions of a plane

SE(2) = R2 n SO(2) =

cos θ − sin θ x

sin θ cos θ y0 0 1

| (x , y) ∈ R2, θ ∈ S1

q = X1(q) + uX2(q), q ∈ SE(2), u ∈ R.q(0) = q0, q(t1) = q1, t1 fixed,

J =1

2

∫ t1

0u2dt → min,

Left-invariant frame on SE(2):

X1(q) = qE13, X2(q) = q(E21 − E12), X3(q) = −qE23

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 20 / 58

Page 21: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Continuous symmetriesand normalization of conditions of the problem

Left translations on SE(2) ⇒ q0 = Id ∈ SE(2):

Parallel translations in R2 ⇒ (x0, y0) = (0, 0)Rotations in R2 ⇒ θ0 = 0

Dilations in R2 ⇒ t1 = 1

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 21 / 58

Page 22: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Attainable set

q0 = Id = (0, 0, 0), t1 = 1

Aq0(1) = {(x , y , θ) | x2 + y2 < 1 ∀ θ ∈ S1 or (x , y , θ) = (1, 0, 0)}.

Steering q0 to q:

u = 0u = C1

u = C3

u = C2

q0

q

-

Y>

?

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 22 / 58

Page 23: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Attainable set

-2

0

2

x1-2

0

2

x2

-1

-0.5

0

0.5

1

x3

-2

0

2

x1

In the sequel: q1 ∈ Aq0(t1)

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 23 / 58

Page 24: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Existence and regularity of optimal solutions

q = X1(q) + uX2(q), q ∈ R2 × S1, u ∈ R unbounded

q(0) = q0, q(t1) = q1,

J =1

2

∫ t1

0u2 dt → min,

General existence theorem ⇒ ∃ optimal u(t) ∈ L2

Compactification of the space of control parameters⇒ ∃ optimal u(t) ∈ L∞

⇒ Pontryagin Maximum Principle applicable

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 24 / 58

Page 25: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Pontryagin Maximum Principle in invariant form

q = X1(q) + uX2(q), q ∈ M = R2 × S1, u ∈ R, J =1

2

∫ t1

0u2 dt → min

TqM = span(X1(q),X2(q),X3(q)), X3 = [X1,X2]T ∗q M = {(h1, h2, h3)}, hi (λ) = 〈λ,Xi 〉, λ ∈ T ∗M

Hamiltonian vector fields ~hi ∈ Vec(T ∗M)hνu = 〈λ,X1 + uX2〉+ ν

2 u2 = h1(λ) + uh2(λ) + ν2 u2

Theorem (Pontryagin Maximum Principle)

u(t) and q(t) optimal ⇒ ∃ lipshchitzian λt ∈ T ∗q(t)M and ν ≤ 0:

λt = ~hνu(t)(λt) = ~h1(λt) + u(t)~h2(λt),

hνu(t)(λt) = maxu∈R

hνu(λt),

(ν, λt) 6= 0, t ∈ [0, t1].

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 25 / 58

Page 26: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Abnormal extremal trajectories

ν = 0 ⇒ u(t) ≡ 0 ⇒ θ ≡ 0, x = t, y ≡ 0

q0 q1

J = 0 = min ⇒⇒ abnormal extremal trajectories optimal for t ∈ [0, t1]

Unique trajectory from q0 = (0, 0, 0) to (t1, 0, 0) ∈ ∂Aq0(t1).

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 26 / 58

Page 27: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Normal Hamiltonian system

ν = −1 ⇒ nonuniqueness of extremal trajectories

Hamiltonian system:

h1 = −h2h3, x = cos θ

h2 = h3, y = sin θ

h3 = h1h2, θ = h2

r2 = h21 + h2

3 ≡ const ⇒ h1 = −r cosβ, h3 = −r sinβ

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 27 / 58

Page 28: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Equation of pendulum

β = −r sinβ ⇔{β = c ,

c = −r sinβ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

β

c

π−π

j

Y

j

q

Y

i

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 28 / 58

Page 29: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Normal extremal trajectories

θ = −r sin(θ − γ), r , γ = const,

x = cos θ,

y = sin θ.

Integrable in Jacobi’s functions.

θ(t), x(t), y(t) parametrized by Jacobi’s functions

cn(u, k), sn(u, k), dn(u, k), E(u, k).

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 29 / 58

Page 30: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Euler elasticae

Energy of pendulum

E =θ2

2− r cos(θ − γ) ≡ const ∈ [−r ,+∞)

E = −r 6= 0 ⇒ straight lines

E ∈ (−r , r), r 6= 0 ⇒ inflectional elasticae

E = r 6= 0, θ − γ = π ⇒ straight lines

E = r 6= 0, θ − γ 6= π ⇒ critical elasticae

E > r 6= 0 ⇒ non-inflectional elasticae

r = 0 ⇒ straight lines and circles

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 30 / 58

Page 31: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Euler elasticae

0 1 2 3 4 5 6

-1

-0.5

0

0.5

1

0 2 4 6 8 10

0

0.5

1

1.5

2

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 31 / 58

Page 32: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Euler elasticae

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0

0.5

1

1.5

2

2.5

3

3.5

-3 -2 -1 0

0

0.5

1

1.5

2

2.5

3

3.5

-2 -1 0 1 2

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5

0

0.2

0.4

0.6

0.8

1

1.2

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 32 / 58

Page 33: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Euler elasticae

-0.0004 -0.0002 0 0.0002 0.0004

0

0.0002

0.0004

0.0006

0.0008

0.001

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 33 / 58

Page 34: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Optimality of normal extremal trajectories

q(t) locally optimal:

∃ε > 0 ∀q : ‖q − q‖C < ε, q(0) = q(0), q(t1) = q(t1) ⇒J(q) ≤ J(q)

Stable elastica (x(t), y(t))

q(t) globally optimal:

∀q : q(0) = q(0), q(t1) = q(t1) ⇒ J(q) ≤ J(q)

Elastica (x(t), y(t)) of minimal energy.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 34 / 58

Page 35: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Loss of optimality

Theorem (Strong Legendre condition)

∂2

∂u2

∣∣∣∣u(s)

h−1u (λs) < −δ < 0 ⇒

⇒ small arcs of normal extremal trajectories q(s) are optimal.

Cut time along q(s):

tcut(q) = sup{t > 0 | q(s), s ∈ [0, t], optimal }.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 35 / 58

Page 36: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Reasons for loss of optimality:(1) Maxwell point

Maxwell point qt : ∃ qs 6≡ qs : qt = qt , Jt [q, u] = Jt [q, u]

q0

qs

qs

qt = qt, Jt[q, u] = Jt[q, u]

q1 = qt1 = qt1 , Jt1 [q, u] > Jt1 [q, u]

qs

-

-

-

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 36 / 58

Page 37: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Reasons for loss of optimality:(2) Conjugate point

Conjugate point: qt ∈ envelope of the family of extremal trajectories

� � � � � �

� ��

� � �

� ������� � �

tcut ≤ min(tMax, tconj)

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 37 / 58

Page 38: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Reflections in the phase cylinder of pendulum β = −r sin β

?

��

��

��

��

���+

ε1

ε2

ε3β

cγs

γ1s

γ2s

γ3s

j

�Y

*

Dihedral groupD2 = {Id, ε1, ε2, ε3} = Z2 × Z2.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 38 / 58

Page 39: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Action of reflections ε1, ε2, ε3 on elasticae

pc

(xs, ys)

(x1s , y

1s)

� l⊥

(xs, ys)

(x2s , y

2s)

-

*

l

(xs, ys)

(x3s , y

3s)

*

*

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 39 / 58

Page 40: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Fixed points of reflections ε1, ε2, ε3

pc

l⊥

l l

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 40 / 58

Page 41: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Maxwell points corresponding to reflections

Fixed points of reflections εi ⇒ Maxwell times:

t = tnεi , i = 1, 2, n = 1, 2, . . .

T = period of pendulum ⇒

tnε1 = nT ,

(n − 1

2

)T < tn

ε2 <

(n +

1

2

)T .

Upper bound of cut time:

tcut ≤ min(t1ε1 , t

1ε2) ≤ T .

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 41 / 58

Page 42: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Conjugate points

Exponential mapping

Expt : T ∗q0M → M, λ0 7→ q = q(t) = π ◦ et~h(λ0)

q — conjugate point ⇔ q — critical value of Expt

Expt(h1, h2, h3) = (x , y , θ)

∂(x , y , θ)

∂(h1, h2, h3)= 0

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 42 / 58

Page 43: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Local optimalityof normal extremal trajectories

Theorem (Jacobi condition)

Normal extremal trajectories lose their local optimality at the firstconjugate point.

The first conjugate point t1conj ∈ (0,+∞].

No inflection points ⇒ no conjugate points

Inflectional case ⇒ t1conj ∈ [t1

ε1 , t1ε2 ] ⊂ [1

2T , 32T ]

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 43 / 58

Page 44: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Stability of inflectional elasticae

t1 ≤ 1

2T ⇒ stability,

t1 ≥ 3

2T ⇒ instability

In particular:

no inflection points ⇒ stability (M. Born),

1 or 2 inflection points ⇒ stability or instability,

3 inflection points ⇒ instability.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 44 / 58

Page 45: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Global optimality of elasticae

q1 ∈ Aq0(t1), optimal q(t) =?

q(t) = Expt(λ) optimal for t ∈ [0, t1] ⇒ t1 ≤ min(t1ε1(λ), t1

ε2(λ))

N ′ = {λ ∈ T ∗q0M | t1 ≤ min(t1

ε1(λ), t1ε2(λ))}

Expt1 : N ′ → Aq0(t1) surjective, with singularities and multiple points

∃ open dense N ⊂ N ′, M ⊂ Aq0(t1) such that

Expt1 : N → M is a direct sum of diffeomorphisms

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 45 / 58

Page 46: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Global structure of exponential mapping

-2

0

2

-4

-2

0

2

4

0

2

4

6

-2

0

2

-4

-2

0

2

4

L1

L2

L4

L3

p = pMAX1

Figure: N = ∪4i=1Li

Expt1−→

M+

M−

Figure: M = M+ ∪M−

Expt1 : L1, L3 → M+ diffeo, Expt1 : L2, L4 → M− diffeo

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 46 / 58

Page 47: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Competing elasticae

q0

q1 ∈ M+

q2(t) = Expt(λ2)

λ2 ∈ L3

q1(t) = Expt(λ1)

λ1 ∈ L1

? : J[q1] ≶ J[q2]

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 47 / 58

Page 48: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Competing elasticae

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 48 / 58

Page 49: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Animations . . .

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 49 / 58

Page 50: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Work in progress:Experimental elastica (with S.V.Levyakov)

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 50 / 58

Page 51: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Plot of elastica

-6 -4 -2

-2

-1

1

2

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 51 / 58

Page 52: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Comparison of experimental and mathematical elastica

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 52 / 58

Page 53: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

One-parameter family of elasticae losing stability: Series A

1 2 3 4 5 6

1

2

3

4

5

6

7

1 2 3 4 5 6

1

2

3

4

5

6

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 53 / 58

Page 54: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

One-parameter family of elasticae losing stability: Series A

1 2 3 4 5 6

-1

1

2

3

4

5

1 2 3 4 5 6 7

-7

-6

-5

-4

-3

-2

-1

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 54 / 58

Page 55: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

One-parameter family of elasticae losing stability: Series B

1 2 3 4 5

1

2

3

4

5

6

7

-5 -4 -3 -2 -1 1

1

2

3

4

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 55 / 58

Page 56: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

One-parameter family of elasticae losing stability: Series B

-4 -3 -2 -1 1 2

1

2

3

4

5

1 2 3 4 5 6 7

-2

-1

1

2

3

4

5

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 56 / 58

Page 57: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Questions and related problems

Cut time tcut = ?

Optimal synthesis in Euler’s elastic problem

Nilpotent (2, 3, 5) sub-Riemannian problem

The ball-plate problem

Sub-Riemannian problem on SE(2)

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 57 / 58

Page 58: Euler's elastic problemYuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 16 / 58 Applications of planar and space elasticae elasticity theory and strength of

Conclusion: Euler’s elastic problem

Optimal control problem,

Extremal trajectories,

Local and global optimality of extremal trajectories,

Stability of Euler elasticae,

Software for finding globally optimal elastica,

Publications:

Yu. L. Sachkov, Maxwell strata in Euler’s elastic problem, Journal ofDynamical and Control Systems, Vol. 14 (2008), No. 2, 169–234,arXiv:0705.0614 [math.OC].Yu. L. Sachkov, Conjugate points in Euler’s elastic problem, Journal ofDynamical and Control Systems, Vol. 14 (2008), No. 3, 409–439,arXiv:0705.1003 [math.OC].Yu. L. Sachkov, Optimality of Euler elasticae, Doklady Mathematics,Vol. 417, No. 1, November 2007, 23–25.

Yuri Sachkov (PSI RAS) Euler’s elastic problem Milano Bicocca 20.01.09 58 / 58