1
Esther RojasSoto, Samuel Evans, Dean Speers, and Ma8hew D. Po8s INTRODUCTION The U.S. Renewable Fuel Standard (RFS) mandates the consumpBon of 36 billion gallons of renewable transportaBon fuel by 2022. 16 billion gallons must be derived from cellulosic biomass. MeeBng this standard will require a significant shiO in current landuse pa8erns from exisBng agricultural producBon to dedicated energy crops. It is important to study these shiOs and how they may affect future economic and ecosystem service systems. The purpose of this study is to visualize and idenBfy the most viable locaBons within the United States to plant and grow these biofuels given regulatory and economic restraints. RFS regulaBons have been established to restrict cellulosic biomass producBon to exisBng agricultural lands. These lands fall into four broad landuse classificaBons: Lands in CRP: “ConservaBon Reserve Program”. A voluntary program for landowners where they receive annul payments to “establish longterm, resourceconserving covers on eligible farmland”. Fallow cropland: Available farmland that is unculBvated or not in use. AcBve Cropland: Any farmland in use to grow any and all types of crops. Pastureland: Grasslands excluding those occupied by naBve grasses. The RFS prohibits the use of naBve grasslands and forest for cellulosic biomass producBon. In addiBon to regulatory constraints, the economic feasibility of cellulosic biomass producBon should also be considered. We explore regional variability in agricultural land “rental rates,” which is an important measure of economic feasibility. Rental rates reflect the opportunity cost of allocaBng land to cellulosic biomass producBon. METHODS The data pertaining to the areas where biofuels may be grown came from USDA Farm Service Agency 2010 landuse records. The specific informaBon of interest included in this data was the amount of planted acres of each crop at a county level. We began by separaBng this data by types of crop; fi^ng each into one of our four categories: CRP, FALLOW, CROP, or PASTURELAND using the R staBsBcal compuBng language. Next, we used ARC GIS, a program for mapping and spaBal analysis, to construct a visual representaBon of the counBes with potenBal of bioenergy feedstock producBon. Data on regional land rental rates for pasture and nonirrigated cropland was obtained from the USDA. NaBonal Agricultural StaBsBcs Service. A visualizaBon was constructed that shows regions in the U.S. where cellulosic biomass producBon may be economically viable. LAND AVAILIBILITY UNDER THE RENEWABLE FUEL STANDARD REGULATIONS CONCLUSIONS The results of this study make it easier to visualize where biofuels could potenBally be grown given exisBng landuses, and the average land rent values for cropland and pastureland. We were able to determine and visualize the areas in the United States that are currently in use (in 2010) by the four categories of land that the RFS sBpulates. The land rent data for CRP land and fallow land were not available given the nature of these landscapes. While land rental rates provide a general measure of economic viability, addiBonal measures should also be used for these lands. A richer economic analysis would allow for a more accurate evaluaBon of which areas would be the most economical for biofuel producBon. This analysis provides a foundaBon upon which to further study the ecological and economic costs and benefits of cellulosic bioenergy producBon. RELATED LITERATURE United States of America. Environmental ProtecBon Agency. Regula’on of Fuels and Fuel Addi’ves: Changes to Renewable Fuel Standard Program; Final Rule. By Environmental ProtecBon Agency. N.p., 26 Mar. 2010. Young, Heather, and Chris Sommerville. "Growing Be8er Biofuel Crops." Growing Be?er Biofuel Crops. The ScienBst, 01 July 2012. Web. 09 July 2012. Perlack, R. D., Stokes, B.J. (2011). U.S. BillionTon Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Renewable Energy (p. 227). Oak Ridge, TN. Khanna, M., Chen, X., Huang, H., & Onal, H. (2011). Supply of Cellulosic Biofuel Feedstocks and Regional ProducBon Pa8ern. American Journal of Agricultural Economics, 93(2), 473480. LAND RENTAL RATES BY REGION Cropland Rents $/Acre 0 - 30 30 - 60 60 - 90 90 - 120 120 - 150 150 - 180 180 - 230 Pastureland Rents $/Acre 0 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 50 50 - 110 Pastureland landrents in $/ acre. The darker colors represent higher average land rents and in turn, less of a economic opRon for the growth of biofuels. NonIrrigated cropland land rents in $/acre. The darker colors represent higher average land rents and in turn, less of a economic opRon for the growth of biofuels. Each map shows the number of hectares available for each land use category. Values are in hectares per 1,000 hectares of total land in each county. Darker counRes imply a larger concentraRon of available land. Cropland (ha/1000ha) Cropland is widely available, but requires displacing exisRng agricultural commodiRes. While land quality is generally high, growing lowvalue dedicated energy crops involves a high opportunity cost. Pastureland (ha/1000ha) Large tracts of pastureland are available for cellulosic biomass producRon throughout the Southern Plains and Southeast. AllocaRng pastureland for biomass producRon is generally aYracRve due to the low opportunity cost. CRP (ha/1000ha) Land currently enrolled in the ConservaRon Reserve Program is highly concentrated throughout the Great Plains and Southeast. While CRP represents a plausible stock of land for biomass producRon, there is considerable uncertainty regarding the impact of bioenergy feedstock producRon on important ecosystem services. Fallow Land (ha/1000ha) Fallow/idled cropland is an addiRonal plausible stock of land, concentrated primarily in the Central and Northern Plains. Land rental rates are generally lower than acRve cropland, but fallow/idled land is usually less producRve.

Esther’Rojas,Soto,’Samuel’Evans,’Dean’Speers,’and’Mahew’D.’Po8s · Esther’Rojas,Soto,’Samuel’Evans,’Dean’Speers,’and’Mahew’D.’Po8s ’ INTRODUCTION)

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Esther’Rojas,Soto,’Samuel’Evans,’Dean’Speers,’and’Mahew’D.’Po8s · Esther’Rojas,Soto,’Samuel’Evans,’Dean’Speers,’and’Mahew’D.’Po8s ’ INTRODUCTION)

Esther  Rojas-­‐Soto,  Samuel  Evans,  Dean  Speers,  and  Ma8hew  D.  Po8s  

INTRODUCTION      v The  U.S.  Renewable  Fuel  Standard  (RFS)  mandates  the  consumpBon  of  36  billion    gallons  of  renewable  transportaBon  fuel  by  2022.  16  billion  gallons  must  be  derived    from  cellulosic  biomass.  MeeBng  this  standard  will  require  a  significant  shiO  in  current  land-­‐use  pa8erns  from  exisBng  agricultural    producBon  to  dedicated  energy  crops.  It  is  important  to  study  these  shiOs  and  how  they  may  affect  future  economic  and  ecosystem  service  systems.    v The  purpose  of  this  study  is  to  visualize  and  idenBfy  the  most  viable  locaBons  within  the  United  States  to  plant  and  grow  these  biofuels  given  regulatory  and  economic  restraints.    v RFS  regulaBons  have  been  established    to  restrict  cellulosic  biomass    producBon  to  exisBng  agricultural  lands.    These  lands  fall  into  four  broad  land-­‐use  classificaBons:  

v Lands  in  CRP:  “ConservaBon  Reserve  Program”.  A  voluntary  program  for  landowners  where  they  receive  annul  payments  to  “establish  long-­‐term,  resource-­‐conserving  covers  on  eligible  farmland”.  

v Fallow  cropland:  Available  farmland  that  is  unculBvated  or  not  in  use.  

v AcBve  Cropland:  Any  farmland  in  use  to  grow  any  and  all  types  of  crops.  

v Pastureland:  Grasslands  excluding  those  occupied  by  naBve  grasses.  

 v   The  RFS  prohibits  the  use  of  naBve  grasslands  and  forest  for  cellulosic  biomass  producBon.    

v In  addiBon  to  regulatory  constraints,  the  economic  feasibility  of  cellulosic  biomass  producBon  should  also  be  considered.    We  explore  regional  variability  in  agricultural  land  “rental  rates,”  which  is  an  important    measure  of  economic  feasibility.    Rental  rates  reflect  the  opportunity  cost  of  allocaBng  land  to  cellulosic  biomass  producBon.  

METHODS  

v The  data  pertaining  to  the  areas  where  biofuels  may  be  grown  came  from  USDA  Farm  Service  Agency  2010  land-­‐use  records.  

v The  specific  informaBon  of  interest  included  in  this  data  was  the  amount  of  planted  acres  of  each  crop  at  a  county  level.  

v We  began  by  separaBng  this  data  by  types  of  crop;  fi^ng  each  into  one  of  our  four  categories:  CRP,  FALLOW,  CROP,  or  PASTURELAND  using  the  R  staBsBcal  compuBng  language.  

v Next,  we  used  ARC  GIS,  a  program  for  mapping  and  spaBal  analysis,  to  construct  a  visual  representaBon  of  the  counBes  with  potenBal  of  bioenergy  feedstock  producBon.  

v   Data  on  regional  land  rental  rates  for  pasture  and  non-­‐irrigated  cropland  was  obtained  from  the  USDA.  NaBonal  Agricultural  StaBsBcs  Service.  

v A  visualizaBon  was  constructed  that  shows    regions  in  the  U.S.  where  cellulosic  biomass  producBon  may  be  economically  viable.    

 

LAND  AVAILIBILITY  UNDER  THE  RENEWABLE  FUEL  STANDARD  REGULATIONS  

 

CONCLUSIONS    

v The  results  of  this  study  make  it  easier  to  visualize  where  biofuels  could  potenBally  be  grown  given  exisBng  land-­‐uses,  and  the  average  land  rent  values  for  cropland  and  pastureland.  

v We  were  able  to  determine  and  visualize  the  areas  in  the  United  States  that  are  currently  in  use  (in  2010)  by  the  four  categories  of  land  that  the  RFS  sBpulates.  

v The  land  rent  data  for  CRP  land  and  fallow  land  were  not  available  given  the  nature  of  these  landscapes.  While  land  rental  rates  provide  a  general  measure  of  economic  viability,  addiBonal  measures  should  also  be  used  for  these  lands.  A  richer  economic  analysis  would  allow  for  a  more  accurate  evaluaBon  of  which  areas  would  be  the  most  economical  for  biofuel  producBon.  

v This  analysis  provides  a  foundaBon  upon  which  to  further  study  the  ecological  and  economic  costs  and  benefits  of  cellulosic  bioenergy  producBon.      

RELATED  L ITERATURE    United  States  of  America.  Environmental  ProtecBon  Agency.  Regula'on  of  Fuels  and  Fuel  Addi'ves:  Changes  to  Renewable  Fuel  Standard  Program;  Final  Rule.  By  Environmental  ProtecBon  Agency.  N.p.,  26  Mar.  2010.        Young,  Heather,  and  Chris  Sommerville.  "Growing  Be8er  Biofuel  Crops."  Growing  Be?er  Biofuel  Crops.  The  ScienBst,  01  July  2012.  Web.  09  July  2012.      Perlack,  R.  D.,  Stokes,  B.J.  (2011).  U.S.  Billion-­‐Ton  Update:  Biomass  Supply  for  a  Bioenergy  and  Bioproducts  Industry.  Renewable  Energy  (p.  227).  Oak  Ridge,  TN.    Khanna,  M.,  Chen,  X.,  Huang,  H.,  &  Onal,  H.  (2011).  Supply  of  Cellulosic  Biofuel  Feedstocks  and  Regional  ProducBon  Pa8ern.  American  Journal  of  Agricultural  Economics,  93(2),  473-­‐480.  

LAND  RENTAL  RATES  BY  REGION  

Cropland Rents$/Acre

0 - 30

30 - 60

60 - 90

90 - 120

120 - 150

150 - 180

180 - 230

Pastureland Rents$/Acre

0 - 10

10 - 15

15 - 20

20 - 25

25 - 30

30 - 50

50 - 110

Pastureland  land-­‐rents  in  $/acre.  The  darker  colors  represent  higher  average  land  rents  and  in  turn,  less  of  a  economic  opRon  for  the  growth  of  biofuels.    

Non-­‐Irrigated  cropland  land-­‐rents  in  $/acre.  The  darker  colors  represent  higher  average  land  rents  and  in  turn,  less  of  a  economic  opRon  for  the  growth  of  biofuels.    

Each  map  shows  the  number  of  hectares  available  for  each  land  use  category.  Values  are  in  hectares  per  1,000  hectares  of  total  land  in  each  county.    Darker  counRes  imply  a  larger  concentraRon  of  available  land.    

Cropland  

(ha/1000ha)  

Cropland  is  widely  available,  but    requires  displacing  exisRng  agricultural  commodiRes.  While  land  quality  is  generally  high,  growing  low-­‐value  dedicated  energy  crops  involves  a  high  opportunity  cost.      

Pastureland  

(ha/1000ha)  

Large  tracts  of  pastureland  are  available  for  cellulosic  biomass  producRon  throughout  the  Southern  Plains  and  Southeast.  AllocaRng  pastureland  for  biomass  producRon  is  generally  aYracRve  due  to  the  low  opportunity  cost.  

CRP  

(ha/1000ha)  

Land  currently  enrolled  in  the  ConservaRon  Reserve  Program  is  highly  concentrated  throughout  the  Great  Plains  and  Southeast.  While  CRP  represents  a  plausible  stock  of  land  for  biomass  producRon,  there  is  considerable  uncertainty  regarding  the  impact  of  bioenergy  feedstock  producRon  on  important  ecosystem  services.  

Fallow  Land  

(ha/1000ha)  

Fallow/idled  cropland  is  an  addiRonal  plausible  stock  of  land,  concentrated  primarily  in  the  Central  and  Northern  Plains.  Land  rental  rates  are  generally  lower  than  acRve  cropland,  but  fallow/idled  land  is  usually  less  producRve.