17
ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov, T. Cron, S. Schmidt-Stiefel, T. Wenz Karlsruhe Institute of Technology (KIT), Germany

ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

Embed Size (px)

Citation preview

Page 1: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 1

The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head

X. Gaus-Liu, A. Miassoedov, T. Cron,

S. Schmidt-Stiefel, T. Wenz

Karlsruhe Institute of Technology (KIT), Germany

Page 2: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 2

Outline

Objectives

LIVE-3D test facility

Test definitions

Test results: – dry-out debris bed temperature

– debris melting process

– Steady-state melt pool and crust behaviour

Conclusion

Page 3: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 3

Objectives

Dry-out debris bed temperature distribution in large-scale semispherical geometry → the position of the initiation of melting

Debris bed melting process after liquid melt relocation in the lower plenum→ penetration depth of a liquid melt jet, melt pool progression, melt temperature development

TH steady-state melt behaviour

Page 4: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 4

LIVE 3D test facility

1:5 scaled 3D PWR lower head,

external cooling and top cooling

temperature profiles, heat flux distribution, crust analysis: growth rate, composition, heat conductivity

simulant: 20% NaNO3- 80-mol% KNO3

284,4

200

250

300

350

0% 10% 20% 30% 40% 50%

mole % NaNO3

tem

pe

ratu

re [

°C]

liquidius

solidius

vessel cooling

wall inner and outer therm ocouples

crust detection system

m elt pouring

cam era observation

heating system

Page 5: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 5

Melt temperature measurements

MT10MT16MT20

MT4

MT12

MT8MT2

MT6

MT14 MT18

MT22MT28MT36 MT32 MT24 MT26 MT30 MT34

CT21-27

CT31-37

CT41-47

MT

40 -

49

MT

50 -

60 HT00i

HT0i

HT1i

HT2i

HT3i

HT4i

HT6i

HT5i

Page 6: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 6

LIVE L8B test definition 50% of the total 355 kg simulant

material prepared as debris bed and preheated in the test vessel, the other 50% prepared as liquid melt and poured in the vessel afterwards;

debris porosity 50%, particle size 3-16 mm

21 kW homogenous heat input after pouring

water cooling short before melt pouring

Page 7: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 7

Experimental data of debris bed dry-out temperature

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

57,0

89,5

73,3

89,5

89,5

171171

171

106

106

155

155

122

122

138

138

0 100 200 300 4000

50

100

150

200

250

300

350

he

igh

t (m

m)

radius (mm)

57,0

73,3

89,5

106

122

138

155

171

Page 8: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 8

Debris melting process-melt pool formation

Melt pool formed initially at the top region;

Till 1500 s downwards extension;

Thereafter sideward's extension.

0 100 200 300 400

0

50

100

150

200

250

300

350

400

1500s

2000s

he

igh

t (m

m)

radius (mm)

0 100 200 300 4000

50

100

150

200

250

300

350

400

he

igh

t (m

m)

radius (mm)

0 100 200 300 400

0

50

100

150

200

250

300

350

400

steady state

5000sh

eig

ht

(mm

)

radius (mm)

0 100 200 300 400

0

50

100

150

200

250

300

350

400

he

igh

t (m

m)

radius (mm)

60

224

284

0 100 200 300 400

0

50

100

150

200

250

300

350

400

1000s

he

igh

t (m

m)

radius (mm)

400s

0 100 200 300 4000

50

100

150

200

250

300

350

400

he

igh

t (m

m)

radius (mm)

Page 9: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 9

Fraction of liquid melt during melting process

1500s

400s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5000 10000 15000 20000

time, s

fra

ctio

n o

f liq

uid

me

lt

Page 10: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 10

Debris melting process- initial melt temperature

0 500 1000 1500 2000 2500 3000 3500 4000 4500 50000

50

100

150

200

250

300

350

400

300 mm height 400 mm heightm

elt

tem

pera

ture

, [°

C]

time [s]86000 86500 87000 87500 88000 88500 89000 89500 90000 90500 910000

50

100

150

200

250

300

350

400

me

lt te

mp

era

ture

, [°

C]

Time [s]

300 mm height 400 mm height

with

debris melting processwithout

debris melting process

Page 11: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 11

Penetration of melt jet and crust structure

crust at upper part

crust at bottom

Page 12: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 12

Final crust thickness

0

100

200

300

400

500

600

0 100 200 300 400 500 600

radius, mm

vess

el h

eigh

t, m

m

from temperature measurement

post-test crust profile

vessel wall

The determination of pool/crust boundary according to the melt temperature measurement is precise;

Final crust volume fraction 10.6 %

Final crust mass fraction 8.3 %

The difference comes from the loose debris layer at bottom

Page 13: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 13

Steady-state melt temperature

260

280

300

320

340

360

150 200 250 300 350 400 450

vessel height, mm

mel

t tem

pera

ture

, °C

L8B-with debris melting

L10-without debris melting

L8B steady-state melt temperature distribution is comparable with tests without the process

L8B crust at bottom is thicker than the crust formed without debris melting

Page 14: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 14

Steady state heat transfer characteristics

83 % of the heat transferred through the vessel wall

qmax/qmean = 2

Nudn=202

Rai =4.3 x1013

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80

polar angle, °

he

at

flux,

W/m

²

Page 15: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 15

Conclusion- 1

In a dry-out debris bed with volumetric heat release the highest temperature locates in the middle-upper region in the debris bed;

After melt relocation, a melt pool in a debris bed is formed initially at the top region;

A part of the relocated liquid melt freezes in the debris bed firstly;

The relocated melt jet penetrates in the debris bed easier sidewards than downwards;

During the melting process, the melt pool enlarges its boundary mainly downwards at the beginning, then sidewards;

Page 16: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 16

Conclusion- 2

Melt pool temperature remains low during the debris melting process;

Steady-state melt temperature after debris melting process is comparable with the one without the melting process.

Page 17: ERMSAR 2012, Cologne March 21 – 23, 2012 1 The Experimental Results of LIVE-L8B: Debris Melting Process in a Simulated PWR Lower Head X. Gaus-Liu, A. Miassoedov,

ERMSAR 2012, Cologne March 21 – 23, 2012 17

Thank you for your attentionThank you for your attention