79
मจ ILC ͷରੜҬʹΔ τοϓΫΥʔΫͷੜٴͼյͷ ղੳख๏ͷ։ ڀݚA study of analysis method for the production and decay of top quark pairs around the threshold region at the ILC౦େେӃཧڀݚՊ ཧઐ ߈ߐ ༏ਓ 30

æepx.phys.tohoku.ac.jp/eeweb/paper/2019_Mthesis_eda.pdfz q ¨ t s M h z C + î g p ¤ É ç ª G ü t Í [ \ q U D ó p K { f ` o2012 å t Î ¿ ¬ µ { U C _ ^ h { M p zLHC p Î

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • ILC

    ∼A study of analysis methodfor the production and decay of top quark pairs

    around the threshold region at the ILC∼

    30

  • ILC (350GeV )

    ILC

    ILD 200fb−1

    toy MC

    Vtb αs

  • 1 1

    2 3

    2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    2.6 CKM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    3 11

    3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    3.4 . . . . . . . . . . . . . . . . . . . . . . . 14

    3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    4 ILC(International Linear Collider) 29

    4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    4.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    4.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    4.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    i

  • 4.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    5 42

    5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    6 48

    6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    6.2 (toy MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    6.3.1 (Γt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    6.3.2 (αs) . . . . . . . . . . . . . . . . . . . . . . . . 53

    6.4 Γt αs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    7 59

    7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    8 67

    69

    ii

  • 2.1 αs . . . . . . . . . . . . . . . . . . 9

    3.1 . . . . . . . . . . . . . . . . . 13

    3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    3.3 QCD . . . . . . . . . . . . . . . . . 16

    3.4 Vtb . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.5 αs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    3.6 . . . . . . . . . . . . . . 19

    3.7 . . . . . . . . . . . . . . . 20

    3.8 αs . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.9 Vtb . . . . . . . . . . . . . . . . . . . . . . . . 22

    4.1 ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    4.2 ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    4.3 ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    4.4 ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    4.5 ILD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    4.7 (SIT,SET) . . . . . . . . . . . . . . . . . . . . . . 36

    4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    4.10 . . . . . . . . . 39

    4.11 LumiCal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    4.12 BeamCal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    5.1 PFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    5.2 LCFIPlus . . . . . . . . . . . . . . . . . . . . . . . 46

    iii

  • 5.3

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    6.1 . 49

    6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    6.4 Vtb χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    6.5 αs χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    6.6 χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    6.7 . . . . . . . . . . . . . . . . . . . . . . . . . 57

    6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    7.1 Vtb . . . . . . . . . . . . . 59

    7.2 Vtb . . . . . . . . . . . . . . . . . . . 60

    7.3 . . . . . . . . . . . . 61

    7.4 Vtb αs 2 . . . . . . . 64

    7.5 . . . . . . . . . . . . . . . . 65

    iv

  • 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.2 . . . . . . . . . . . . . . . 4

    3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    5.1 ILD . . . . . . . . . . . . . . . . . . . . . . . . 43

    6.1 χ2 . . . . . . . . . . . . . . . . . . . . . . . . 55

    7.1 (GeV) . . . . . . . . . . . . . . . . . . . . . . . 63

    v

  • 1

    3

    (

    )

    1989 CERN LEP(Large Electron Positron collider)

    91GeV 209GeV Z

    2008

    LHC(Large Hadron Collider)

    1

    −∆E ∝ (E/m)4

    R E m R

    −∆E ∝ 1m4 1013

    2012

    LHC

    3

    ( )

    1

  • ILC(International Linear Collider)

    ILC

    R → ∞

    ILC 350GeV

    QCD

    (αs) QCD

    2

    3 4 ILC 5

    6 7

    8

    2

  • 2

    2.1

    18

    W ,Z, g, γ,h 6

    u,b,c,s,t,b 6 , e, νe, µ, νµ, τ, ντ 6

    γ, g, Z

    2.1

    u d e νe2.2+0.5−0.4MeV 4.7

    +0.5−0.3MeV 0.511MeV ∼0MeV

    c s µ νµ1.275+0.025−0.035MeV 95

    +9−3MeV 105.7MeV ∼0MeV

    t b τ ντ173.0 0.4GeV 4.18+0.04−0.03GeV 1776.86 0.12MeV ∼0MeV

    γ W , Z g h

    massless 80.379 0.012GeV massless 125.18 0.16GeV

    91.1876 0.0021GeV

    2.1:

    4

    3

  • 3

    2.2

    GWS(Glashow-Weinberg-Salam)

    SU(2)L U(1)Y SU(2)L(IW ) U(1)Y (YW ) Q

    3 IW3 (2.1)

    YW ≡ 2(Q− IW3) (2.1)

    IW IW3 Q YWνlL 1/2 +1/2 0 -1

    l−L 1/2 -1/2 -1 -1

    l−R 0 0 -1 -2

    uL 1/2 +1/2 +2/3 +1/3

    dL 1/2 -1/2 -1/3 +1/3

    uR 0 0 +2/3 +4/3

    dR 0 0 -1/3 -2/3

    ν lR 1/2 -1/2 0 +1

    l+R 1/2 +1/2 +1 +1

    l+L 0 0 +1 +2

    uR 1/2 -1/2 -2/3 -1/3

    dR 1/2 +1/2 +1/3 -1/3

    uL 0 0 -2/3 -4/3

    dL 0 0 +1/3 +2/3

    2.2:

    4

  • SU(2)L W U(1)Y B

    W = (W1,W2,W3) (2.2)

    W W1 W2

    W± =1√2(W1 ∓ iW2) (2.3)

    Z A W3 B

    A = BcosθW +W3sinθW (2.4)

    Z = −BsinθW +W3cosθW (2.5)

    θW sin2θW = 0.23

    Z A

    Z A SU(2)L U(1)Y W

    ψ eieα(x)ψ (2.6)

    Aµ Aµ + ∂µα(x) (2.7)

    Dµ = ∂µ + igAµ(x) (2.8)

    g

    5

  • 1

    2m2AµAµ

    1

    2m2(Aµ + ∂µΛ)(Aµ + ∂µΛ) ̸=

    1

    2m2AµAµ (2.9)

    m = 0

    W Z

    2.3

    Φ =

    (φ+

    φ0

    )(2.10)

    YW = 1/2 φ+ φ0

    φ+ =φ1 + iφ2√

    2,φ0 =

    φ3 + iφ4√2

    (2.11)

    L = (DµΦ)†DµΦ− µ2Φ†Φ+ λ(Φ†Φ)2 (2.12)

    V = µ2Φ†Φ − λ(Φ†Φ)2 λ < 0 Φ → ∞µ2 > 0 0 (v =

    √µ2/λ)

    (φ+)2 + (φ0)2 = v2 Φ

    Dµ = ∂µ − ig1YW2

    − ig2τ⃗

    2·Wµ (2.13)

    τ⃗

    φ eiα⃗(x)·τ⃗/2ψ(x) (2.14)

    6

  • Φ φ3 = v,φ1 = φ2 = φ4 = 0

    Φ =1√2

    (0

    v

    )(2.15)

    (DµΦ)†(DµΦ) =

    (1

    2vg2

    )2W+µ W

    −µ +

    1

    2

    (1

    2v√g21 + g

    22

    )2Z0µZ

    µ0 (2.16)

    W m2WW+W− (m2ZZµZ

    µ)/2+(m2γAµAµ)/2

    mW =1

    2vg2 (2.17)

    mZ =1

    2v√

    g21 + g22 (2.18)

    mγ = 0 (2.19)

    2.4

    3

    L = − yt√2

    [(bL, tL)

    (0

    v

    )tR + tR(0, v)

    (bLtL

    )]

    = − yt√2(tLvtR + tRvtL)

    = −ytv√2tµµ

    yt

    mt =1√2ytv

    7

  • 2.5

    QCD QCD

    SU(3)C 3

    ( )

    3

    αs

    αs(Q2) =

    12π

    (33− 2Nf )ln( Q2

    ΛQCD)

    (2.20)

    Q q 4 Q2 = −q2

    Nf Q2 3 6 ΛQCDQCD αs

    αs 2.1

    8

  • 9. Quantum chromodynamics 39

    They are well within the uncertainty of the overall world average quoted above. Note,however, that the average excluding the lattice result is no longer as close to the valueobtained from lattice alone as was the case in the 2013 Review, but is now smaller byalmost one standard deviation of its assigned uncertainty.

    Notwithstanding the many open issues still present within each of the sub-fieldssummarised in this Review, the wealth of available results provides a rather precise andreasonably stable world average value of αs(M2Z), as well as a clear signature and proof ofthe energy dependence of αs, in full agreement with the QCD prediction of AsymptoticFreedom. This is demonstrated in Fig. 9.3, where results of αs(Q2) obtained at discreteenergy scales Q, now also including those based just on NLO QCD, are summarized.Thanks to the results from the Tevatron and from the LHC, the energy scales at whichαs is determined now extend up to more than 1 TeV♦.

    QCD αs(Mz) = 0.1181 ± 0.0011

    pp –> jetse.w. precision fits (N3LO)

    0.1

    0.2

    0.3

    αs (Q2)

    1 10 100Q [GeV]

    Heavy Quarkonia (NLO)e+e– jets & shapes (res. NNLO)

    DIS jets (NLO)

    April 2016

    τ decays (N3LO)

    1000

    (NLOpp –> tt (NNLO)

    )(–)

    Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.The respective degree of QCD perturbation theory used in the extraction of αs isindicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leadingorder; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:next-to-NNLO).

    ♦ We note, however, that in many such studies, like those based on exclusive states ofjet multiplicities, the relevant energy scale of the measurement is not uniquely defined.For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevantscale was taken to be the average of the transverse momenta of the two leading jets [434],but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

    June 5, 2018 19:47

    2.1: αs [1]

    αs ΛQCD αsΛQCDILC ΛQCD

    QCD

    9

  • 2.6 CKM

    3 3⎛

    ⎜⎝Vud Vus VubVcd Vcs VcbVtd Vts Vtb

    ⎟⎠ =

    ⎜⎝0.97420 0.00021 0.2243 0.0005 (3.94 0.36) 10−3

    0.218 0.004 0.997 0.017 (42.2 0.8) 10−3

    (8.1 0.5) 10−3 (39.4 .23) 10−3 1.019 0.025

    ⎟⎠

    [1] U D

    |VUD|2

    10

  • 3

    3.1

    b W

    3.1

    (direct measurement) 173.0 0.4 GeV

    (cross section measurement) 160 +5−4 GeV

    1.41 +0.19−0.15GeV

    3.1: [1]

    (3.1) QCD (ΛQCD)

    Γt ≃GFm3t8√2π

    |Vtb|2 ∼ 1.4GeV ≫ ΛQCD(∼ 200MeV) (3.1)

    GF mt Vtb CKM ΛQCDQCD QCD

    3.2

    tbW Vertex

    11

  • Γ(t bW ) =GF

    8√2π

    m3t (1− x2)[(1 + x2 − 2x4)(f 21L + f 21R)

    + (2− x2 − x4)(f 22L + f 22R) + 6x(1− x2)(f1Lf2R + f2Lf1R)] (3.2)

    x = mW/mt f form factor f1 W

    t-b f2 W t-b L

    R

    f1L = Vtb = 1 f1R = f2L = f2R = 0

    √s = 8TeV ATLAS Γt = 1.76=0.86−0.76GeV

    [2] ILC ILC

    [3]

    [4] [4]

    form factor

    form factor

    3.1 form factor

    12

  • 3.1: [5]

    NLO(Next-Leading Order)

    NLO αs αs tt Γt

    Γt =GFm3t8√2π

    |Vtb|2(1− M

    2W

    m2t

    )2(1 + 2

    M2Wm2t

    )[1− 2αs

    (2π2

    3− 5

    2

    )]∼ 1.35|Vtb|2

    Vtb CKM

    1 1

    3.3

    J/ψ Υ

    13

  • 1S

    tt

    2

    3.4

    QCD QCD

    Bethe-Salpeter Bethe-Salpeter

    Schrödinger [H −

    (E + i

    Γθ2

    )]G = 1

    H E Γθ (Γθ ∼ 2Γt) G

    σtt ∝ Im < x = 0|G|x = 0 >∼ Im∑

    n

    |Ψn(0)|2

    E− En + iΓn/2

    n

    dσttd|p| ∼ | < p|G|x = 0 > |

    2 ∼∣∣∣∣Σ

    φn(p)Ψ∗n(0)

    E − En + iΓn/2

    ∣∣∣∣2

    ( )

    Γt mt yt 1S

    (E1S) 1S

    E1S ∼ 2mt − α2smt [6]W 2 W qq W lν

    3

    14

  • tt bWbW bqqbqq( ) (3.3)

    tt bWbW bqqblν( ) (3.4)

    tt bWbW blνblν( ) (3.5)

    ILC

    3.2:

    QCD V (r) = −43 sr + kr

    tt

    σtot(e+e− tt) ∝ −Im

    n

    |φn(0)|2

    E − En + iΓt(3.6)

    15

  • b W

    QCD

    3.3: QCD [7]

    (αs)

    VQCD ∼ −4αs3r

    αs

    16

  • QCD VQCD(r) ∼ −43 sr + kr

    9

    3.4: Vtb

    3.4 mt = 174GeV αs = 0.12 Vtb

    17

  • 3.5: αs

    3.5 mt = 174GeV Vtb = 1.00 αs αs 1S

    1S 3.3√s1S ∼ 2mt − α2smt

    αs

    √s = 2mt

    1S

    (physsim)[8]

    18

  • 3.6:

    mt = 174GeV,Vtb = 1.0,αs = 0.12,√s = 2mt − 1

    : mt = 176GeV,√s = 351GeV

    : mt = 175GeV,√s = 349GeV

    : mt = 174GeV,√s = 347GeV

    : mt = 173GeV,√s = 345GeV

    : mt = 172GeV,√s = 343GeV

    19

  • 3.7:

    3.7

    : yt = 0.8

    : yt = 0.9

    : yt = 1.0

    : yt = 1.1

    : yt = 1.2

    20

  • 3.8: αs

    3.6 αs tt V (r) ∼ −43αsr

    αs

    21

  • 3.9: Vtb

    3.7 Vtb

    Vtbαs

    3.5

    ( dσd|Pt|)

    ILC

    W

    W

    W

    6 W 4

    22

  • 11 340GeV 350GeV 1GeV

    Vtb 0.8 1.2 0.1

    Vtb

    : Vtb = 0.80

    : Vtb = 0.90

    : Vtb = 1.00

    : Vtb = 1.10

    : Vtb = 1.20

    (GeV)

    √s=340GeV

    √s=341GeV

    23

  • √s=342GeV

    √s=343GeV

    √s=344GeV

    √s=345GeV

    √s=346GeV

    √s=347GeV

    24

  • √s=348GeV

    √s=349GeV

    √s=350GeV

    11 αsαs

    : αs = 0.110

    : αs = 0.115

    : αs = 0.120

    : αs = 0.125

    : αs = 0.130

    (GeV)

    25

  • √s=340GeV

    √s=341GeV

    √s=342GeV

    √s=343GeV

    √s=344GeV

    √s=345GeV

    26

  • √s=346GeV

    √s=347GeV

    √s=348GeV

    √s=349GeV

    √s=350GeV

    27

  • Vtb αs347GeV [2]

    28

  • 4 ILC(International LinearCollider)

    ILC(International Linear Collider) 20km

    250GeV

    350GeV

    500GeV 1TeV

    4.1 4.2 ILD

    4.1

    ILC 1 1 1

    (4.1)

    L = frepnbN2

    4πσ∗xσ∗y

    (4.1)

    frep nb 1 ( ) N 1

    σ∗x σ∗y

    ILC 3

    4.1 ILC

    29

  • 4.1: ILC [9]

    4.1.1

    ILC DC GaAs

    140 160keV

    80% 76MeV

    5GeV

    4.2

    30

  • 4.2: ILC [10]

    4.1.2

    ILC

    10MeV

    30%

    60%

    400MeV

    5GeV

    4.3

    31

  • 4.3: ILC [10]

    4.1.3

    ILC

    σx,y =√βx,y ϵx,y (4.2)

    β ϵ

    3.2km 5GeV

    4.4

    32

  • 4.4: ILC [10]

    4.1.4

    RTML 5GeV 15GeV

    250GeV

    22km 31.5MV/m TDR 9

    2K 1.3GHz

    4.2

    4.2.1

    ILC ILD(International Large Detector) SiD(Silicon Detector) 2

    ILD SiD

    ILD ILD

    ILD

    33

  • 4.5: ILD ( mm)[10]

    4.2.2

    (VTX)

    σr ≤ 5⊕10

    pβsin3/2θ(µm) (4.3)

    34

  • p, β θ 1

    2

    16mm

    FPCCD CMOS

    4.6

    4.6: [10]

    (SIT,SET)

    1 FPCCD 1

    4.7

    35

  • 4.7: (SIT,SET) [10]

    (TPC : Time Projection Chember) 3

    TPC

    2 3

    TPC

    σ(1/p) ≥ 9× 10−5(GeV/c)−1 (4.4)

    4.2.3

    2 (γ )

    ( )

    ILC W

    Z

    36

  • σEjet ∼30%

    Ejet(GeV)(4.5)

    γ

    4.8

    4.8: [10]

    4.9

    37

  • 4.9: [10]

    4.2.4

    ILD /

    3.5T

    4.10

    38

  • 4.10: [9]

    4.2.5

    LumiCal BeamCal

    39

  • LumiCal

    LumiCal

    (e+e− e+e−)

    L = Nbhabhaσ

    (4.6)

    Nbhabha σ 0.1%

    LumiCal 32∼72mrad 4.11 LumiCal

    4.11: LumiCal [10]

    BeamCal

    BeamCal

    BeamCal 5∼40mrad 4.12 BeamCal

    40

  • 4.12: BeamCal [10]

    41

  • 5

    5.1

    (DBD) ILC

    Physsim[6]

    Mokka[11] Geant4

    Marlin

    5.2

    Physsim [6] Physsim

    HELAS BASES BASES

    SPRING SPRING

    JSFHadronizer JSFHadronizer

    PYTHIA6.4

    TAUOLA

    5.3

    ILC ILD Mokka

    Geant4 Mokka PFA[12]

    42

  • Particle Flow Algorithm

    ILC Particle Flow Algorithm(PFA)

    ILC

    5.1 ILD 5.1 WW ZZ

    PFA ZZ WW

    σE/E

    60% 0.00002 E

    30% ECAL 0.2/E

    10% HCAL 0.6/E

    5.1: ILD

    5.1: PFA [10]

    5.4

    ILD

    43

  • 4

    b 4

    3-jet b

    Isolated lepton tagging

    W 2

    W

    15GeV

    cosθ > 0.96 0

    10GeV 1

    2

    anti-kT

    2 2

    dij = min(k2T i , k2T j)∆2ijR2

    (5.1)

    ∆2ij = (yi − yj)2 + (φ2i − φ2j) (5.2)diB = k2Tj (5.3)

    kT y φ R

    dij diBdij i j 1 diB

    i R = 0.7

    0.6GeV

    44

  • 4-jet tagging

    Isolated Lepton Tagging

    Y

    Yij =2min(Ei,Ej)(1− cosθij)

    E2vis(5.4)

    Ei Ej θij i, j EvisY

    4

    b quark tagging

    4 jet b b̄ b iLCSoft

    LCFIPlus ROOT TMVA

    TMVA BDT(Boosted

    Decison Trees) √s = 500GeV 6

    5.2

    45

  • 5.2: LCFIPlus [[10]

    W

    4 jet b b̄ 2 W

    2 W

    4 W

    W b b jet

    b b̄

    b W cosθbW

    46

  • 5.3 3

    5.3:

    MC

    47

  • 6

    6.1

    5

    1

    physsim

    toy MC toy MC

    6.2 (toy MC)

    5.3

    5.3

    6.1

    48

  • 6.1:

    6.2 5.3

    10GeV 11GeV 2623

    49

  • 6.2: 10GeV 11GeV

    10GeV 11GeV

    0 200GeV 1GeV 200

    1GeV 1GeV

    200

    6.3

    50

  • 6.3:

    Vtb = 0.8

    Vtb =1.0 toy

    MC

    6.3

    Vtb 0.95 1.05 Vtb 0.01 αs 0.115 0.125 0.001

    toy MC

    χ2

    χ2 =200∑

    i=0

    (yiReco − yipReco)2

    σ2yiReco

    (6.1)

    i 1 200 yiReco yipreco i

    σyiReco yiReco

    (6.1) χ2

    51

  • αs

    6.3.1 (Γt)

    LO

    |Vtb|2 Vtb

    6.5 Vtb χ2

    6.4: Vtb χ2

    χ2 2

    Vtb = 0.9959 0.0027

    52

  • χ2 +1 Vtb|Vtb|2 = 0.9918 0.0054

    6.3.2 (αs)

    (αs)

    αs ILC LHC QCD αsILC

    ILC αsVtb χ2 6.6

    6.5: αs χ2

    2

    αs = 0.1189 0.0005

    53

  • χ2 +1 αs

    6.4 Γt αsαs 0.11 0.13 0.002 11 Vtb 0.9 1.1 0.02

    11 121 χ2 3

    Γt αs Vtb αs121 χ2 6.1

    54

  • 6.1:

    χ2

    Vtb

    0.90

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    1.04

    1.06

    1.08

    1.10

    0.130

    682.501

    482.237

    378.8

    476.142

    617.458

    880.137

    1265.81

    1750.55

    2347.71

    3011.91

    3810.18

    0.128

    778.474

    512.713

    317.108

    268.803

    375.603

    537.958

    884.502

    1262.17

    1795.98

    2395.06

    3117.59

    0.126

    941.823

    552.203

    330.901

    187.915

    195.571

    387.77

    601.948

    914.198

    1384.56

    1944.23

    2592.38

    0.124

    1110.09

    673.184

    425.322

    224.604

    160.895

    248.467

    392.8

    676.304

    1074.44

    1568.32

    2149.81

    0.122

    1326.48

    826.104

    498.871

    234.662

    157.085

    169.574

    292.509

    534.932

    843.812

    1285.49

    1853.47

    αs

    0.120

    1547.77

    985.248

    602.579

    305.04

    155.013

    161.455

    215.137

    405.156

    715.338

    1118.4

    1625.74

    0.118

    1703.05

    1132.66

    717.684

    454.427

    254.305

    125.575

    199.967

    350.897

    601.488

    1002.95

    1429.1

    0.116

    1886.76

    1360.17

    863.847

    514.951

    293.049

    201.524

    212.407

    547.876

    547.876

    890.448

    1290.18

    0.114

    2033.24

    1418.09

    951.635

    583.46

    343.439

    222.923

    221.606

    318.696

    541.542

    825.76

    1204.21

    0.112

    2145.43

    1518.85

    1013.9

    634.021

    381.818

    254.599

    230.757

    322.836

    495.639

    762.6

    1138.68

    0.110

    2222.59

    1609.01

    1073.82

    704.662

    464.783

    323.918

    269.758

    329.908

    505.72

    747.591

    1112.72

    55

  • x αs y Vtb z χ2 6.7

    2 2

    6.6: χ2

    Vtb 0.96 1.04 αs 0.114 0.126 2 2

    F (x, y) = ax2 + by2 + cxy + dx + ey + f ∂F (x, y)/∂x = 0

    ∂F (x, y)/∂y = 0

    Vtb = 0.9933 (6.2)

    αs = 0.1199 (6.3)

    6.8 3σ(χ2 +9)

    56

  • 6.7:

    Vtb = 1.00 αs = 0.12 2.55σ αsVtb 1GeV

    1GeV

    6.9 Vtb 3

    : Vtb = 0.96

    : Vtb = 1.00

    : Vtb = 1.04

    57

  • 6.8:

    χ2

    1GeV

    1

    58

  • 7

    7.1

    [2]

    physsim

    Vtb 7.1 physsim

    6.2 toy MC toy

    MC Vtb Ppeak ( αs=0.12 ) 7.2

    7.1: Vtb

    59

  • 7.2: Vtb

    7.2 1 2

    7.3

    Ppeak = 19.84 0.12GeV

    60

  • 7.3:

    7.1

    VtbVtb = 1.143 0.008

    |Vtb|2 = 1.306 0.018

    Γt ∼ 1.5|Vtb|2GeV

    Γt = 1.959 0.027GeV

    7.2 1

    Vtb = 0.992 0.009

    |Vtb|2 = 0.984 0.018

    61

  • Γt = 1.477 0.026GeV

    2 Vtb

    Vtb = 1.004 0.009

    |Vtb|2 = 1.008 0.018

    Γt = 1.512 0.027GeV

    Γt Vtbαs 2 7.1 2

    7.4

    62

  • 7.1:

    (GeV

    )Vtb

    0.90

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    1.04

    1.06

    1.08

    1.10

    0.110

    17.45

    18.02

    18.21

    18.72

    19.01

    19.25

    19.54

    19.73

    20.08

    20.14

    20.70

    0.112

    17.61

    18.12

    18.43

    18.81

    19.03

    19.28

    19.62

    19.90

    20.14

    20.33

    20.74

    0.114

    17.69

    18.15

    18.48

    18.85

    19.18

    19.33

    19.54

    19.96

    20.24

    20.47

    20.85

    0.116

    17.88

    18.24

    18.57

    18.90

    19.16

    19.41

    19.68

    20.26

    20.26

    20.58

    20.88

    0.118

    18.11

    18.41

    18.87

    19.00

    19.36

    19.49

    19.85

    20.07

    20.33

    20.68

    20.92

    αs

    0.120

    18.29

    18.55

    19.07

    19.20

    19.44

    19.67

    19.99

    20.25

    20.58

    20.81

    21.06

    0.122

    18.53

    18.68

    19.20

    19.44

    19.60

    19.84

    20.08

    20.50

    20.73

    21.00

    21.17

    0.124

    18.61

    18.96

    19.42

    19.55

    19.79

    20.04

    20.25

    20.61

    20.94

    21.12

    21.28

    0.126

    18.95

    19.30

    19.51

    19.85

    20.10

    20.28

    20.50

    20.79

    21.09

    21.19

    21.42

    0.128

    19.39

    19.57

    19.84

    20.08

    20.43

    20.54

    20.76

    21.02

    21.26

    21.39

    21.60

    0.130

    19.70

    19.90

    20.23

    20.39

    20.67

    20.88

    21.05

    21.27

    21.40

    21.57

    21.79

    63

  • 7.4: Vtb αs 2

    7.4 Vtbαs 7.5

    2

    64

  • 7.5:

    7.5 Vtb αs

    7.2

    toy MC 1GeV 1GeV

    65

  • 66

  • 8

    QCD

    QCD

    ILC

    200fb−1

    αs Vtb

    αs Vtb

    Vtb = 0.9959 0.0027

    Vtb αs

    αs = 0.1189 0.0005

    Vtb αs ,

    Vtb = 0.9933

    αs = 0.1199

    67

  • 2.55

    αsαs

    e+e− W+W−

    1GeV

    68

  • ILC

    1

    ILC KEK

    ILC

    ILC

    2018 2019 3

    ILC

    69

  • [1] Particle Data Group

    http://pdg.lbl.gov/

    [2] The ATLAS Collaboration, ”Direct top-quark decay width measurement in the tt lep-

    ton+jets channel at√s = 8 TeV with the ATLAS experiment”

    https://arxiv.org/pdf/1709.04207.pdf

    [3] ” ”

    http://epx.phys.tohoku.ac.jp/eeweb/paper/2014_Mthesis_horiguchi.pdf

    [4] ”

    http://epx.phys.tohoku.ac.jp/eeweb/paper/2017_Mthesis_ozawa.pdf

    [5] P.Agrawal, S.Mitra, A.Shivaji,”Effect of Anomalous Couplings on the Associated Produc-

    tion of a Single Top Quark and a Higgs Boson at the LHC”

    https://arxiv.org/pdf/1211.4362.pdf

    [6] K.Fujii, T.Matsui, and Y.Sumino, ”Physics at tt̄ threshold in e+e− collisions,” Phys. Rev.

    D 50, 4341 (1994)

    [7] http://www-jlc.kek.jp/jlc/en/node/103

    [8] Physsim

    http://www-jlc.kek.jp/subg/offl/physsim/

    [9] ILC

    https://www2.kek.jp/ilc/ja/contents/ILC_Report_2018/

    [10] ILC Technical Design Report

    http://www.linearcollider.org/ILC/Publications/Technical-Design-Report

    70

    http://pdg.lbl.gov/https://arxiv.org/pdf/1709.04207.pdfhttp://epx.phys.tohoku.ac.jp/eeweb/paper/2014_Mthesis_horiguchi.pdfhttp://epx.phys.tohoku.ac.jp/eeweb/paper/2017_Mthesis_ozawa.pdfhttps://arxiv.org/pdf/1211.4362.pdfhttp://www-jlc.kek.jp/jlc/en/node/103http://www-jlc.kek.jp/subg/offl/physsim/https://www2.kek.jp/ilc/ja/contents/ILC_Report_2018/http://www.linearcollider.org/ILC/Publications/Technical-Design-Report

  • [11] Mokka

    https://ilcsoft.desy.de/portal/software_packages/mokka/

    [12] J.S.Marshall and M.A.Thomson, ”Pandora Particle Flow Algorithm”

    https://arxiv.org/pdf/1308.4537.pdf

    [13] M.Peter and Y.Sumino, ”Final-State Interactions in e+e− → tt → bl+ bW− Near TopQuark Threshold”

    https://arxiv.org/pdf/hep-ph/9708223.pdf

    [14] (ILC)

    http://www.mext.go.jp/b_menu/shingi/chousa/shinkou/038/

    [15] R.K.Ellis, W.J.Strling, and B.R.Webber, ”QCD and Collider Physics” , CAMBRIDGE

    UNIVERSITY PRESS

    [16] Top Quark Physics

    http://acfahep.kek.jp/acfareport/node112.html

    [17] M. Jeżabek, J.H. Kühn, and T. Teubner, ”Comment on the average momentmum of top

    quarks in the threshold region”

    https://arxiv.org/pdf/hep-ph/9311235.pdf

    [18] M. Jeżabek, J.H. Kühn, and T. Teubner, ”Physics at tt threshold in e+e− collisions”

    https://journals.aps.org/prd/pdf/10.1103/PhysRevD.50.4341

    [19] Y.Sumino, K.Fujii, and T.Matsui, ”A Study of the Top Quark Production Threshold at a

    Future Electron-Positron Linear Collider”

    http://discovery.ucl.ac.uk/19429/

    [20] , , =

    71

    https://ilcsoft.desy.de/portal/software_packages/mokka/https://arxiv.org/pdf/1308.4537.pdfhttps://arxiv.org/pdf/hep-ph/9708223.pdfhttp://www.mext.go.jp/b_menu/shingi/chousa/shinkou/038/http://acfahep.kek.jp/acfareport/node112.htmlhttps://arxiv.org/pdf/hep-ph/9311235.pdfhttps://journals.aps.org/prd/pdf/10.1103/PhysRevD.50.4341http://discovery.ucl.ac.uk/19429/

    ¤Ï¤¸¤á¤ËÁÇγ»Òɸ½àÌÏ·¿³µÍ×ÅżåÁê¸ßºîÍѥҥå°¥¹µ¡¹½¥Õ¥§¥ë¥ß¥ª¥ó¤Î¼ÁÎ̳ÍÆÀ¶¯¤¤Áê¸ßºîÍÑCKM¹ÔÎó

    ¥È¥Ã¥×¥¯¥©¡¼¥¯¥È¥Ã¥×¥¯¥©¡¼¥¯¥È¥Ã¥×¥¯¥©¡¼¥¯¤ÎÊø²õÉý¥¯¥©¡¼¥³¥Ë¥¦¥à¥È¥Ã¥×¥¯¥©¡¼¥¯ÂÐÀ¸À®ïçÃÍÉÕ¶á¤ÎʪÍý±¿Æ°ÎÌʬÉÛ

    ILC(International Linear Collider)²Ã®´ïÅŻҸ»ÍÛÅŻҸ»¥À¥ó¥Ô¥ó¥°¥ê¥ó¥°¼çÀþ·Á²Ã®´ï

    ¸¡½Ð´ï³µÍ×ÈôÀ׸¡½Ð´ï¥«¥í¥ê¥á¡¼¥¿³°ÁØÉôÁ°Êý¸¡½Ð´ï

    ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó³µÍ×ʪÍý»ö¾Ý¤ÎÀ¸À®¸¡½Ð´ï¥·¥ß¥å¥ì¡¼¥·¥ç¥óºÆ¹½À®

    ²òÀϤȷë²Ì²òÀϤÎÊý¿Ëµ¼ºÆ¹½À®Ê¬ÉۤκîÀ®Ë¡(toy MC)¥Æ¥ó¥×¥ì¡¼¥È¥Õ¥£¥Ã¥ÈÊø²õÉý(t)¶¯¤¤Áê¸ßºîÍѤηë¹çÄê¿ô(s)

    t¤Ès¤ÎƱ»þ¬Äê

    ¥Ç¥£¥¹¥«¥Ã¥·¥ç¥óÀè¹Ô¸¦µæ¤Î²þÁ±º£¸å¤ÎŸ˾

    ¤Þ¤È¤á¼Õ¼