21
Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary Entropy growth in billiards Díaz Gabriel 1 1 Instituto de Física USP Seminário de grupo, 2018 Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard

Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Embed Size (px)

Citation preview

Page 1: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Entropy growth in billiards

Díaz Gabriel1

1Instituto de FísicaUSP

Seminário de grupo, 2018

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 2: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Outline

1 Entropy Ansatz

2 Classical Billiards

3 Quantum Billiards

4 Future work

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 3: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Entropy Ansatz.

ρ (x , t) =1tδ

F( x

)(1)

δ Diffusion exponent.

S =−∫

ρ ln(ρ)dx (2)

Is coordinate invariant (in phase space).

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 4: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Entropy Ansatz.

ρ (x , t) =1tδ

F( x

)(1)

δ Diffusion exponent.

S =−∫

ρ ln(ρ)dx (2)

Is coordinate invariant (in phase space).

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 5: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Standar Map.

pn+1 =

[pn+

k

2πsin(πqn)

]mod (2) (3)

qn+1 = [qn+pn+1]mod (2)

Figure: Initial conditions along KAM illand k = 2.31

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 6: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Entropy Growth.

Figure: Entropy Growth for k = 2.21 causes δ = 0.2484

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 7: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Figure: Entropy Growth for k = 2.26 causes δ = 0.3586

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 8: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Figure: Entropy Growth for k = 2.31 causes δ = 0.3586

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 9: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Schrödinger Equation.

i h∂ψ (x , t)

∂ t=

[− h2

2∇

2 +V (x)

]ψ (x , t) (4)

“Comfortable” equation.

Partial Differential Equation.Small numbers (many)-multiplications.Wave particle duality.Quantum to Classical transition.Breaks when are many particles

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 10: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Schrödinger Equation.

i h∂ψ (x , t)

∂ t=

[− h2

2∇

2 +V (x)

]ψ (x , t) (4)

“Comfortable” equation.

Partial Differential Equation.Small numbers (many)-multiplications.Wave particle duality.Quantum to Classical transition.Breaks when are many particles

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 11: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Feynman QM.

A = ∑All Paths

exp(i

h

∫L(x , x , t)dt

)(5)

Generalizes to Relativistic Quantum Mechanics.

Small number division.Summing over all paths is difficult.Quantum to Classical transition.When many particles breaks**.

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 12: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Feynman QM.

A = ∑All Paths

exp(i

h

∫L(x , x , t)dt

)(5)

Generalizes to Relativistic Quantum Mechanics.

Small number division.Summing over all paths is difficult.Quantum to Classical transition.When many particles breaks**.

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 13: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Bohmian QM.

d2Qi

dt2= −∇

(V (x)− h2

2∇2√

ρ (x)√ρ (x)

)∣∣∣∣∣x=Qi

(6)

Quantum to Classical transition.Just one multiplication by small number.Generalizes to many interacting particles.

“Unsual” QM.Quantum potential is “difficult” to calculate.Needs many points to give good results.

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 14: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Bohmian QM.

d2Qi

dt2= −∇

(V (x)− h2

2∇2√

ρ (x)√ρ (x)

)∣∣∣∣∣x=Qi

(6)

Quantum to Classical transition.Just one multiplication by small number.Generalizes to many interacting particles.

“Unsual” QM.Quantum potential is “difficult” to calculate.Needs many points to give good results.

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 15: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Continuous Bohmian QM.

∂tρα =−∂lJlα (7)

∂tJlα =−∂i

(J iαJ

ρα

)−∂

lV +h2

2∂l

(∇2√

∑α ρα√∑α ρα

)

Quantum to Classical transition.Just one multiplication by small number.Generalizes to many interacting particles.

Quantum potential is “difficult” to calculate.Nonlinear PDEs.

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 16: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Continuous Bohmian QM.

∂tρα =−∂lJlα (7)

∂tJlα =−∂i

(J iαJ

ρα

)−∂

lV +h2

2∂l

(∇2√

∑α ρα√∑α ρα

)

Quantum to Classical transition.Just one multiplication by small number.Generalizes to many interacting particles.

Quantum potential is “difficult” to calculate.Nonlinear PDEs.

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 17: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Entropy growth in quantum billiards.

Figure: Entropy Growth for k = 2.21 and different values of h .

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 18: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Figure: Entropy Growth for k = 2.26 and different values of h .

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 19: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Figure: Entropy Growth for k = 2.31 and different values of h .

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 20: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Future work.

Entropy ansatz can be used.QB ↔ CB relations.

Difussion exponent ↔ Transition rate.

Simulations to find thermodynamic limit.

d2Qi

dt2= −∇(ln(ρ))|x=Qi

(8)

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems

Page 21: Entropy growth in billiards - portal.if.usp.brportal.if.usp.br/controle/sites/portal.if.usp.br.ifusp/files...Entropy Ansatz Classical Billiards Quantum Billiards Future work Summary

Entropy AnsatzClassical Billiards

Quantum BilliardsFuture work

Summary

Summary

The Entropy Ansatz gives δ in an easy way.Bohmian Mechanics has an easy numerical simulation for thetransition QM-CM.

Left stuff

Hussimi representation.Von Neuman equation.Ergodic and Regular Quantum Billiards.

Díaz Gabriel Sutudy of entropy growth in classical and quantum billiard systems