66
Entangled photon pair generation y spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University ?

Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

  • Upload
    romeo

  • View
    53

  • Download
    2

Embed Size (px)

DESCRIPTION

Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University. ?. Outline. Introduction Optical parametric processes Opt. param. amplifier (OPA) Spontaneous param. down conv. (SPDC) - PowerPoint PPT Presentation

Citation preview

Page 1: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Entangled photon pair generationby spontaneous parametric down conversion

Atsushi YabushitaDepartment of Electrophysics

National Chiao-Tung University

?

Page 2: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

OutlineIntroduction

Optical parametric processesOpt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Conclusion

Page 3: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

OutlineIntroduction

Optical parametric processesOpt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Conclusion

Page 4: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

OutlineIntroduction | OPA and SPDC

Light is …Light-matter interactionFrequency conversion

•SHG and SPDC•SPDCOPA•OPA is …?

Why OPA?Why SPDC?

Page 5: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Introduction

Lightgamma-rayX-rayUltravioletvisibleinfraredradio wave

=> Electro-magnetic wave

Page 6: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Introduction

Light-matter interactionElectric field make dielectric polarization

Emission from dipole oscillating in vertical direction E : exp(-it) E*E : exp(-i2t)

Second harmonic generation (SHG) using a non-linear crystal within some limitation from physical law…

Page 7: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Introductionenergy / momentum conservation in frequency mixing

k2,

k1,

BBO crystal-BaB2O4

Page 8: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Introduction

Reversible? YES!

Reverse process spontaneous parametric down conversion (SPDC)

2=>1+12=>0.8+1.2

2=>1+1occur by itself

Page 9: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

IntroductionHow does SPDC occur? similar as OPA (optical parametric amplification) …what is OPA?

process | difference frequency generationhpump-hsignal=hidler

Energy conservation hpump=hsignal+hidler

Signal(amplified)

pump

idler

seed | w/o amp

pump

seed

signal | amplified

Page 10: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

IntroductionHow does SPDC occur? similar as OPA (optical parametric amplification)

process | difference frequency generationhpump-hsignal=hidler

Energy conservation hpump=hsignal+hidler

#signal=#idler

signal

pump

idler

SPDC starts with vacuum noise(no seed for signal)

quite low efficiency ~10-10

Page 11: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

IntroductionWhy OPA? complicated setup

intense laser at different wavelengthnon-linear spectroscopy in UV/visible/IR…

(ultrafast spectroscopy, Raman for vibration study, …)Other method? self phase modulation (SPM) | low efficiency

400 600 8000

1

2

3

wavelength (nm)

inte

nsity

(arb

. uni

ts)

Page 12: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Why SPDC? low conversion efficiencyinteresting character of entanglementnever broken security | quantum communicationeasy to transfer | via optical fiber

Other method?singlet (a pair of spin ½ particle)

Introduction

Page 13: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

OutlineIntroduction

Optical parametric processesOpt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Conclusion

Page 14: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Application | classicalBroadband generation | for short pulse

1

Shorter pulse needs broader spectrum

Page 15: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

non-degenerate

degenerate

Application | classical

Optical parametric amplifier (OPA) Non-collinear OPA (NOPA)

Broadband generation | for short pulse

Page 16: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Application | classicalBroadband generation | for short pulse

WLC OPA (OPG with WLC)

Spectrum diffracted by gratingVisible broadband

- 8 0 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 00 .0

0 .2

0 .4

0 .6

0 .8

1 .0

0 .0 0

1 .5 7

3 .1 4

4 .7 1

6 .2 8

Inten

sity (

arb. u

nit)

delay (f s )

puls e tra in

phas

e (rad

.)

pulse width=~9fs

Page 17: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

OutlineIntroduction

Optical parametric processesOpt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Conclusion

Page 18: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Application | quantumSPDC generates photon pairs (low efficiency)

(2) frequency : p = s + i

(1) wave vector : k p = k s + k i

correlated parameters

(in case of Type-II crystal)

isis | H|VV|H2

1(3) polarization :

p , k

p

s , k s

i , k iNLC

Page 19: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Application | quantum

So, what is entanglement? Let’s remind “Young’s double slit” photon comes one by one if you block one of the slits…

Are there any other entanglements?

Interference only in unknown casepath entanglement

Interference of “probability”, “wavefunction” different from statistics of classical phenomena=quantum

Yes, we will see them in the following pages!

Page 20: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

quantum lithography | wave vectorbetter resolution ( than classical limit ) ~ p=

“SPDC photon pairs” v.s. “classical light”

Schematic set-up

Y. Shih, J. Mod. Opt. 49, 2275 (2002)Application | quantum

])2/2[(cos2 b(Young’s : )

half!

Page 21: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Experimental result (quantum lithograph)

quantum

classical

Page 22: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Application | quantum

ghost imaging | wave vector

coincidence count

CC1 CC2 CC3

CC1CC2CC3

BBO

CC1CC2CC3

BBO

CC1CC2CC3

BBO

Page 23: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Application | quantum

ghost imaging | wave vector

CC1CC2CC3

BBO

CC1CC2CC3

BBO

CC1CC2CC3

BBOcoincidence count

CC1 CC2 CC3

Page 24: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

p , k p

s , k s

i , k iNLC

Y. Shih, J. Mod. Opt. 49, 2275 (2002)

ghost imagingmeasure the shape of an objectDetector does NOT scan after object

classical

Application | quantum

Page 25: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

ghost spectroscopy | frequency

Application | quantum

CC1CC2CC3

BBOcoincidence count

CC1 CC2 CC3CC1CC2CC3

BBO

CC1CC2CC3

BBO

Page 26: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

CC1CC2CC3

BBO

ghost spectroscopy | frequency

Application | quantum

coincidence count

CC1 CC2 CC3CC1CC2CC3

BBO

CC1CC2CC3

BBO

Page 27: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

S : sample (Nd+3-doped glass)

experiment setup

L1 : focusing lens    (f=100mm, 8mm)

BBO : non-linear crystal

M1 : parabolic mirrorM2,3 : plane mirrorP1 : prism (remove pump)

P2 : prism (compensate angular dispersion)PBS : polarizing beam splitter

G : diffraction grating

L2,3 : fiber coupling lensOF : optical fiber

SPCM : single photon counting moduleTAC : time-to-amplitude converterDelay : delay modulePC : computer

Page 28: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

pump focusing lens (f=100mm)

Spectrum of photon pairs and absorption spectrum of the sample

more absorption in longer wavelength

1. Broadband photon pairs

Page 29: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

result : absorption spectrum

→ agree with the result by a spectrometercalculate absorption spectrum from the ratio

1. Broadband photon pairs

Page 30: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

result : absorption spectrum

agree with the result by a spectrometer

1. Broadband photon pairs

Page 31: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

summary of this section

spherical lens → objective lens(f=100 → 8mm)

spectrum was broadened (11,11→63,69nm)Nd3+ -doped glass ( in the idler light path)

→ absorption spectrum was measured

without resolving the frequency of photon transmitted through the sample

fit well with the result measured by a spectrometer

spectrum of SPDC photon pairs

coincidence resolving signal light’s frequency

A. Yabushita et. al., Phys. Rev. A 69, 013806 (2004)

1. Broadband photon pairs

Page 32: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

OutlineIntroduction

Optical parametric processesOpt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Conclusion

Page 33: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Application | quantum

Outline for “Quantum Key Distribution (QKD)”BB84 protocol | single photon

how it workscan it be safe?

E91 protocol | polarization entangled photon pairpolarization entanglement?how it workscan it be safe?

Page 34: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

0 1

+

Application | quantumBB84 protocol | single photon

Purpose : to share a secret keyhow it works?

•key at random 0 1 0 1 1 0•base at random + + + +

•base at random + + + 0 1 0 0 1 0

Page 35: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

0 1

+

Application | quantumBB84 protocol | single photon

Purpose : to share a secret keyhow it works?

•key at random 0 1 0 1 1 0•base at random + + + +

•base at random + + + 0 1 0 0 1 0

50% of keys can be shared(shared keys are same)

complicated…But secure!How can it be secure??

Page 36: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

0 1

+

Application | quantumBB84 protocol | single photon

Can it be secure?•key at random 0 1 0 1 1 0•base at random + + + +

•base at random + + +

0 1 1 0 1 1

base? (random try) + +

0 1 1 1 1 0

0 1 1 1 1 0

Page 37: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

BB84 protocol | single photonCan it be secure?

•key at random 0 1 0 1 1 0•base at random + + + +

•base at random + + +0 1

+

Application | quantum

0 1 0 0 1 1

base? (random try) + +

0 1 1 1 1 0

Error!

Security can be checked!

Page 38: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

212112 2

1

21212

1

EPR-Bellsource

Alice

Bob

polarization-entangled photon pairs1. Broadband photon pairs

2

1 2

1

Page 39: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

HV and VH(50%-50%)

Alice

Bob

Mixed state (statistical mixture)1. Broadband photon pairs

?

?

Page 40: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

EPR-pair

QKD example (without Eve)

Baseselect

Baseselect

Alice Bob

H VHV

0 0

1 1

… …If they use the same base,“100%” correlation(quantum key distributed!)

R LRL

0 0

1 1

HV1 1H V0 0

Page 41: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

EPR-pair

QKD example (with Eve)

Baseselect

Baseselect

Alice Bob

H0 VV1 H

… …VHHV…

?

Eve also share the key (NOT secure QKD…)How can it be improved?

V H1H V0

VH

0

1HV…

10

Page 42: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

EPR-pair

Ekert91 protocol

Baseselect

Baseselect

Alice Bob

H V0 0

LR0 0

VR0 0

V L 01

HL1 1

V H1 1

L R1 1

H R0 1

Base information(classical communication)

“100%” correlation

Page 43: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

EPR-pair

Ekert91 protocol

Baseselect

Baseselect

Alice Bob

V 0

L 0

R 0

V 0

H 1

H 1

L 0

R 1

L1 V

V1 H

H0 V

L1 H

H0 R

R0 L

R0 L

V1 R

V

H

V

H

R

L

L

R

Base information OK

OK

OK

NG!Bob candetect Eve(secure!)

Page 44: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

T. Jennewein et. Al., PRL 84, 4729 (2000)

Experimental example of QKD

Page 45: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

OutlineIntroduction

Optical parametric processesOpt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Conclusion

Page 46: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Generation of photon pairs entangled in their frequencies and polarizations (for WDM-QKD)

BBO(type-II)

2

frequency-entangled

e o/e

e/opolarization-entangled

polarization-entangled pairat many wavelength combinations

light source for WDM-QKD

Page 47: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

epolarization-entangled

epolarization-entangledo/e

polarization-entangled

polarization-entangledo/e

o/e

o/e

Standard :

Multiplex :

Page 48: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

experimental setup L1 : focusing lensBBO : non-linear crystal

M1 : parabolic mirrorM2,3 : plane mirror

P1 : prism (remove pump)

P2 : prism (compensate angular dispersion)G : diffraction grating

L2,3 : fiber coupling lensOF : optical fiber

SPCM : single photon counting moduleTAC : time-to-amplitude converterDelay : delay modulePC : computer

IRIS : iris diaphragms

POL1,2 : linear polarizerBS : non-polarizing beam splitter

Page 49: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

simulationis

iis

HVefVH

f=1=0o

0 60 120 1800

0.5

1

i (degree)

coin

cide

nce

coun

ts(a

rb.u

nits

)

f=1=60o

f=1=180o

0 60 120 1800

0.5

1

i (degree)

coin

cide

nce

coun

ts(a

rb.u

nits

)

0 60 120 1800

0.5

1

i (degree)

coin

cide

nce

coun

ts(a

rb.u

nits

)

f=1.732=0o

0 60 120 1800

1

2

3

i (degree)

coin

cide

nce

coun

ts(a

rb.u

nits

)

0o

90o

135o 45o

0o

90o

135o45o 0o

90o

135o45o

0o

90o

135o45o

1. Broadband photon pairs

Page 50: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

polarization correlation (1st diffraction@870nm)

phase shift (866nm) < phase shift (870nm)

visibility < 100%

isi

isHVefVH

17.1 f

o180,0

0o

45o

90o

135o

1. Broadband photon pairs

Page 51: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

polarization correlation (1st diffraction@870nm)

phase shift (866nm)< phase shift (870nm)

visibility<100%

isi

isHVefVH

17.1 fo180,0

visibility relative phase

0o 0.75

45o 0.43 -25o

135o 0.31 35o

90o 0.50 -81o

0o

45o

90o

135o

Page 52: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

entangled ( iris 1mm )

phase shift (866nm) < phase shift (870nm)

visibility<100% (866nm, 870nm)

17.1 f

o180,0

no entanglement ( iris open )

to improve : group velocity compensation

but phase shift<45o to improve : walk-off compensation

frequency resolved photon pairs are entangled in polarization(light source for WDM-QKD)future : compensations of walk-off and group velocity (improve pol-entanglement)

A. Yabushita et. al, J. Appl. Phys., 99, 063101 (2006)

Page 53: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

OutlineIntroduction

Optical parametric processesOpt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Conclusion

Page 54: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Beam-like polarization entangled photon pair

generation羅信斌 (Hsin-Pin Lo)

Department of Physics, NTHU

12

3

4

1 2 3 4

0.2

0 .0

0 .2

0 .4

1

2

3

4

1

2

3

4

0 .2

0 .0

0 .2

先 進 超 快 雷 射 研 究 中 心 超 快 動 力 學 研 究 室

Page 55: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Acknowledgement籔下篤史 (Prof. A. Yabushita)

羅志偉 (Prof. C. W. Luo)

陳柏中 (Prof. P. C. Chen)

Department of Electrophysics, National Chiao Tung University

Department of Electrophysics, National Chiao Tung University

Department of Physics, Nation Tsing Hua University

先 進 超 快 雷 射 研 究 中 心 超 快 動 力 學 研 究 室

小林孝嘉 (Prof. T. Kobayashi)Department of Applied Physics and Chemistry and Institute for Laser Science

The University of Electro-Communications, Tokyo, Japan

Page 56: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

SPDC photon image

]HVVH[2

12121

Polarization Entangled photon pair

H: Horizontal

V: vertical

Beam-like photon pair

Crystal optic axisCrystal optic axis

Page 57: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita
Page 58: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Generation rate ~ 32,000 s-1

H

H

V

V

Page 59: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Main idea and experiment setup

]H)V(eVH[e2

121

i21

i

]HVVH[2

12121 L1=L2=L3

H1

V1

V2

H2

QWP

L1

L2

L3

SPCM

Coincidence measurement

H1

V1

V2

H2

Page 60: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

PRL 90, 240401 (2003)

2 by 2 fiber

Page 61: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

HOM interference measurement

QWPHWP

Pol.

L1

L3

-3000 -2000 -1000 0 1000 2000 30000

5

10

15

20

25

30

35

40

45

50

55

60

Coi

ncid

ence

Cou

nt (1

sec

)

Delay (100 nm/ step)

-1500 -1000 -500 0 500 10000

10

20

30

Coi

ncid

ence

Cou

nt p

er s

ec

Delay (100 nm/ step)

Page 62: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita
Page 63: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Our work

IntroductionOptical parametric processes

Opt. param. amplifier (OPA)Spontaneous param. down conv. (SPDC)

Application | classicalBroadband generation | for short pulse

Application | quantumEntangled photon pairsGhost imaging | wave vectorGhost spectroscopy | frequencyQuantum key distribution (QKD) | polarizationMultiplex QKD | polarization and frequencyEntangled photon beam

Summary

Page 64: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita

Thank you for your attention!

Page 65: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita
Page 66: Entangled photon pair generation by spontaneous parametric down conversion Atsushi Yabushita