9
Entangled Polymer Melts with Dissipative Particle D i Dynamics Timothy Sirk, Yelena Sliozberg, John Brennan, and Jan Andzelm Army Research Laboratory August 11, 2011

Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

  • Upload
    lethu

  • View
    231

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Entangled Polymer Melts with Dissipative Particle D iDynamics

Timothy Sirk, Yelena Sliozberg, John Brennan, and Jan Andzelm

Army Research LaboratoryAugust 11, 2011

Page 2: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Background

AtomisticAtomistic

KK GG

td~N3.5

t~N3*(1/2)Hard atoms

Reptation

x RKK--GG

Hard beads

DPDDPD Rouse

Rg

x R

How to prevent chain crossing, and still be fast?…apply force between bonds

Soft Beads

KremerKremer GrestGrest

DN

2Ne

KremerKremer--GrestGrest1/s 105

250,000 beads

DPD/SRPDPD/SRP

40,000 beads

1/s 105

Yelena Sliozberg, unpublished

Page 3: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Dissipative Particle Dynamics

ˆ1 /

ij

Aij

Hij

SRPij

Rij

Dij

Ciji

FFFFFFF

Requires newRequires new

Total ForceTotal ForceCurrent SRP Current SRP ••minimum distance between two bondsminimum distance between two bonds••distribute force unevenly between atomsdistribute force unevenly between atoms••slow, sometimes overshoots slow, sometimes overshoots ddijij

mSRPmSRP (new)(new)••midpoint distance between bondsmidpoint distance between bonds

ˆ

ˆˆ

0

1

r

rrrr/rra

ijRR

ijijijijDD

ij

cij

cijijcijijCij

rF

rvrF

rF

G t d W J

DPDDPD

Requires new Requires new parameters for SRP, parameters for SRP, angle potentialsangle potentials

midpoint distance between bondsmidpoint distance between bonds••distribute force evenlydistribute force evenly••faster, accuratefaster, accurate

½ FmSRP0 FGoujon [1]

ˆ/1

22

2

dddda

Tkrr

Δt

ijE

B

RD

ijij

d

rF Groot and Warren, J. Chem. Phys. 1997

dij

½ F

½ F

F

0 Fj [ ]

d

)cos(

ˆ

0/1

0

K

)rK(r

dddddda

ijk

ijHij

cij

cijijcijijSRPij

E

rF

dF SRPSRPSegmental Repulsive PotentialGoujon et. al, J. Chem. Phys. 129, 034902 (2008)

Bond & AngleBond & Angle

dij

-½ F -½ F-¾ F -¼ F

dij

58 lt/ dd 2 di 2 if 18 lt/ ddgg

DPD + SRP + Bond + AnglesDPD + SRP + Bond + Angles

SRP implemented in LAMMPSSRP implemented in LAMMPS

58 mult/add, 2 div, 2 if 18 mult/add

dkl=Pk+tkRk‐Pl‐tlRld(dkl)/d(Rk)=d(dkl)/d(Rl)=0

dkl=Pk‐Pl

SRP implemented in LAMMPSSRP implemented in LAMMPS••communicate ‘ghost bonds’ with communicate ‘ghost bonds’ with forward_pair_commforward_pair_comm()()••build a bond neighbor listbuild a bond neighbor list••newtonnewton bond off, apply force to local atomsbond off, apply force to local atoms

1. J. Chem. Phys. 129, 034902, 20082. J. Chem. Phys. 114 (15) p6937, 1997

Page 4: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Parameterization: Chain Crossings

DPD without SRP: Chains cross freely

DPD with Goujon SRP:Few chain crossings, large energy contributiondij

DPD without SRP: Chains cross freely

c

ijijij a

dd

1F

Increasing dcVary potential parameters: aij, dc

Count bond crossing

Check thermodynamics

Test system: 78 chains of N=30, 2*106 timestepsChoose aij, dc

Page 5: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Thermodynamic Properties

Prevent bond crossings and minimize the Prevent bond crossings and minimize the effect of SRPeffect of SRP

Decreasing dcutDPD with Goujon SRP: Large PE and pressure

Midpoint DistanceMidpoint Distance

Want low P, PE contributions, and few Want low P, PE contributions, and few bond crossingsbond crossings > choose a=100 r=0 8> choose a=100 r=0 8bond crossings bond crossings --> choose a=100, r=0.8> choose a=100, r=0.8

•• Small pressure increase over DPDSmall pressure increase over DPD•• Thermostat stable at low tempThermostat stable at low temp•• Any Any γγ>4.5>4.5

DPD without SRP: Lower limit

Minimum Distance (Minimum Distance (GoujonGoujon et. al)et. al)

•• Larger PE and pressureLarger PE and pressure•• Thermostat struggles with low tempThermostat struggles with low temp

Decreasing dcut

Thermostat struggles with low tempThermostat struggles with low temp•• Restricted to Restricted to γγ~50 for T=1.0~50 for T=1.0

Page 6: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Angle potential and chain structure

ProblemProblem••Neighboring bonds do not interactNeighboring bonds do not interact••Favorable for chain to “fold”Favorable for chain to “fold”••Not good for structureNot good for structure••Quantify by characteristic ratio, Quantify by characteristic ratio, CCnn

SolutionSolution••Add angular potential to maintain Add angular potential to maintain structurestructure••Optimize Optimize KK using using CCnn••Too weak = poor structureToo weak = poor structure••Too much = polymer is stiffToo much = polymer is stiff••Too much = polymer is stiffToo much = polymer is stiff

θ

)]cos(1[ KE

θ

Vary parameter: K

KK=2.0 leads has =2.0 leads has CCnn close to fully close to fully flexible (flexible (CCnn=1.0) =1.0)

Check chain structure GoujonGoujon et al. is less than regular et al. is less than regular

DPD chain due to “kinks”DPD chain due to “kinks”

R

Choose KCn= <R2>/nl2

R

Page 7: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

DiffusionChain Length and EntanglementsChain Length and Entanglements

1. Identify entanglements with diffusion• onset of entangled behavior • chain length for one entanglement

2 Check mechanical behavior of entangled chains

Equilibration

1. Box Size: depends your needs1. Structure2 Stress/Strain

D vs. 1/L

2. Check mechanical behavior of entangled chains2. Stress/Strain3. Diffusion

2. Time: not straightforward1. MSDg1 = MSDg3 won’t happen for long chains2. At least move a radius of gyration3. Better to wait for 0.90*d(g1)/dt = d(g3)/dt

Analytical Correction

inner monomers center of mass (COM)inner monomers wrt COM of chain

Goujon SRP

mSRP

3. Shortcut: measure characteristic ratio, prebuild the equilibrium structure

inner monomers wrt COM of chain

Dynamics of chains from DPD+ entanglementsDPD+ entanglements

reaches reptation limit !

To calculate chain diffusion (DN):Equilibrate until monomers move together with chains

Page 8: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Mechanical Behavior

• tensile test – a fundamental mechanical test• create stress by deforming simulation box

Unentangled chains• short DPD chains with mSRP• short/long standard DPD• less relative motion when stress is applied

• compute normal stress as the box is deformedEntangled chains• long DPD chains with mSRP• entanglements resist relative movement of chains• relax more slowly than short chains

*Long, DPD+mSRP

Short, DPD+mSRP

Long and short, DPD

Page 9: Entangled Polymer Melts with Dissipative Particle DiDynamicslammps.sandia.gov/workshops/Aug11/Sirk/lammps_pres.pdf · Entangled Polymer Melts with Dissipative Particle DiDynamics

Timothy SirkArmy Research Laboratory

[email protected]