ENSO Observations Mike McPhaden NOAA/PMEL Seattle, Washington CLIVAR ENSO Workshop Paris, France 17-19 November 2010

Embed Size (px)

Citation preview

  • Slide 1
  • ENSO Observations Mike McPhaden NOAA/PMEL Seattle, Washington CLIVAR ENSO Workshop Paris, France 17-19 November 2010
  • Slide 2
  • Observations Required for Description, Understanding and Prediction
  • Slide 3
  • 87% Total in situ networksMay 200860% 62% 81% 43% 79% 48%24% Initial Global Ocean Observing System for Climate Status against the GCOS Implementation Plan and JCOMM targets 100% GOOS
  • Slide 4
  • A Short History of ENSO Observations Paleo Proxies Instrumental 1850s Matthew Fontaine Maury 1950s IGY & Bjerknes 1960s Satellite era for weather 1980s AVHRR, Geosat altimetry 1985-94 TOGA 1990s High precision altimetry, scatterometry 30 years of systematic subsurface ocean and satellite observations for describing, analyzing and developing forecasting capabilities for ENSO
  • Slide 5
  • Global Tropical Array Current Conditions http://www.pmel.noaa.gov/tao/
  • Slide 6
  • Global Tropical Array Current Conditions http://www.pmel.noaa.gov/tao/
  • Slide 7
  • Global Tropical Array El Nio vs La Nia http://www.pmel.noaa.gov/tao/
  • Slide 8
  • Recharge Oscillator Theory (Wyrtki, 1985; Cane et al, 1986; Jin, 1997) Meinen & McPhaden, 2000
  • Slide 9
  • Build up of excess heat content along equator is a necessary precondition for El Nio to occur. The time between El Nios is determined by the time to recharge. El Nio purges excess heat to higher latitudes, which terminates the event. Upper Ocean Heat Content and ENSO After Meinen & McPhaden, 2000 Heat content based on TAO/TRITON, XBT and Argo data
  • Slide 10
  • Global Tropical Array Upper Ocean Heat Content and ENSO Upper ocean heat content variations are the source of predictability for the ENSO cycle Heat content based TAO/TRITON, XBT and Argo data After Meinen & McPhaden, 2000
  • Slide 11
  • Lead Time Changes
  • Slide 12
  • Seasonality of Lead Time Changes McPhaden,, 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. GRL
  • Slide 13
  • Trends in Central Pacific El Nio SSTs SST anomaly Dec 2009 Central Pacific El Nios are increasing in frequency and amplitude Lee & McPhaden, Geophys. Res. Lett., 2010 Nio-4 SST
  • Slide 14
  • EP vs CP El Nios 3/5 EP 3/4 CP
  • Slide 15
  • Ratio of CP/EP El Nios Increases Under Global Warming Yeh et al, Nature, 2009 Mean Thermocline Depth
  • Slide 16
  • Changes in Background Conditions
  • Slide 17
  • Differences in El Nio Composites EP CP CP-EP
  • Slide 18
  • Mean State El Nio Statistics? MeanENSO ?
  • Slide 19
  • Summary 30 years of systematic subsurface ocean and satellite observations available for detailed studies of ENSO and its decadal modulation Lead time of ocean heat content (WWV) a predictor of ENSO SST has decreased from 2-3 seasons to ~1 season in the first decade of the 21 st century Loss of predictability concentrated early in the calendar year Changes correspond to increasing incidence of CP El Nios Corresponds to decadal changes in background conditions (winds, thermocline depth, SST) Natural variability? Influence of global warming? CLIVAR ENSO Workshop Paris, France 17-19 November 2010
  • Slide 20
  • And in the future?
  • Slide 21
  • Global Tropical Array Global Tropical Moored Buoy Array: A coordinated, sustained, multi-national effort to develop and implement moored buoy observing systems for climate research and forecasting throughout the global tropics A contribution to GOOS, GCOS, and GEOSS TRITON ATLAS Key attributes: Real-time Ocean-atmosphere High temporal resolution Basin scale
  • Slide 22
  • Eastern vs Central Pacific (Modoki) El Nios Central Pacific(M odoki) Eastern Pacific Ashok, 2009 Nio-3.4 Nio-4
  • Slide 23
  • A Short History of ENSO Observations Paleo proxy Instrumental 1850s Matthew Fontaine Maury 1950s IGY & Bjerknes 1960s Satellite era for weather satellites 1980s AVHRR, Geosat altimetry 1985-94 TOGA 1990s High precision altimetry, scatterometry