72
Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria [email protected]

Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria [email protected]

Embed Size (px)

Citation preview

Page 1: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Ensembles II:

1. The Gibbs Ensemble (Chap. 8)

Bianca M. Mladek

University of Vienna, [email protected]

Page 2: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Our aim:

We want to determine the phase diagram of a given system.

density

tem

per

atu

re

gasliquid

For this, we need to know the coexistence densities at given temperature.

Page 3: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

In experiments:

first order phase transition is easy to locate:

at right density and temperature

phase separation (two distinct phases devided by interface)

In simulations: ???

Page 4: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Find points where:

…which is the condition for phase coexistence in a one-component system.

Gibbs

Page 5: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Problem in simulations:

Hysteresis:

density

pre

ssur

e

Page 6: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

NVT Ensemble

fluid fluid

Let‘s lower the temperature…

Page 7: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

NVT Ensemble

gas

liquid liquid

gas

Problem:

The systems we study are usually small large fraction of all particles resides in/near interface.

Page 8: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Possible solution #1

larger systems:

we need huge systems computationally expensive

particles % of part. in interface

1 000 49%

64 000 14%

1 million 6%

Page 9: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Possible solution #2: “ μPT ”-Ensemble

Problem: no such ensemble exists!

• μ, P and T are intensive parameters

• extensive ones unbounded

We have to fix at least one extensive variable (such as N or V )

Page 10: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Possible solution #3:The Gibbs ensemble

gas liquid

achieve equilibriumby coupling them

A. Z. Panagiotopoulos, 1987.

Page 11: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at
Page 12: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Overall system: NVT ensemble

N = N1 + N2

V = V1 + V2

T1 = T2

Page 13: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

• distribute N1 particles• change the volume V1

• displace the particles

partition function:

Page 14: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Distribute N1 particles over two volumes:

partition function:

Page 15: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Integrate volume V1

partition function:

Page 16: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Displace the particles in box1 and box2

partition function:

Page 17: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Displace the particles in box 1 and box2

partition function:

scaled coordinates in [0,1)

Page 18: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

probability distribution:

partition function:

Page 19: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Particle displacement

Volume change equal P

Particle exchange equal μ

3 different kinds of trial moves:

Page 20: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Acceptance rules

Detailed Balance:

Page 21: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Displacement of a particle in box1

Page 22: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Displacement of a particle in box1

Page 23: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Volume change

Page 24: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Volume change

More efficient: random walk in ln [V1/(V-V1)]

Page 25: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Moving a particle from box1 to box2

acceptance rule:

Page 26: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Moving a particle from box1 to box2

Page 27: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Moving a particle from box1 to box2

Page 28: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

detailed balance!!!

Page 29: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at
Page 30: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at
Page 31: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at
Page 32: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at
Page 33: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at
Page 34: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Analyzing the results (1)

well below Tc approaching Tc

Page 35: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

well below Tc approaching Tc

Analyzing the results (2)

Page 36: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Analyzing the results (3)

well below Tc approaching Tc

Page 37: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Advantages:• single simulation to study phase coexistence: system „finds“ the densities of coexisting phases

• free energies/chem. potentials need not be calculated

• significant reduction of computer time

Disadvantages:• only for vapor-liquid and liquid-liquid coexistence

• not very successful for dense phases (particle insertion!)

Page 38: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

“C“ IS FOR COFFEE BREAK!

Page 39: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Ensembles II:

2. Free energy of solids (Chap 7 & 10) 3. Case study: cluster solids

Page 40: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Gibbs ensemble for solid phases?

problem: swap moves are unlikely to be accepted.

μ1 ≠ μ2 Gibbs ensemble does not work

What other method?

Page 41: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

with

With normal Monte Carlo simulations, we cannot compute “thermal” quantities, such as S, F and G, because they depend on the total volume of accessible phase space.

For example:

Problem:

Page 42: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Solution: thermodynamic integration III UUU 1

Coupling parameter

II

I

UU

UU

1

0

reference system

system of interest

UN

Q NNNVT

expdr

!

13

QF

TN

ln1

,

NVTQF ln1

Q

Q

11

U

UUN

N

expdr

expdr

U

UFF

1

0

d10

III UU

U

Free energy as ensemble average!

Page 43: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

F()

0 1

F(0)

F(1)

The second derivative is ALWAYS negative:

Therefore:

Good test of simulation results…!

Why III UUU 1 ?

022

,,,

2

2

IIIIII

TVN

UUUUF

Page 44: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Words of caution

Integration has to be along a reversible path.

interested in solid reference system has to be solid

Why? Because there is no reversible path coming from the ideal gas

density

tem

per

atu

re

gas liquid solid

Page 45: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Standard reference system: Einstein solidEinstein crystal: non-interacting particles coupled to theirlattice sites by harmonic springs

N

iiii

NNNN rrrUrUrUrU1

2,000 )()()()1()();(

)(d1

0

UFF Einstein

N

i

NNiii rUrUrr

U

10

2,0 )()(

i

N

i

NEinstein rUF1

0 log2

3)(

Page 46: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Einstein solid: recipe

For fixed crystal structure:

At fixed T and :

• make simulations at different values of

• measure

• Numerically integrate using e.g. Gauss-Legendre quadrature

• determine

U

)(d1

0

UFF Einstein

Page 47: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Standard reference system: Einstein solid

• special care for discontinuous potentials: not possible to linearly switch off interaction

• diverging short-range repulsion: for=1, particles can overlap weak divergence in

• choose ‘s such that

• Frenkel - Smit: „Thermodyn. integration for solids“ ~everyone else: „Frenkel-Ladd“ (JCP, 1984)

11

2,0

01

2,0 )()(

N

iii

N

iii rrrr

U

Page 48: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Common tangent construction

common tangent construction:

P = - (F/ V)N,T

equal pressure equal slope

F = μ – PV

equal chemical potentials equal intercept

volume / particle

free

ene

rgy

/ par

ticl

e

Now that we have F(V;T) at hand:

Page 49: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

But now consider the following systems:

Coarse graining:

effective particleeffective interaction

mesoscopic particlecomplex interactions

Effective interactions can be tuned bounded, purely repulsive potentials

Page 50: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Effective interactions: soft and bounded

Gaussian Core Model

Penetrable Spheres

tem

pera

ture

tem

pera

ture

pote

ntia

l

pote

ntia

l

distance distance

density density

… are models for effective interactions of polymers etc.

Page 51: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

ClusteringPotential energy surface in 1D:

Gaussian Core Model: somewhat steeper:

Page 52: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Gibbs ensemble for soft solids?

swap moves get accepted (soft potentials!!!)

…or does it not?

“Great, in this case Gibbs ensemble works even for solids!“

Page 53: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Gibbs ensemble for soft particles

It does NOT.

Because we find:Different starting densities different coexistence densities

But WHY???

Problem: • We swap particles, that‘s good.• We do NOT change the amount of lattice sites, that‘s bad.

Page 54: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Swope and Anderson, 1992:

μc = 0

important when:

• vacancies and interstitials

• clustering

Page 55: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

In bulk:

modifications at surfaces, interfaces and boundaries

In simulations:

Usually: geometry & periodic boundary conditions

Nc = const.

Therefore: ratio N/Nc is set at start of simulation and cannot equilibrate to real value

system gets stuck in states where μc ≠ 0.

This is the reason the Gibbs ensemble does not work for soft crystals. There are no moves ensuring that μc = 0.

Page 56: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

The solution: a recipeFor solid structure of interest (fcc, bcc,…) and Nc fixed:• fix T and :

• choose N and carry out NVT simulation• measure:

• P ..….. virial equation • μ ……. Widom‘s insertion (P. Bolhuis, last Friday)• F ……. thermodynamic integration

• determine μc using:

• Repeat for different values of N until μc = 0 is found.

c

cccc N

NVPF )()()(

Page 57: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Widom’s particle insertion, revisited

But N is not a continuous variable. Therefore

Page 58: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Now write

then

And therefore

Page 59: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Finally:

Recipe

1. Evaluate ΔU for a random insertion of a particle in a system containing N particles.

2. Compute

3. Repeat M times and compute the average “Boltzmann factor”

4. Then

Page 60: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Thermodynamic intergration for soft particles

Einstein crystal not appropriate:

particles can hopto other lattice sites

springs get stretched

Page 61: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Thermodynamic intergration for soft particles

Barriers

particles

Reference system (U0): ideal gas confined by barriers

00

max30

log

)exp(!

1

QF

UVVN

Q NBWN

systemUUU

0

Mladek, Charbonneau, Frenkel, PRL (2007)

Page 62: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

The solution: a recipeFor solid structure of interest (fcc, bcc,…) and Nc fixed:• fix T and :

• choose N and carry out NVT simulation• measure:

• P ..….. virial equation • μ ……. Widom‘s insertion (P. Bolhuis, last Friday)• F ……. thermodynamic integration

• determine μc using:

• Repeat for different values of N until μc = 0 is found.

c

cccc N

NVPF )()()(

… and then???

Page 63: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Common tangent construction

only valid for F/N(μc= 0) curves!

volume / particle

free

ene

rgy

/ par

ticl

e

For cluster crystals:

Page 64: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

μc irrelevant?

No, because:Modified thermodynamic formalism has impact on the second derivatives of the free energy,e.g. the bulk modulus

Side note:Once equilibrium is found

Page 65: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

affine shrinking: lattice site deletion:

-V (P/ V)N,T,Nc -V (P/ Nc)N,T,V (Nc/ V)N,T,μc=0

B = V (2F/ V2)N,T = -V (P/ V)N,T

P = P[N,V,T,Nc(N,V,T)]

Example: bulk modulus

Page 66: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

“The Future of Air Travel”

Short Essay On the Dangers of Applying Science

by Daan Frenkel

How to visualise what we just learned?

Page 67: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

To save costs…

Page 68: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

..airlines must increase the packing density of passengers.

Page 69: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

They do this by decreasing the “lattice spacing”.This is how most of us travel…

Page 70: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

But if airlines ever find out about the this work…

…the future could be far worse:

Page 71: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at
Page 72: Ensembles II: 1.The Gibbs Ensemble (Chap. 8) Bianca M. Mladek University of Vienna, Austria bianca.mladek@univie.ac.at

Summed up: determining phase diagram

• Which coexistence am I interested in?• gas-liquid, liquid-liquid Gibbs• solids thermodynamic integration, Widom

• Am I treating hard or soft systems?• thermodyn. int.: choice of reference system• Gibbs: can give wrong results!

• Special care has to be taken whenever dealing with solids where particle number is not equal to amount of lattice sites