93
7/29/2019 ENI_WTA_3 http://slidepdf.com/reader/full/eniwta3 1/93 RESERVOI R PROPERTI ES REAL SYSTEM REAL SYSTEM Q t FI ELD I NPUT FI ELD I NPUT Q t MODEL INPUT MODEL I NPUT p t MODEL OUTPUT MODEL OUTPUT p t RESERVOI R RESERVOI R RESPONSE RESPONSE MODEL PARAMETERS MATHEMATICAL MODEL MATHEMATICAL MODEL M A T C H CALIBRATION OF MODEL PARAMETERS CALIBRATION OF MODEL PARAMETERS Interpretation

ENI_WTA_3

Embed Size (px)

Citation preview

Page 1: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 1/93

RESERVOI RPROPERTI ES

REAL SYSTEMREAL SYSTEM

Q

t

FI ELD I NPUTFI ELD I NPUT

Q

t

MODEL I NPUTMODEL I NPUT

p

t

MODEL OUTPUTMODEL OUTPUT

p

t

RESERVOI RRESERVOI R

RESPONSERESPONSE

MODELPARAMETERS

MATHEMATI CAL MODELMATHEMATI CAL MODEL

MMAA

TT

CC

HH

CALIBRATION OF MODEL PARAMETERSCALIBRATION OF MODEL PARAMETERS

Interpretation

Page 2: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 2/93

Model

MODEL:  simplified version of the real system, by which the behaviorof the real system can be approximately but yet representativelysimulated

• MASS BALAN CE EQUATI ONS:MASS BALAN CE EQUATI ONS:for the considered extensive quantities

• FLOW EQUATI ONS:FLOW EQUATI ONS: relate theextensive quantities to the significant statevariables of the problem

• STATE EQUATI ONS:STATE EQUATI ONS: define thebehavior of the components of the system

• I N I TI AL AND BOUNDARYI NI TI AL AND BOUNDARY

CONDI TI ONS:CONDI TI ONS: must be defined after thedomain geometry has been established

MATHEMATI CAL M ODELMATHEMATI CAL M ODEL

THEORETI CAL MODELTHEORETI CAL MODEL Set of simplifyingSet of simplifyingassumptionsassumptions

Page 3: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 3/93

REALREALSYSTEMSYSTEM MATHEMATI CALMATHEMATI CAL

MODELMODEL

SOLUTI ONS OFSOLUTI ONS OF

MATHEMATI CAL MODELMATHEMATI CAL MODEL

NUM ERI CAL M ETHODNUM ERI CAL M ETHODNecessary in the case of:• non linearity of the equations

which constitute the model• complexity of the boundary

conditions, etc.

ANALYTI CAL METHODANALYTI CAL METHODPreferable for the ease of applicability of the solutions

MODEL COEFFI CI ENTSMODEL COEFFI CI ENTS:the transport coefficients of theconsidered extensive quantities

Model solutions

Page 4: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 4/93

Flow Problem

Number of phasesNumber of phases•single phase (kass)•multiphase (krel)

Nature of fluidsNature of fluids•compressible (liquid)•very compressible (gas)

GeometryGeometry•monodimensional•bidimensional (radial flow)•tridimentional

Hydraulic regimeHydraulic regime

•steady state flow•pseudo-steady state flow•transient flow

Page 5: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 5/93

t

)()v(

φρ∂−=ρ∇

CONTI NUI TY EQUATI ONCONTI NUI TY EQUATI ON

STATESTATE EQUATI ONSEQUATI ONS

zRT

Mp=ρ

)pp(c

00e −−−−==== ρρLiquid

Real Gas

FLOW EQUATI ONSFLOW EQUATI ONS(gravity effects are neglected)

Turbulent flow (Turbulent flow (ForchheimerForchheimer))

pkv ∇µ

−=

Laminar flow (Darcy)Laminar flow (Darcy)

2vvk

p βρ+µ

=∇−

Basic equations

Page 6: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 6/93

Diffusivity Equation

MONOPHASI C FLOW OF A SLI GHTLY COMPRESSI BLE FLUI D ( LI QUI D)THROUGH A HOMOGENEOUS AND I SOTROPI C POROUS MEDI UM.PRESSURE GRADI ENTS ARE SMALL AN D DA RCY’S LAW APPLI ES

ηη DIFFUSIVITY CONSTANTDIFFUSIVITY CONSTANT

t

p1

t

p

k

cp t2

η=

∂φµ=∇

φµ

tc

k

MONOPHASIC FLOW MONOPHASIC FLOW : in the case of oil flow the water saturation is

equal to the irreducible value Swi, and the pressure is always greaterthan the bubble point pressure; in the case of water flow the oilsaturation is equal to the residual value Sor

Page 7: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 7/93

Pressure Profile

! Each time the well production is modified (rate change) apressure disturbance starts to propagate in the reservoir

!The DIFFUSIVITY EQUATION DIFFUSIVITY EQUATION  describes how the pressuredisturbance evolves within the reservoir

Q

Page 8: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 8/93

Infinite Acting Radial Flow

(I.A.R.F.)HYPOTESIS: constant thickness of the producing formation,

and wellbore open to production across the entire formation

thickness.Therefore, the fluid flow is horizontal.

Page 9: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 9/93

Radial Flow Equations

t

p

k

c

r

p

r

1

r

p t

2

2

∂φµ=

∂+

!transient flow

!pseudo-steady state flow

dt

dp

k

c

dr

dp

r

1

dr

pd t2

2 φµ=+

!steady state flow

0drdp

r1

drpd2

2=+

Page 10: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 10/93

Average Pressure

MEASUREMENT OF AVERAGE PRESSUREMEASUREMENT OF AVERAGE PRESSURE

•• TheoreticallyTheoretically: the average pressure could be measured in the wellbore

under static conditions if the well (or the field) had been shut in for an

infinitely long time so as to allow the reservoir pressure to reach

equilibrium.

•• I n p r a ct i c e:I n p r a ct i c e: the average pressure can be determined from buildup tests.

AVERAGE PRESSURE AVERAGE PRESSURE : the representative reservoir pressureat which the pressure dependent parameters in the materialbalance equations should be evaluated.

∫=VpdV

V

1p

VOLUME AVERAGEDVOLUME AVERAGED

RESERVOI R PRESSURERESERVOI R PRESSURE

Page 11: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 11/93

Steady State Flow

w

e

we

rrln

ppkh2q

µ

π=

MUSKAT EQUATION 

eerrconstpp

t,rtp

===

∀∀=∂∂ 0

Initial and boundary conditions:

The pressure p(r) at a distance r from the well can be evaluated as follows:

w

wr

rln

kh2

qp)r(p

π

µ+=

0dr

dp

r

1

dr

pd2

2

=+Radial Flow Equations

Page 12: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 12/93

rw re

h

p

r

k

pe

p w

If there is a damaged zone in the vicinity of the wellbore characterizedby a reduced permeability k’ with respect to the formation permeabilityk - due, for instance, to invasion of drilling or completion mud into theformation - an additional pressure drop is observed at the wellbore.

Skin Effect

SKI N EFFECT SKI N EFFECT : permeability damage in the vicinity of thewellbore.

r'

r’=0.5 - 1 m

k'p ’w

Page 13: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 13/93

Skin Factor

ww'r 

r 'r ln

kh2qppπ

µ+=k ’ = k

w

w'r 

'r ln

h'k2

q'pp

π

µ+=k ’ < k

wSww

'r ln1'k

k

kh2

qp'pp  

  

 −π

µ=∆=−

Additional pressure drop in the wellboreAdditional pressure drop in the wellbore: : 

k ’ < k S > 0 permeability reduction (damage)

k ’ = k S = 0 no change in permeability

k ’ > k S < 0 permeability enhancement (stimulation)

SKI N FACTORSKI N FACTOR:wr

'rln1

'k

kS

   

   

   

   −−−−====

Page 14: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 14/93

Sw

w pr 

r ln

kh2

qp)r (p ∆+

π

µ+=

 

  

 +

π

µ+= S

r ln

kh2

qp)r (p

ww

S

Additional pressure drop

wS

'r ln1

'k

k

kh2

qp

 

  

  −π

µ=∆

Page 15: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 15/93

COMPLETI ON FACTORCOMPLETI ON FACTOR

)0S(PI

)0S(PICF

ltheoretica

real

=

≠=

real

S

real

Sreal

real

ltheoretica

pp1

ppp

ppCF

∆∆−=

∆∆−∆=

∆∆=

PRODUCTI VI TY I NDEXPRODUCTI VI TY I NDEX

p

qPI STo

=

Sr 

ln

1

B

kh2PI

w

eo

+

µ

π=

Productivity Index

Page 16: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 16/93

Partial Penetration and Partial Perforation

If the wellbore is partially penetrating in the reservoir, or the wellbore is open toproduction over a restricted interval of the reservoir, there is a distortion of theradial flow pattern close to the well (the flow lines are not parallel in the vicinity of the wellbore) giving rise to an ADDITIONAL PRESSURE DRAWDOWN.ADDITIONAL PRESSURE DRAWDOWN.

This pressure drop is generally accounted for by including the effect of partial

penetration as an additional skin factor. It can not be measured, but it can bequantitatively evaluated by numerical models that take the wellbore completioncharacteristics into account.

The skin factor S determined by well tests comprises both the component due to a

change in permeability Sk, and the component due to partial penetration SB:

S =S = SSkk ++ SSBB

Page 17: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 17/93

Pseudo-Steady State Flow

Radial Flow Equations

Initial and boundary conditions:

e

ei

rrr

p

rconstdt

dpt

rrppt

== 

  

 ∂

∀=>

===

0

0

0

Solution in terms of average pressure:

S4

3

r

rln

ppkh2q

w

e

w

+−

µ

π=

w

e

w

e

r

r472.0ln

4

3

r

rln =−

Pseudo-steady state drainage radius: 0.472 re=rds

dt

dp

k

c

dr

dp

r

1

dr

pd t2

2 φµ=+

Page 18: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 18/93

Transient Flow

Radial Flow Equations

 

  

 

π

µ−= D

wi t,

r P

kh2

qp)t,r (p

Solution:

c

Dt

tt =Dimensionless time

k

rct

2wt

c

φµ=Characteristic time

Initial and boundary conditions:

==  

  

==

>

∀==

w

ei

i

rrconstr

p

rrpp

t

rppt

0

0

CONSTANT TERMINAL RATECONSTANT TERMINAL RATE

t

p

k

c

p

1

p t2

2

∂φµ=

∂+

Page 19: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 19/93

Function P(r/rw,tD)

Page 20: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 20/93

 

  

 

η−−=

 

  

 

t4

rE

2

1t,

r

rP

2

iD

w

At very short times, for :20r

r

w

At the well radius rw, if :100tD ≥  

   ≥=

  

   = D

w

D

w

t,20rrPt,1

rrP

Therefore, if k

rc25t

2t φµ

kt25.2

rclnt4

rE

2t

2

i

φµ= 

 

 

 

η−

Also, when x ≤ 0.01 )x781.1ln()x(Ei =−

 

 

 

 

η

−−=

 

 

 

 =

t4

r E

2

1t,1

r P

2

iD

w

Now some developments…

Page 21: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 21/93

)t25.2(lnkh4

qp)t,r (p Diw

π

µ−=

 

 

 

 

φµπ

µ−=

2wt

iwr c

kt25.2ln

kh4

qp)t,r (p

Solution at the well radius rw , for tD>100

2wtc

Dr c

kt

t

tt

φµ==Dimensionless time

…and here’s the solution

 

 

 

  φµ−

π

µ−=

kt25.2

r cln

2

1

kh2

qp)t,r (p

2wt

iw

)S2t25.2(lnkh4

q

p)t,r (p Diw +π

µ

−=

Page 22: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 22/93

Tim e to reach pseud oTim e to reach pseud o -- st eady st a test eady s ta t e tt ss

i2et

sise p

rc

kt25.2ln

kh4

qp)t,r(p =

 

  

 φµπ

µ−=

krc

25.21t

2

ets φµ=

Dra inage o r i n vest i ga t i on r ad ius rD ra inage o r i n vest i ga t i on r ad ius r dd

 

 

 

 

φµ=

2wtw

d

r c

kt25.2ln

2

1

r ln

t5.1tc

k5.1r 

td η=

φµ=

Investigation radius

W h

Page 23: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 23/93

Water encroachment

t

p

k

c

p

1

p t

2

2

∂φµ

=∂

+∂

Tr ansien t f l owTr ansien t f l ow

VanVan Everd ingenEverd ingen --

Hurs t Mode lHurs t Mode l

Car terCar ter -- TracyTracy

Mode lMode l

rw rw

V E di H t l ti

Page 24: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 24/93

Van Everdingen-Hurst solution

∞≠=  

  

∂∂

∞==

=

=∆−==

>

∀==

w

e

w

eie

e

wiww

i

rr0

rp

r

rp)t,r(p

rr

tcospp)t,r(prr

0t

rpp0t

Initial and boundary conditions:

Van Everdingen-HurstSOLUTI ONSSOLUTI ONS

to diffusivity equation

CONSTANT TERMINAL RATE :Rate of water influx=const for ∆t

" calculation of pressure drop

CONSTANT TERMINAL PRESSURE:boundary pressure drop=const for ∆t

" calculation of water influx rate

V E di H t if

Page 25: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 25/93

Van Everdingen-Hurst aquifer

Dimensionless water influxDimensionless water influx   

  

w

eD

rr,tQ

Dimensionless timeDimensionless time 2wtw

D r c

kt

t φµ=

Dimensionless radiusDimensionless radius

 

 

 

 =

w

eD

r r 

Cumulative Water influxCumulative Water influx

  

  ∆=

w

eDwe

rr,tQpBW

where B: water influx constantB: water influx constant hr cB wt

2

2 πφ=hf rcB wt

22 πφ=360

θ=f 

F ti Q( / t )

Page 26: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 26/93

Dim ens ion less Tim e, t D

   W  a   t  e  r   I

  n   f   l  u  x ,

   Q

Function Q(re /rw,tD)

Carter Tracy aquifer

Page 27: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 27/93

Carter-Tracy aquifer

The CarterThe Carter--Tracy solution is not an exact solution to theTracy solution is not an exact solution to thediffusivity equation, it is an approximationdiffusivity equation, it is an approximation

( ) ( ) ( ) ( )[ ]( ) ( )

( ) ( ) ( )

−∆−+=

−−−

nD1nDnD

nD1nen1nDnD1nene

'ptp

'pWpBttWW

Where : B=Van Everdingen-Hurst water influx constant

n=current time stepn-1=previous time step

∆pn=total pressure drop, pi-pn

pD=dimensionless pressurep’ D=dimensionless pressure derivative

CONSTANT W ATER I NFLUX RATE

ove r each f i n i t e t im e in t e r va l .

Condition: Condition: 

Gas Flow

Page 28: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 28/93

Gas Flow

Therefore, the Forchheimer equation should be used instead of the Darcy

equation. However, if a quadratic expression for the fluid velocity is substitutedinto the continuity equation a non linear, partial differential equation is obtained,which can not be solved analytically.

In general t u r b u l e n t f l o w c o n d i t i o n st u r b u l e n t f l o w c o n d i t i o n s have to be assumed near thewellbore when the reservoir fluid is gas due to its low viscosity

Lam ina r f l owLam ina r f l ow for Qg<50000 Sm3 /d approximately

Tur bu len t f l owTu r bu len t f l ow for Qg>100000 Sm3 /d

11 ST ST  APPROACH APPROACH : Da rcy equa t i on fo r l am ina r f l ow

An equation is obtained, the solution of which can not be applied in the vicinity of thewellbore without restrictions.

2 2 n d n d  APPROACH: APPROACH: Fo r c h h ei m e r e q u at i o n f o r t u r b u l e n t f l o w

The Forchheimer equation is integrated to obtain an equation valid under steady state

conditions only. The assumption of steady state flow can be removed if the drainageradius is inserted in place of the reservoir external radius, and the appropriatepressure is used .

Pseudo Pressure Function m(p)

Page 29: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 29/93

Pseudo-Pressure Function m(p)

∫ µ= p

p 0

dpzp2)p(m

m(p) is a function of: • pressure

• temperature• gas composition

m(p)

p

1st Approach

Page 30: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 30/93

1st Approach

Flow Equation: LAMINAR flow assumption

1)z

p

µ

tp1

tp

kcp t2

∂∂

η=

∂∂φµ=∇

= CONSTANT= CONSTANT (p > 3000(p > 3000 psipsi))

2) zµ

t

p1

t

p

k

cp

22t22

η=

∂φµ=∇

= CONSTANT= CONSTANT (p < 2000(p < 2000 psipsi))

RIGOROUS SOLUTIONRIGOROUS SOLUTION

(no simplifying assumptions)(no simplifying assumptions)

t)p(m1

t)p(m

kc)p(m t2

∂∂

η=

∂∂φµ=∇

3)

SOLVI NG EQUATI ONSOLVI NG EQUATI ON

tpzpkcrprzprr1t

∂∂φ= 

  

 

∂∂µ∂∂

2nd Approach

Page 31: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 31/93

2nd Approach

Flow Equation: TURBULENT flow assumption2vv

kdr

dpβρ+

µ=

 

 

 

 ++

π=−

scw

e

scsc

sc

weDqS

r

rlnq

T

p

kh

T)p(m)p(m

),k( φβ=β

Turbulence factorφ

β

It is assumed that there exists a damaged zone in the vicinity of the

wellbore characterized by k’ and β’ different from the formation values.Furthermore, an average viscosity value is assumed.

Apparent Skin

Page 32: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 32/93

S’ 

qSC

S

D

 

 

 

 −β+

 

 

 

 −β

µπ=

ewsc

sc

r

1

'r

1

'r

1

r

1

T

p

Rh2

kMD

DD “ n o n“ n o n -- Dar cy f l ow coe f f i ci en t ”Dar cy f l ow coe f f i ci en t ”

APPARENT SKI N S’APPARENT SKI N S’

S’=S+DqSC

Apparent Skin

Flow Equations

Page 33: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 33/93

Flow Equations

PSEUDOPSEUDO-- STEADY STATE FLOW EQUATI ONSTEADY STATE FLOW EQUATI ON

 

  

 ++

π=− sc

w

esc

sc

scw DqS

r

r472.0lnq

T

p

kh

T)p(m)p(m

sde r r 472.0 =

pp e →

TRAN SI ENT FLOW EQUATI ONTRAN SI ENT FLOW EQUATI ON

Under transient conditions D=f(tD) but a constant value is attained when rd>> r’ 

)Dq2S2t25.2(lnqT

p

kh2

T)p(m)p(m scDsc

sc

scwi ++

π=−

 

  

 

φµ=

2wtw

d

rc

kt25.2ln

2

1

r

rln

ie pp →

Flow Equations for Reservoir Engineering

Page 34: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 34/93

If a well is asymmetrically located in a bounded, irregularly shapeddrainage area the flow equations derived in the case of a porous mediumof infinite extent can still be applied provided that the effects of thepermeability limits which bound the drainage area are taken into account.

Flow Equations for Reservoir Engineering

METHOD OF I MAGE W ELLSMETHOD OF I MAGE W ELLSA virtual, hydraulically equivalent situation is assumed to simulate theadditional pressure drops due to the reflection of the pressuredisturbances on the permeability limits (no-flow boundaries).

d/2

P P'

k,φ

d/2

k,φ

Liquid Flow Equations

Page 35: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 35/93

Liquid Flow Equations

For 20rd

w

≥   

  

η−−=

  

  

t4dE

21t,

rdP

2

iD

w

 

 

 

 

η−−π

µ

−= t4

d

Et25.2lnkh4

q

p)t,r(p

2

iDiw

 

  

 +

π

µ−= D

w

Diw t,r

dPt25.2ln

2

1

kh2

qp)t,r(pLinear boundary:

For an asymmetrically well located in a bounded, irregularly shaped drainage area aninfinite number of images has to be accounted for, and the influence of each of the

images depends on the distance from the producing well:

 

  

 

η−−

π

µ−= ∑

=1 j

2 j

iDiwt4

dEt25.2ln

kh4

qp)t,r(p

0t

dif 0

t4

dE

2

i→

∞→→

 

 

 

 

η−

Superposition in space

F function

Page 36: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 36/93

Dimensionless time with respect to the drainage area:

A

rt

Ac

ktt

2w

D

t

AD =φµ

=

FF fun ct i on o r MBHMBH f u n ct i on ( Mat t h e w s, Br o ns, Hazeb r oek )

∑∞

  

 

η−+π=

1 j

2 j

iADt4

dEt4F

F depends on:

•Time (tDA)•Shape of the drainage area

•Well location within the drainage area

F function

F function or MBH function

Page 37: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 37/93

F function or MBH function

Late transient conditions

Page 38: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 38/93

)Ft4t25.2(lnkh4

q

p)t,r(p ADDiw −π+π

µ

−=

)Ft4(kh4

qpp

ADi* −π

π

µ−=

The influence of the boundaries of the drainage area is felt

D*

w t25.2lnkh4

qp)t,r(p

π

µ−=

An equivalent pressure value p*

, which has no physical meaning,is defined:

Late transient conditions

Pseudo-steady state conditions

Page 39: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 39/93

At the time ts when the pseudo-steady state is reached, the FF functionstabilizes and becomes linear. In dimensionless terms:

ADA tclnF =sADAD tt >when

DI ETZ SHAPE FACTORDI ETZ SHAPE FACTOR ccAA: depends on the shape of the drainage

area, and on the well location within the drainage area

 

 

 

 π+

π

µ−=

AD2wA

iw t4

rc

A25.2ln

kh4

qp)t,r(p

kh4

qt4pp

ADiπ

µπ=− 2

wA

wrc

A25.2ln

kh4

qp)t,r(p

π

µ−=

Furthermore: Fkh4

qpp *

π

µ+=

In the case of pseudo-steady state the average pressure is used:

p

V

V

1

c ∆

= φ=− cAh

qtpp i

Pseudo steady state conditions

Dietz shape factor cA

Page 40: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 40/93

Dietz shape factor cA

Pressure decline at the wellbore in time

Page 41: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 41/93

LATE TRANSIENT CONDI TIONS LATE TRANSIENT CONDI TIONS (one or more boundaries are felt)

EARLY TRANSIENT CONDI TIONS EARLY TRANSIENT CONDI TIONS (radial flow)

PSEUDO PSEUDO - - STEADY STATE CONDITIONS STEADY STATE CONDI TIONS (all boundaries are felt)

t

P(rw, t)

( 1 )( 3 )

( 2 )

Liquid Flow Equations

Page 42: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 42/93

( 1 ) General equation

)S2Ft4t25.2(lnkh4

qp)t,r(p

ADDiw +−π+π

µ−=

 

  

 +

π

µ−= S2

rc

A25.2ln

kh4

qp)t,r(p

2wA

w

( 3 ) Equation valid under pseudopseudo--steady state conditionssteady state conditions

)S2t25.2(lnkh4

qp)t,r(p Diw +π

µ−=

( 2 ) Equation valid under early transient conditionsearly transient conditions only, when noboundaries are felt, also called infinite acting state (radial flow)

q q

Gas Flow Equations

Page 43: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 43/93

t)p(m1)p(m2

∂∂

η=∇tp1p2

∂∂η=∇Liquids Liquids  Gas Gas 

Analogy with the liquid flow: the solutions to the two equationsin dimensionless terms are the same, only the proportionality

groups are different.

ADtP

kh4

qp

π

µ=∆

ADsc

scsc

tP

Tp

kh2Tq)p(m

  

  

π=∆

Ft4t25.2lnt

PADD

AD−π+=

2wA

AD rc

A25.2ln

tP =

DAD

t25.2lnt

P =

Always validAlways valid

PseudoPseudo--steady state conditionssteady state conditions

Early transient conditionsEarly transient conditions

Pressure decline at the wellbore in time

Page 44: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 44/93

PSEUDO PSEUDO - - STEADY STATE CONDITIONS STEADY STATE CONDI TIONS (all boundaries are felt)

LATE TRANSIENT CONDI TIONS LATE TRANSIENT CONDI TIONS (one or more boundaries are felt)

EARLY TRANSIENT CONDI TIONS EARLY TRANSIENT CONDI TIONS (radial flow)

t

m(pw)

( 1 )( 3 )

( 2 )

Gas Flow Equations

Page 45: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 45/93

)'S2t25.2(lnT

p

kh2

Tq)p(m)p(m D

sc

scscwi +

π=−

)'S2Ft4t25.2(lnT

p

kh2

Tq)p(m)p(m

ADD

sc

scscwi +−π+

π=−

 

  

 +

π=− 'S2

rc

A25.2ln

T

p

kh2

Tq)p(m)p(m

2wAsc

scscw

( 1 ) General equation

( 2 ) Equation valid under early transient conditionsearly transient conditions only, when noboundaries are felt, also called infinite acting state (radial flow)

( 3 ) Equation valid under pseudopseudo--steady state conditionssteady state conditions

WELL TESTING

Page 46: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 46/93

( 1 ) PRODUCTI VI TY TESTS( 1 ) PRODUCTI VI TY TESTS

to determine the performance of a well, i.e. the flow rates that can beproduced under an imposed pressure drop

Oil=>Productivity Index (PI ) Gas=>W ell de l i verab i l i t y

( 2 ) DRAW DOW N TESTS

early transient stateearly transient state- k , S

transient statetransient state

- single rate (k , S or S’)

- two rates (k , S, D)pseudopseudo--steady statesteady state (RESERVOI R LI MI T TESTRESERVOI R LI MI T TEST)

- k , Vp

to evaluate the average parameters of the reservoir rock, and to assessthe degree of damage or stimulation in the vicinity of the wellbore

FLOW REGI ME

(3) BUILDUP TESTSto evaluate the average permeability of the reservoir rock, and averagereservoir pressure (k , )p

Deliverability Tests for Gas Wells

Page 47: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 47/93

Back pressure test

qsc

p

SPURGO

tT TTT

qsc1

qsc2

qsc3

qsc4

pwf 1

pwf 2

pwf 3

pwf 4

T > ts

p

CLEAN-UP

qSC

q SC1

q SC2

qSC3

q SC4

T TTT

T>ts

t

p

pp w f1

p w f2

p w f3

p w f4

Page 48: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 48/93

Empirical relationship of Empirical relationship of 

Rowlins Rowlins 

- - 

Schellardt Schellardt 

0.5<n<1

Turbu len tf low

Lamina rf low

AOFAOF ( Abso l u te Open Fl ow ) :( Abso l u te Open Fl ow ) : maximum producing rate which

could be theoretically obtained for ∆pmax,i.e. when pwf  is zero

n2wf 

2sc ppCq  

   −=

logqscAOFAOF

logp2

)pplog(2

wf 

2

logC

1/n

Page 49: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 49/93

 

  

 +

π=− 'S2

rc

A25.2ln

T

p

kh2

Tq)p(m)p(m

2wAsc

scscw

Rigorous equation for gas flow under pseudopseudo--steady statesteady state

conditions:

a

b

SCq)p(m∆

SCq

sc

sc

w bqaq

)p(m)p(m+=

Deliverability Tests for Gas Wells

Page 50: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 50/93

Isochronal test

qsc

p

SPURGO

tT2T TT

qsc1

qsc2

qsc3

qsc4

pwf 1

pwf 2

pwf 3

pwf 4

2T 2T

EXTENDED FLOW

p

CLEAN-UP

qSC

qSC1

qSC4

qSC3

qSC2

T T T2T2T 2T

EXTENDEDFLOW

p

p

pw f 1

pw f 4

pw f3

pw f2

t

Page 51: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 51/93

Empirical relationship of Empirical relationship of Rowlins Rowlins - -  Schellardt Schellardt 

2h4h8hpseudopseudo--steady statesteady state)pplog(

2wf 

2−

scqlog

n2wf 

p2

pCscq  

  

 −=

1/n

1/n

Deliverability Tests for Gas Wells

Page 52: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 52/93

Modified isochronal test

n2w f

2

sc ppCq       

       −−−−====For the first producing rate:For the first producing rate:

(((( ))))n2w f

2w ssc ppCq −−−−====For the rates following the first:For the rates following the first:

qsc

p

SPURGO

tT TT

qsc1

qsc2

qsc3

qsc4

pwf 1

pwf 2

pwf 3

pwf 4

EXTENDED FLOW

T T T

pws4pws3

pws2p

t

CLEAN-

UP

qSC

qSC1

qSC4

qSC3

qSC2

T

EXTENDED

FLOW

p

ppw f1

pw f4

pw f3

pw f 2

T T T T T

pw s2 pw s3

pw s4

Productivity tests for oil wells

Page 53: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 53/93

qoST

p

SPURGO

t

qoST

pwf 

T > ts

p

T

CLEAN-UP

qOST

qOST

T

T>ts

t

p

p

p w f

Productivity tests for oil wells

Page 54: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 54/93

wf 

STo

pp

qPI

−=

Stabilized Productivity Index (for single phase flow only)Stabilized Productivity Index (for single phase flow only)

PI

Flusso bifase

qoST

pwf 

pFlusso monofase

psat

Single phase flowSingle phase flow

psat

pw f

p

qost

PI

Two phase flowTwo phase flow

Drawdown tests for oil wells

Page 55: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 55/93

qoST

p

t

p(rw,t)

p

q

p

qOSTq

p

p(rw,t)

t

Page 56: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 56/93

The reservoir is assumed as an infinite acting system(radial geometry)

Hy po th esi s o f cons tan t f l ow ra t e q  Hy po th esi s o f cons tan t f l ow ra t e q  

  

   =

πµ−= D

w

iw t,1rrP

kh2qp)t,r(p

φµ=

∆µ

π

 

 

 

=

trc

kt

pq

kh2

t,1r

r

P

2w

D

Dw

Early transient stateEarly transient state:

1 0 0t D <<<<

Match point

Page 57: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 57/93

+φµ

=

∆+µ

π=  

   =

tlogr c

klogtlog

plogq

kh2logt,1r r Plog

2w

D

Dw

On a l og - l og g raph )t(f t,1r

rP)t(f p DD

w

  

 =⇔=∆

Match point

Page 58: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 58/93

tD

 

 

 = D

w

t,1r

rP

t

∆p

Match point

Page 59: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 59/93

t

∆p

tD

 

 

 

 = D

w

t,1r

rP

* M* M

Page 60: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 60/93

Any point M chosen in the superposition area of the two diagramshas two coordinate sets, one for each graph. The coordinatevalues, read on the corresponding axes, allow the calculation of the constants by which the two curves are translated and,

therefore, the evaluation of the parameters of the reservoir rock parameters of the reservoir rock :

MD

M

2w

M

MD

w

t

t

r

k

c

p

t,1r

r

P

2

qk h

µµµµ====φφφφ

∆∆∆∆

   

   

   

   

====

ππππ

µµµµ====

Wellbore Storage

Page 61: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 61/93

surface flowrate 

sandface flowrate 

drawdown 

q

time

qwh

qsf < qwh

Wellbore Storage

Page 62: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 62/93

wcVp

V

C =∆

=

tqV ∆=∆ tCqp ∆=∆

The w e l lbo re st o rage coe f f i c ien t depends on  The w e l lbo re st o rage coe f f i c ien t depends on  : : 

# fluid compressibility

# wellbore dimensionand

# formation permeability: low permeability formations induce morerelevant wellbore storage effects

∆p is a linear function of  ∆t, and it will be demonstrated that on a

dimensionless log-log graph the slope is equal to unity.

2w

D hrc2

C

C φπ=

Dimensionless wellbore storage coefficient Dimensionless wellbore storage coefficient 

Type-Curves of Agarwal et al.(1970)

Page 63: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 63/93

The t y pe  The t y pe  - - cu r ves ob t a ined by  cu r ves ob t a ined by  A g a r w a l  A g a r w a l  e t a l.e t a l.

 

  

 == DD

w

D C,S,t,1r

rPf P

describe the pressure decline at the wellbore in dimensionless terms asa function of wellbore storage and skin factor.

Again, the match point method allows the evaluation of kh (and cφ):

MD

M

2w

M

MD

t

t

r

kc

p

P

2

qkh

µ=φ

∆π

µ=

Type-Curves of Agarwal et al.(1970)

Page 64: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 64/93

PD

tD

Transient state

Page 65: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 65/93

Transient stateTransient state:

DD

D

C)S5.36 0(t

1 0 0t

++++≥≥≥≥

≥≥≥≥

Pressure data can be assumed free from wellbore storage effects

( )S2t25.2lnkh4

qp)t,r(p Diw +

π

µ−=

 

  

 ++

φµ+

π

µ−= S281.0

rc

klntln

kh4

qp)t,r(p

2wt

iw

Transient State

Page 66: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 66/93

m

ln t

p(rw,t)

p

ln t

p

p(rw, t)

m

k h4

qm

ππππ

µµµµ−−−−====

( )S2t25.2lnkh4

qp)t,r(p Diw +

π

µ−=

Transient State

Page 67: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 67/93

φµ−

−== 0.9

rc

kln

m

p)h1t,r(p

2

1S

2wt

iw

At  ∆t= 1 hour  

  

 ++

φµπ

µ−== S20.9

rc

kln

kh4

qp)h1t,r(p

2wt

iw

Determination of the skin factor S Determination of the skin factor S 

Reservoir Limit Test

Page 68: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 68/93

PseudoPseudo--steady state conditionssteady state conditions

 

  

 +π+

π

µ−= S2t4

rc

A25.2ln

kh4

qp)t,r(p

AD2wA

iw

*mc

qAhV

t

p −=φ=Pore volume drained by the well:Pore volume drained by the well:

m*

t

p(rw,t)p(rw,t)

t

m *

tAhc qS2rcA25.2lnkh4qp)t,r(pt

2wA

iwφ−

 

  

 +πµ−=

Ahc

q*m

t φφφφ−−−−====

Dietz Shape Factor cA

Page 69: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 69/93

=−=π=

m

)0t,r(p)h1t,r(pexp

*m

m

3600

4c ww

A

It is obtained by combination of the analysis of the drowdown test rununder both transient conditions [from which m and p(rw,t) at t=1h areknown] and pseudo-steady conditions [from which m* and p(rw,t) att=0 are known].

 

  

 +

π

µ−==

 

  

 ++

φµπµ−==

S2rc

A25.2ln

kh4

qp)0t,r(p

S20.9rc

klnkh4

qp)h1t,r(p

2wA

iw

2wt

iw

The calculated value for cA can then be compared with the Dietz shapefactors presented for a variety of different geometrical configurationsto infer the shape of the drainage area and the well location within the

drainage area.

Drawdown Tests for Gas Wells

I th f ll i l t d d t t b f d t

Page 70: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 70/93

In the case of gas wells single rate drawdown tests can be performed toevaluate the parameters of the producing formation parameters of the producing formation  just as for oil wellsprovided that the appropriate gas flow equations are used forinterpretation.

)'S281.0rc

klnt(ln

T

p

kh2

Tq)p(m)p(m

2wtsc

scsciw ++

φµ+

π−=

Transient state flow equationTransient state flow equation

PseudoPseudo--steady state flow equationsteady state flow equation

 

  

 +

φµπ+

π−= 'S2t

Ac

k4

rc

A25.2ln

T

p

kh2

Tq)p(m)p(m

t2wAsc

scsciw

However, t w o sing le ra t e i soch r ona l  tests are usually performed ingas well testing. In fact, interpretation of the late transient pressuredata allows the determination of the apparent skin factor only, but two

flow rates are needed to determine both S and D .

Drawdown Tests for Gas Wells

Page 71: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 71/93

qsc1

p

t

p(rw,t)

p

q

qsc2

T T2T

q

p

p

qSC1

qSC2

p(rw,t)

T T2T

t

Page 72: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 72/93

m2

ln t

m(pw)

m1

m p( )

ln t

m(pw)

m(p)

 

 

 

 

π−=sc

sc2sc

2 T

p

kh2

Tq

m

  

  

π−=

sc

sc1sc1

Tp

kh2Tqm

For ∆t = 1 h  

φµ−

−=+

−φµ−

−=+

=

=

0.9rc

kln

m

)p(m)p(m

2

1DqS

0.9rc

klnm

)p(m)p(m

2

1DqS

2wt2

i2h1tw

2sc

2wt1

i1h1t

w

1sc

Buildup Tests for Oil Wells

The well is shut in, i.e. q=0, after producing at a constant flow rate for a certain time.

Page 73: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 73/93

u , q 0, a p odu g a a o a o a o a a

Pressure variations occur under transient conditions.

p(rw,t)

qOST

tp+∆ttp

p

If the well has been produced at a constant flow rate then t is the production timeprior to shut-in. If the well has been produced at different flow rates then theeffective production time t eq is to be used

STo

p

eqq

N

t ====

∆t=0

cumulative volume of oil since beginning of production

final flow rate

Flow equation which extend the flow equation derived for an infinite acting system

Page 74: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 74/93

)S2t25.2(lnkh4

qp)t,r(p D

*w +

π

µ−=

q q g y

(radial geometry) to the case of a finite, irregularly-shaped drainage area:

i* pp =

If the well is new:F

kh4

qpp *

π

µ+=

If the well has been produced:

The equation applies when the flow rate q is constant. The superposition theoremis applied:+q

-q

tp+∆t

tp

++∆++

φµπµ−= S281.0)ttln(

rckln

kh4qp)t,r(p p2

wt

*w

  

   ++∆+

φµπµ+ S281.0tln

rckln

kh4q

2wt

Horner Plot

Page 75: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 75/93

t

ttln

kh4

qp)t,r(p

p*w

∆+

π

µ−=

!! Horne r p lo t  Ho rne r p lo t  

k h4

qm

ππππ

µµµµ====

pw

t

ttln

p

∆+

m

p*

!! Bu i l dup equa t i on o r Ho rne r equa t i on  Bu i l dup equa t i on o r Ho rne r equa t i on  

mFpp * −=

The pressure p*, from which the volume averaged reservoir pressure p can be

determined, is evaluated at an infinite shut-in time ∆t :

Afterflow

Page 76: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 76/93

surface flowrate 

sandface flowrate 

build-up 

q

time

qwh=0

qsf >0

Horner Plot

Page 77: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 77/93

The solution is derived with respect to an ideal well, and in addition S does not appearin the buildup equation. However, the skin effects as well as the after flow effects dueto shutting the well in at the surface rather than downhole have to be taken intoaccount.

HORNER PLOT HORNER PLOT 

t

ttln

p

∆+

pw

m

After flowAfter flow

Skin effectSkin effect

*p

Determination of the Skin Factor

••atat ∆∆t=0, i.e.at the production time tt=0, i.e.at the production time t Oil Well

Page 78: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 78/93

)S2t25.2(lnkh4

qp)0t,r(p D

*w +

π

µ−==∆

 

 

 

 ++

φµ+

π

µ−==∆ S281.0

rc

klntln

kh4

qp)0t,r(p

2wtiw

••atat ∆∆t=1 hourt=1 hour

)3600lnt(lnkh4

qp)h1t,r(p *

w−

π

µ−==∆

h1tif ttt =∆≈+∆

 

  

 +++

φµπ

µ−=−

=∆=∆3600lnS281.0

rc

kln

kh4

qpp

2

wt

h1tw0tw

  

   −

φµ−−= =∆=∆ 9

rckln

mpp

21S

2

wt

0twh1tw

Buildup Tests for Gas Wells

pTq scsc*

Page 79: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 79/93

)'S2t25.2(lnT

p

kh2

q

)p(m)p(m D

sc

scscw +π−=

  

  

∆∆+

π−=

tttln

Tp

kh2Tq)p(m)p(m p

sc

scsc*w

!! Bu i l dup equa t i on o r Ho rne r equa t i on  Bu i l dup equa t i on o r Ho rne r equa t i on  

t

ttlnp

∆+

!! Horn er Plo t  Horn er Plo t  

m(pw)

m

sc

scsc

T

p

k h2

Tqm

ππππ====m(p*)

Determination of the Skin Factor

Gas Well

Page 80: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 80/93

φµ

−−

= =∆=∆ 0.9

rc

kln

m

)p(m)p(m

2

1'S

2

wt

0twh1tw

Type-Curves of Agarwal et al.(1970)

The type The type - - curves obtained by curves obtained by  Agarwal Agarwal et al et al ..

Page 81: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 81/93

 

  

 == DD

w

D C,S,t,1r

rPf P

represent solutions to the drawdown equation to describe the pressure decline at the

wellbore, expressed in dimensionless terms, as a function of wellbore storage effectsand skin factor.

However, the use of the type-curves to interpret also buildup tests could be justifiedprovided that the producing time prior to well shut-in was sufficiently large so thatthe rate of pressure decline could be assumed negligible during the shut-in period. If 

this assumption was satisfied the buildup curve would be a mirror image of thedrawdown curve, and as such analyzed.

Furthermore, Agarwal has empirically found that by plotting the buildup pressuredata:

)0t,r(p)t,r(pww

=∆−

on a log-log graph versus an equivalent expression of time, defined as follows:

tt

ttt

p

p

e∆+

∆=∆

the type-curve analysis can be made without the requirement of a long drawdownperiod.

Type-Curves

   r

Page 82: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 82/93

   == DDw

D C,S,t,1rPf PThe Agarwal type curves:

can be written as a function of: t

C

kh2

C

t

D

D

µ

π=

trc

kt

2wt

Dφµ

=

2wt

Dhrc2

CC

φπ=

Infinite acting radial flow equation for fluid flux occurring in a homogeneous porous

medium under transient conditions:

( )S2t25.2lnkh4

qp)t,r(p Diw +

π

µ−=

( )S2t25.2ln2

1P DD +=

obtained from

( )

++=

S2

D

D

DD eCln81.0C

t

ln2

1

P

By substitution:

Type-Curves Plot

100

Page 83: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 83/93

D

DD

C

tP =

(i.e., unit slope)

0.1

1

10

0.1 1 10 100 1000 10000t

CD

D

PD C eDS2 10000

 0. 1

PD CDe2S10000

 0. 1

tD

CD

When pure wellbore storage flow occurs:

Pressure Derivative Method

According to this method, which is largely based on the solutions obtained byAgarwal et al., the type-curves are redrawn in terms of the derivative of the

Page 84: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 84/93

g , ypdimensionless pressure PD:

)C /t(d

dP'P

DD

DD =

The dimensionless pressure values are plotted on a log-log graph as follows:

)C /t(f )C /t('P DDDDD =

The drawdown test interpretation is carried out by matching the field pressure datap(rw,t), expressed in terms of pressure derivative:

dt

)pp(d'p wf i −

=∆

)t(f t'p ∆=∆∆and plotted on a log-log graph as follows:

with the type-curves of the derivative of the dimensionless pressure.

In the case of a buildup test the field time-pressure data p(rw,t) are plotted on a log-log graph as follows:

)t(f t

ttt'p ∆=∆+∆∆

Type-Curve Derivatives

D' dP

Page 85: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 85/93

 

  

 =

D

DD

C

td

P

PURE W ELLBORE STORAGE PURE W ELLBORE STORAGE 

1

C

t

d

dPP

D

D

D'D =

 

 

 

 =

I NFI NI TE ACTI NG RADI AL FLOW ( I .A.R.F. )I NFI NI TE ACTI NG RADI AL FLOW ( I .A.R.F. )

FOR A H OMOGENEOUS POROUS MEDI UM FOR A H OMOGENEOUS POROUS MEDI UM 

 

  

 =

 

  

 =

D

D

D

D

D'D

C

t

5.0

C

td

dPP

Type-Curves and Type-Curve Derivatives

Page 86: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 86/93

10-210-3 10-1 1 10

∆∆∆∆t (hr)

103

102

101

104

      ∆      ∆∆      ∆  p   (  p  s

   i  a   )   &

      ∆      ∆∆      ∆  p   ’

WellboreStorage

Radial Flow

CDe2S

1030

1012

106

10-1

102

104

Real data vs type-curves

Page 87: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 87/93

∆∆∆∆t (hr)

      ∆      ∆∆      ∆  p   (  p  s   i  a   )   &

      ∆      ∆∆      ∆  p   ’

103

102

101

100

10-1

10-2 10-1 1 10 102 103 104103

LogLog ∆∆∆∆∆∆∆∆pp

D er i va t i veD er i va t i ve

104

Superposition real data & type-curves

Page 88: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 88/93

103

102

101

10-210-3 10-1 1 10 101

104

∆∆∆∆t (hr)

      ∆      ∆∆      ∆  p   (  p  s   i

  a   )   &

      ∆      ∆∆      ∆  p   ’

Page 89: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 89/93

Interpretation Result

Pr ess r e Mat chPr ess r e Mat ch k hk hB

kh4

PD ∆

π

Page 90: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 90/93

• C C g ives 2wt

Dhrc2

CC πφ=

•• Cu r ve Mat ch Cu r ve Mat ch 

S2

DeC

•• Skin Skin   

 

 

 

= D

S2D

C

eC

ln2

1

S

• Pr essur e Mat ch Pr essur e Mat ch  k h k h pqBPo

D ∆µ=

••Tim e Mat ch  Tim e Mat ch   C C tC

kh2

Ct

D

D

∆µ

π

=

Drawdown Test Analysis

Page 91: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 91/93

Pressure

   L  o  g      ∆      ∆∆      ∆  p   ’

Log t

Pr essu r e vs t im e

Pressu r e de r i va t i ve vs t im e

Log t

Pr e ssu r e v s Ho r n er t i m e

Buildup Test Analysis

Page 92: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 92/93

Log t

   P  r  e  s  s  u

  r  e

   L  o  g      ∆      ∆∆      ∆  p   ’

Pr e ssu r e v s Ho r n er t i m e

Pr essu r e de r i va t i ve vs t im e

Interpretation with the Pressure Derivative Method

The derivatives of the type-curves exhibit a linear dependency on time of 

pressure data points Linearity can occur according to different yet

Page 93: ENI_WTA_3

7/29/2019 ENI_WTA_3

http://slidepdf.com/reader/full/eniwta3 93/93

pressure data points. Linearity can occur according to different yetcharacteristic slopes which are a function of flow geometry:

FLOW TYPE FLOW TYPE  PRESSURE PRESSURE  SLOPE SLOPE 

linear linear 

bilinear bilinear 

radial radial 

spherical spherical 

(hemispherical)(hemispherical)

)t(f p =

)t(f p 4=

)t(lnf p =

 

  

 =

t

1f p

1/ 2 1/ 2 

1/ 4 1/ 4 

- - 1/ 2 1/ 2 

horizontal horizontal 

straight line straight line