38
[email protected]; [email protected] Tunnel-injected UV LEDs Engineering of Hole Transport in Tunneling Injected UV-A LEDs Yuewei Zhang, Sriram Krishnamoorthy, Fatih Akyol, Zane Jamal-Eddine Siddharth Rajan ECE, The Ohio State University Andrew Allerman, Michael Moseley, Andrew Armstrong Sandia National Labs Funding: NSF EECS-1408416

Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . [email protected]; [email protected] • Motivation • Tunnel-injected UV LEDs enable

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs

Engineering of Hole Transport in Tunneling Injected UV-A LEDs

Yuewei Zhang, Sriram Krishnamoorthy, Fatih Akyol, Zane Jamal-Eddine Siddharth Rajan

ECE, The Ohio State University

Andrew Allerman, Michael Moseley, Andrew Armstrong Sandia National Labs

Funding: NSF EECS-1408416

Page 2: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 2

• Motivation

• Tunnel-injected UV LEDs enable engineering of hole doping

• CV measurement to probed compensation impurities

• Acceptor free UV LEDs

• High efficiency UV LEDs

• Summary

Outline: Tunnel-injected UV LED

Page 3: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 3

• Motivation

• Tunnel-injected UV LEDs enable engineering of hole doping

• CV measurement to probed compensation impurities

• Acceptor free UV LEDs

• High efficiency UV LEDs

• Summary

Outline: Tunnel-injected UV LED

Page 4: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 4

Motivation

• UV lighting market is increasing.

• UV LEDs are replacing the traditional UV lamps.

UV C UV B UV A 400 nm 315 nm 280 nm 100 nm

UV curing

Printing

Sensing

Phototherapy

Medical imaging

Protein analysis

Drug discovery Sterilization

Sensing

Disinfection

DNA sequencing

Y. Muramoto, Semicond. Sci. Technol. 29 (2014) 084004.

Page 5: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 5

Why we need tunnel-injected UV LEDs

• Dramatic decrease of WPE for shorter wavelengths.

• WPE < 6% for state-of-the-art UV LEDs

200 250 300 350 400 4501E-3

0.01

0.1

1

10

100

EQE WPE

Effic

iency

(%)

Wavelength (nm)

UVC

UVBUVA

Page 6: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 6

P-GaN

P-AlGaN

P-AlGaN/AlGaN SL

MQW N-AlGaN

P-type contact

Conventional UV LEDs

Why we need tunnel-injected UV LEDs

Na=1 x 1019 cm-3 GaN: 140 meV, Na-=7 x 1017 cm-3 AlN: 630 meV, Na-=6 x 1013 cm-3

Absorption loss

High resistance

Page 7: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 7

P-GaN

P-AlGaN

P-AlGaN/AlGaN SL

MQW N-AlGaN

P-type contact N-AlGaN

P-AlGaN

Tunnel Junction

MQW N-AlGaN

N-type contact

Low resistance

Transparent

Conventional UV LEDs TJ-UV LEDs

Why we need tunnel-injected UV LEDs

Na=1 x 1019 cm-3 GaN: 140 meV, Na-=7 x 1017 cm-3 AlN: 630 meV, Na-=6 x 1013 cm-3

Absorption loss

High resistance Efficient hole injection

• Reduced light absorption loss • Enhanced injection efficiency

VLED e-

h+

e- Ec

Ev

Page 8: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 8

Overview of the tunnel junction technology

1 2 3 4 510-8

10-6

10-4

10-2

100

102

GaA

s

GaS

b/In

As InP

GaN

AlG

aAs/

InAl

GaP

TJ

resis

tanc

e (Ω

cm2 )

Bandgap (eV)

Polarization engineered tunnel junctions at OSU

GaN TJs: UCSB, JT Leonard, APL 107 (9), 091105 (2015) Meijo/ Nagoya, M Kaga, JJAP 52 (8S), 08JH06 (2013) EPFL, M Malinverni, APL 107, 051107, (2015). OSU, S. Krishnamoorthy, Nano Lett., 13, 2570 (2013) OSU, S. Krishnamoorthy, APL 102, 113503 (2013) OSU, F. Akyol, APL 108 (13), 131103 (2016).

Page 9: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 9

Overview of the tunnel junction technology

1 2 3 4 510-8

10-6

10-4

10-2

100

102

Al0.

3Ga 0.

7N

GaA

s

GaS

b/In

As InP

GaN

AlG

aAs/

InAl

GaP

TJ

resis

tanc

e (Ω

cm2 )

Bandgap (eV)

Polarization engineered tunnel junctions at OSU

UV TJs Y. Zhang, APL, 106 (14), 141103 (2015). Y. Zhang, 73rd DRC, 69 (2015). Y. Zhang, APEX 9 (5), 052102 (2016). Y. Zhang, APL 109 (12), 121102

280 300 320 340 360 380 400 4200

1x104

2x104

3x104

4x104

Smooth Rough

Inte

nsity

Wavelength (nm)

200 400 600 800101

102

103

104

Inte

nsity

Wavelength (nm)

326 nm emission

2014

GaN TJs: UCSB, JT Leonard, APL 107 (9), 091105 (2015) Meijo/ Nagoya, M Kaga, JJAP 52 (8S), 08JH06 (2013) EPFL, M Malinverni, APL 107, 051107, (2015). OSU, S. Krishnamoorthy, Nano Lett., 13, 2570 (2013) OSU, S. Krishnamoorthy, APL 102, 113503 (2013) OSU, F. Akyol, APL 108 (13), 131103 (2016).

Page 10: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 10

Overview of the tunnel junction technology

1 2 3 4 510-8

10-6

10-4

10-2

100

102

Al0.

55G

a 0.45

N

Al0.

3Ga 0.

7N

GaA

s

GaS

b/In

As InP

GaN

AlG

aAs/

InAl

GaP

TJ

resis

tanc

e (Ω

cm2 )

Bandgap (eV)

Polarization engineered tunnel junctions at OSU

2014

2015

250 300 350 4000

1x104

2x104

3x104

4x104

Inten

sity

Wavelength (nm)

0.3 mA to 6 mA

30um device

292 nm emission

UV TJs Y. Zhang, APL, 106 (14), 141103 (2015). Y. Zhang, 73rd DRC, 69 (2015). Y. Zhang, APEX 9 (5), 052102 (2016). Y. Zhang, APL 109 (12), 121102

GaN TJs: UCSB, JT Leonard, APL 107 (9), 091105 (2015) Meijo/ Nagoya, M Kaga, JJAP 52 (8S), 08JH06 (2013) EPFL, M Malinverni, APL 107, 051107, (2015). OSU, S. Krishnamoorthy, Nano Lett., 13, 2570 (2013) OSU, S. Krishnamoorthy, APL 102, 113503 (2013) OSU, F. Akyol, APL 108 (13), 131103 (2016).

Page 11: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 11

Challenge: p-AlGaN compensation

N-AlGaN

P-AlGaN

Tunnel Junction

MQW N-AlGaN

N-type contact

TJ-UV LEDs

Buried p-AlGaN layer • MBE is better than MOCVD

Page 12: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 12

N-AlGaN

P-AlGaN

Tunnel Junction

MQW N-AlGaN

N-type contact

TJ-UV LEDs

Challenge: p-AlGaN compensation

Buried p-AlGaN layer • MBE is better than MOCVD

500 550 600 650 700

1E19

1E20

1E21

Mg c

once

ntra

tion (

cm-3)

Growth temperature (°C)

MBE growth: • High growth temperature is preferred

for AlGaN • Mg incorporation reduces with

increasing temperature • Compensation shows up at low Mg

doping level Compensation

Oxygen/ Carbon/ Native defects – vacancies/ dislocations APL 94, 091903 (2009) PRB 65, 155212 (2002)

Page 13: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 13

Challenge: p-AlGaN compensation

0 50 100 150 200-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

Proper p-n junction

Without compensation

Page 14: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 14

Challenge: p-AlGaN compensation

Compensation of the acceptors • Increased depletion of the p-AlGaN layer • Increased tunneling barrier • Reduced hole injection

0 50 100 150 200-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)0 50 100 150 200

-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

Proper p-n junction

Without compensation With compensation

Page 15: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 15

Challenge: p-AlGaN compensation

Compensation of the acceptors • Increased depletion of the p-AlGaN layer • Increased tunneling barrier • Reduced hole injection

0 50 100 150 200-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)0 50 100 150 200

-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

Proper p-n junction

Without compensation With compensation

How to determine the compensation impurity density?

Page 16: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 16

Outline: Tunnel-injected UV LED

• Motivation

• Tunnel-injected UV LEDs enable analysis of hole doping

• CV measurement to probed compensation impurities

• Acceptor free UV LEDs

• High efficiency UV LEDs

• Summary

Page 17: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 17

Tunnel-injected UV LED structure

Sample Mg doping (cm-3)

A 0

B 7 x 1018

C 3 x 1019

Epitaxial Structures

MBE growth Sharp interfaces Sharp doping profile

N

Tunnel junction

P

N

Al0.3Ga0.7N Template

50 nm n-Al0.3Ga0.7N

4 nm In0.25Ga0.75N

150 nm n+ Al0.3Ga0.7N

400 nm n+ Al0.3Ga0.7N

1.5 nm AlN

15 nm graded n++ AlGaN

QW ×3

20 nm p-AlGaN

Al0.3Ga0.7N Al0.75Ga0.25N

+c

QWs

Page 18: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 18

0 10 20 30 40 50 60 70 80 90-5-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

0

NA-

+ρ3D

-ρ3D Depletion charges

ND+

𝐹 𝐹

n+ n++

InGaN

p-grading QWs n

+ρ’3D

-ρ3D

Tunnel-injected UV LED structure

𝑁𝑁𝐴𝐴∗ = 𝑁𝑁𝐴𝐴 − 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

Polarization grading => Formation of p-n diode even without Mg doping.

NA* = 0

P-AlGaN grading: • Higher barrier to block overflowing

electrons • Provides high density polarization

charge 20 nm grading from Al0.75Ga0.25N to Al0.3Ga0.7N => ρπ = 1.5 x 1019 cm-3

J Simon, Science 327 (5961), 60-64.

Page 19: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 19

C-V results

A: 20 nm, [Mg] = 0

• A shows nearly constant capacitance Modulation of 2D carriers

• Depletion width is 24 nm. Matches p-AlGaN layer thickness Full depletion of the whole p-AlGaN

layer -5 -4 -3 -2 -1 0

2.0

2.5

3.0

3.5

4.0

Capa

citan

ce (1

0-7 F/

cm2 )

Voltage (V)

A

20 25 30 35 40 45 50

3x1018

1019

1020

N eff (c

m-3)

Depletion Width (nm)

23 24 251019

1020

1021

N eff (c

m-3)

Width (nm)

A

Page 20: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 20

C-V results

A: 20 nm, [Mg] = 0

• A shows nearly constant capacitance Modulation of 2D carriers

• Depletion width is 24 nm. Matches p-AlGaN layer thickness Full depletion of the whole p-AlGaN

layer -5 -4 -3 -2 -1 0

2.0

2.5

3.0

3.5

4.0

Capa

citan

ce (1

0-7 F/

cm2 )

Voltage (V)

20 25 30 35 40 45 50

3x1018

1019

1020

N eff (c

m-3)

Depletion Width (nm)

23 24 251019

1020

1021

N eff (c

m-3)

Width (nm)

A

0 10 20 30 40 50 60 70 80 90-5-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

Ceff

NA* < 0

A

Page 21: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 21

C-V results

A: [Mg] = 0 B: [Mg] = 7x1018 cm-3

-5 -4 -3 -2 -1 0

2.0

2.5

3.0

3.5

4.0

Capa

citan

ce (1

0-7 F/

cm2 )

Voltage (V)

B

20 25 30 35 40 45 50

3x1018

1019

1020

N eff (c

m-3)

Depletion Width (nm)

23 24 251019

1020

1021

N eff (c

m-3)

Width (nm)

A B

0 10 20 30 40 50 60 70 80 90-5-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

Ceff

• B shows similar behavior as A Fully compensated.

NA* < 0

A

Page 22: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 22

0 10 20 30 40 50 60 70 80 90-5-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

C-V results

-5 -4 -3 -2 -1 0

2.0

2.5

3.0

3.5

4.0

Capa

citan

ce (1

0-7 F/

cm2 )

Voltage (V)

B

20 25 30 35 40 45 50

3x1018

1019

1020

N eff (c

m-3)

Depletion Width (nm)

23 24 251019

1020

1021

N eff (c

m-3)

Width (nm)

A B

Ceff

• B shows similar behavior as A Fully compensated.

• Full depletion starts at NA*=NA- Nimp= −5x1018 cm-3 from energy band diagrams

Donor-type compensating impurity density is Nimp =1.2x1019 cm-3

NA* < 0

A: [Mg] = 0 B: [Mg] = 7x1018 cm-3

A

Page 23: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 23

C-V results

-5 -4 -3 -2 -1 0

2.0

2.5

3.0

3.5

4.0

Capa

citan

ce (1

0-7 F/

cm2 )

Voltage (V)

B C

20 25 30 35 40 45 50

3x1018

1019

1020

N eff (c

m-3)

Depletion Width (nm)

23 24 251019

1020

1021

N eff (c

m-3)

Width (nm)

A B

C

C: [Mg] = 3x1019 cm-3

• C shows sharp decrease of the capacitance with increased reverse bias Normal p-n junction behavior

A

Page 24: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 24

C-V results

• C shows sharp decrease of the capacitance with increased reverse bias Normal p-n junction behavior

• Effective doping density reach ~ 3x1018 cm-3 Match the doping density in n-AlGaN Depletion of the n-AlGaN layer

0 10 20 30 40 50 60 70 80 90-5-4-3-2-1012345

Ener

gy (e

V)

Thickness (nm)

CTJ CPN

NA*>> ND

-5 -4 -3 -2 -1 0

2.0

2.5

3.0

3.5

4.0

Capa

citan

ce (1

0-7 F/

cm2 )

Voltage (V)

B C

20 25 30 35 40 45 50

3x1018

1019

1020

N eff (c

m-3)

Depletion Width (nm)

23 24 251019

1020

1021

N eff (c

m-3)

Width (nm)

A B

C

C: [Mg] = 3x1019 cm-3

A

Page 25: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 25

Origin of the compensation impurities

Donor-type compensating impurity density is 1.2x1019 cm-3 -- O/C/ native defects?

Page 26: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 26

Origin of the compensation impurities

• [C]/ [O] < 3x1017 cm-3 for the AlGaN layers grown under similar growth conditions.

• Much lower than the compensation impurity density 1.2x1019 cm-3

• Indicates high density of native defects (N vacancies, dislocations) • Higher material quality is necessary

Donor-type compensating impurity density is 1.2x1019 cm-3 -- O/C/ native defects?

Page 27: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 27

A: [Mg]=0 B: 7 × 1018 cm-3 C: 3 × 1019 cm-3

I-V characteristics

-3 0 3 6 90

200

400

600

800

1000

Curre

nt D

ensit

y (A/

cm2 )

Voltage (V) 1 10 100 1000

10-3

10-2

10-1

Resis

tanc

e (Oh

m cm

2 )

Current Density (A/cm2)-3 0 3 6 910-8

10-5

10-2

101

104

Curre

nt D

ensit

y (A/

cm2 )

Voltage (V)

• Increasing doping density from 0 to 3x1019 cm-3 • Reduced turn-on voltage

• 6.2 => 5.7 V • Reduced on-resistance

Increasing doping Increasing

doping

Page 28: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 28

300 330 360 390 420

Wavelength (nm)

Inte

nsity

(a.u

.)

A: [Mg] = 0

750 A/cm2

B: 7×1018 cm-3

222 A/cm2

C: 3×1019 cm-3

200 A/cm2

250 ~ 750 A/cm2

56 ~ 667 A/cm2

20 ~ 440 A/cm2

EL characteristics

• Single peak emission at 325 nm for all the samples.

Page 29: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 29

EL characteristics

• Single peak emission at 325 nm for all the samples.

• A and B show highly non-uniform emission

• InGaN/ AlGaN compositional fluctuations

• Conduction through low tunneling barrier paths

300 330 360 390 420

Wavelength (nm)

Inte

nsity

(a.u

.)

A: [Mg] = 0

750 A/cm2

B: 7×1018 cm-3

222 A/cm2

C: 3×1019 cm-3

200 A/cm2

250 ~ 750 A/cm2

56 ~ 667 A/cm2

20 ~ 440 A/cm2

Page 30: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 30

300 330 360 390 420

Wavelength (nm)

Inte

nsity

(a.u

.)

A: [Mg] = 0

750 A/cm2

B: 7×1018 cm-3

222 A/cm2

C: 3×1019 cm-3

200 A/cm2

250 ~ 750 A/cm2

56 ~ 667 A/cm2

20 ~ 440 A/cm2

EL characteristics

• Single peak emission at 325 nm for all the samples.

• A and B show highly non-uniform emission

• InGaN/ AlGaN compositional fluctuations

• Conduction through low tunneling barrier paths

Demonstration of Mg free UV LED based on tunneling hole injection.

Page 31: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 31

EL characteristics

0 5 10 150.00.20.40.60.81.01.21.4

Powe

r (m

W)

Current (mA)A

B

C

0 5 10

1E-4

1E-3

0.01

0.1

1

Powe

r (m

W)

Current (mA)

A

B

C

• On-wafer measurement, no integrating sphere. Power values come from direct power reading from the spectrometer coupled with a fiber optic cable.

• Power increases from < 1 uW to above 1.4 mW when acceptor doping density is increased from 0 to 3x1019 cm-3.

1.4 mW @ 12 mA 56 W/cm2 @ 480 A/cm2

NA ↑ NA ↑

Page 32: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 32

0 200 4000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5EQ

E (%)

Current Density (A/cm2)

0 200 400 600 8001E-3

0.01

0.1

1

Current Density (A/cm2)

EQE (

%)

EL characteristics

0 200 400

0.0

0.5

1.0

1.5

Current Density (A/cm2)

WPE

(%)

0 200 400 600 8001E-4

1E-3

0.01

0.1

1

WPE

(%)

Current Density (A/cm2)

A: [Mg]=0 B: 7 × 1018 cm-3

C: 3 × 1019 cm-3

A

B

C

A

B

C NA ↑ NA ↑

• On-wafer EQE of 3% • On-wafer WPE of 1.6%, this is compromised by the voltage drop

across the EBL and TJ layers.

Enhanced interband tunneling injection by overcoming compensation.

Page 33: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 33

Compare to state-of-the-art

OSU on-wafer

EQE and WPE values are comparable to state-of-the-art

On-wafer, no integrating sphere

J Rass, Proc. SPIE 9363, 93631K (2015)

Page 34: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 34

• Motivation

• Tunnel-injected UV LEDs enable engineering of hole doping

• CV measurement to probed compensation impurities

• Acceptor free UV LEDs

• High efficiency UV LEDs

• Summary

Outline: Tunnel-injected UV LED

Page 35: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 35

Summary

• UV TJs for up to Al0.7Ga0.3N achieved

200 250 300 350 400 4500.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

(a.u

.)

Wavelength (nm)

Page 36: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 36

Summary

• C-V measurement is used to extract compensating impurity density of 1.2x1019 cm-3 in the p-AlGaN layer.

• UV TJs for up to Al0.7Ga0.3N achieved

200 250 300 350 400 4500.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

(a.u

.)

Wavelength (nm)

Page 37: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 37

Summary

• Acceptor free UV LED emitting at 325 nm achieved using polarization engineering.

• C-V measurement is used to extract compensating impurity density of 1.2x1019 cm-3 in the p-AlGaN layer.

• UV TJs for up to Al0.7Ga0.3N achieved

200 250 300 350 400 4500.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

(a.u

.)

Wavelength (nm)

Page 38: Engineering of Hole Transport in Tunneling Injected UV -A LEDs · Tunnel-injected UV LEDs . zhang.3789@osu.edu; rajan@ece.osu.edu • Motivation • Tunnel-injected UV LEDs enable

[email protected]; [email protected] Tunnel-injected UV LEDs 38

Summary

• Acceptor free UV LED emitting at 325 nm achieved using polarization engineering.

• C-V measurement is used to extract compensating impurity density of 1.2x1019 cm-3 in the p-AlGaN layer.

• Using graded p-AlGaN, obtained record on-wafer EQE=3.37%, WPE=1.62% at 325 nm.

• UV TJs for up to Al0.7Ga0.3N achieved

200 250 300 350 400 4500.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity

(a.u

.)

Wavelength (nm)