274
NIST GCR 96-701 ENERGY-BASED METHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I- FEASIBILITY STUDY Farhang Ostadan Nan Deng Ignacio Arango Bechtel Corporation San Francisco, CA 94119 A Report to: U.S. Department of Commerce Technology Administration National Institute of Standards and Technology Building and Fire Research Laboratory Gaithersburg, MD 20899 August 1996 u.s. Department of Commerce Michael Kantor, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director

ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

NIST GCR 96-701

ENERGY-BASED METHOD FOR LIQUEFACTIONPOTENTIAL EVALUATION, PHASE I­FEASIBILITY STUDY

Farhang OstadanNan DengIgnacio Arango

Bechtel CorporationSan Francisco, CA 94119

A Report to:

U.S. Department of CommerceTechnology AdministrationNational Institute of Standards and TechnologyBuilding and Fire Research LaboratoryGaithersburg, MD 20899

August 1996

u.s. Department of CommerceMichael Kantor, SecretaryTechnology AdministrationMary L. Good, Under Secretary for TechnologyNational Institute of Standards and TechnologyArati Prabhakar, Director

Page 2: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit
Page 3: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

ABSTRACT

This report presents the results of the fIrst phase of a three-phase study on thedevelopment and application of the energy-based method for prediction of theliquefaction potential of sandy soils. The formulation of the method is based on theconvolution of the basic elements from both the "stress" and "strain" approaches and isvery flexible in incorporating the special characteristics of ground motion such as thenear-field effects. The feasibility phase consists of the tasks: 1) to collect and synthesizelaboratory data; 2) to perform ground response analyses at the Wildlife Site, whichsuffered a massive ground liquefaction failure during the Superstition Hills Earthquake;and fInally 3) to compare and to assess the differences between the field and thelaboratory data. Even though the scope of the feasibility study did not permit cyclictesting of the soil samples from the Wildlife Site, the correlation of the fIeld responsedata and the applicable laboratory data are strong. The results of this phase suggest thatdevelopment of an energy-based method to evaluate liquefaction potential is feasible.

KEYWORDS: building technology; liquefaction; strain energy; earthquake; groundresponse; cyclic testing; laboratory measurements; ground motion; pore pressure.

Page 4: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

ACKNOWLEDGMENT

The study was sponsored by the National Institute of Standards and Technology (NIST)under the Contract No. 50SBNB5C8640. Drs. R. Andrus and R. Chung of NISTprovided support and guidance throughout the course of the study. The authors gratefullyacknowledge the support and supply of laboratory data by Dr. J. Koester from the U. S.Army Corps of Engineers. Dr. S. Glaser from the Colorado School of Mines generouslyprovided the data recorded at the Wildlife Site and made many helpful suggestions duringthe course of the study. The report was reviewed by Mr. M. Lewis, geotechnicalmanager, in Bechtel National.

11

Page 5: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

UNITS CONVERSION FACTORS

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

1.2 PURPOSE

1.3 OVERVIEW OF THE REPORT

CHAPTER 2

COLLECTION AND SYNTHESIS OF LABORATORY DATA

2.1 STRAIN ENERGY COMPUTATION

2.2 CYCLIC TRIAXIAL TESTS ON MONTEREY NO. 0 SAND,PERFORMED AT THE UNIVERSITY OF CALIFORNIA,BERKELEY (UCB)

2.3 CYCLIC TRIAXIAL TESTS ON SOIL SAMPLES FROMTHE SAVANNAH RIVER SITE, PERFORMED AT THEUNIVERSITY OF CALIFORNIA, BERKELEY (DCB)

2.4 CYCLIC TORSIONAL TESTS ON SOIL SAMPLES,PERFORMED AT THE UNIVERSITY OF COLORADO(DOC)

iii

PAGE

i

ii

iii

vi

vii

xv

xvi

1-1 through 1-3

1-1

1-1

1-2

1-2

2-1 through 2-36

2-1

2-1

2-2

2-3

2-4

Page 6: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

2.5 CYCLIC TRIAXIAL TESTS ON SOIL SAMPLES FROMTHE NORTHRIDGE SITE, PERFORMED AT THEUNNERSITY OF CALIFORNIA, BERKELEY (VCB)

2.6 CYCLIC TRIAXIAL TESTS ON CLEAN SANDSPERFORMED AT THE WAYNE STATE UNIVERSITY(WSU)

2.7 SUMMARY DATA BY FIGUEROA et aI.

2.8 SUMMARY OF ALL LABORATORY DATA

CHAPTER 3

WILDLIFE SITE: SOILS AND EARTHQUAKE DATA

3.1 BACKGROUND

3.2 WILDLIFE SITE

3.3 STRATIGRAPHY AND SOIL PROPERTIES AT THEWILDLIFE SITE

3.4 INSTRUMENTATION AT THE WILDLIFE SITE

3.5 RECORDED EARTHQUAKE DATA

CHAPTER 4

GROUND RESPONSE ANALYSES AND COMPARISON~THTHELABORATORYDATA

4.1 METHODS OF ANALYSES

4.2 RESULTS OF THE GROUND RESPONSE ANALYSESUSING THE COMPUTER PROGRAM SHAKE

4.3 RESULTS OF THE GROUND RESPONSE ANALYSESUSING THE COMPUTER PROGRAM BDESRA(MODIFIED DESRA)

iv

PAGE

2-4

2-5

2-5

2-6

3-1 through 3-20

3-1

3-1

3-1

3-1

3-2

3-3

4-1 through 4-64

4-1

4-1

4-2

4-3

Page 7: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

PAGE

4.4 RESULTS OF THE GROUND RESPONSE ANALYSES 4-4BASED ON DIRECT INTERPOLATION OF RECORDEDMOTIONS

4.5 RESULTS OF THE GROUND RESPONSE ANALYSES 4-5USING THE COMPUTER PROGRAM SHAKE ANDEPRI SOIL CURVES

4.6 COMPARISON OF THE RESULTS OF GROUND 4-5RESPONSE ANALYSES

4.7 COMPARISON OF THE RESULTS OF GROUND 4-6RESPONSE ANALYSES WITH THE LABORATORY DATA

CHAPTERS

SUMMARY AND RECOM:MENDATION

CHAPTER 6

REFERENCES

APPENDIX A

LABORATORY TESTS ON MONTEREY NO. 0 SAND,PERFORMED AT THE UNIVERSITY OF CALIFORNIA, BERKELEY

APPENDIXB

LABORATORY TESTS ON SOIL SAMPLES FROM THESAVANNAH RIVER SITE, PERFORMED AT THE UNIVERSITYOF CALIFORNIA, BERKELEY

APPENDIXC

LABORATORY TESTS ON SOIL SAMPLES, PERFORMED ATTHE UNIVERSITY OF COLORADO

APPENDIXD

LABORATORY TESTS ON SOIL SAMPLES FROM THENORTHRIDGE SITE, PERFORMED AT THE UNIVERSITY OFCALIFORNIA, BERKELEY

v

5-1 through 5-2

5-1

6-1 through 6-4

6-1

A-I through A-42

B-1 through B-46

C-l through C-20

D-l through D-18

Page 8: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 3.1

Table 4.1

LIST OF TABLES

Summary of the Cyclic Triaxial Test Data on Monterey No. 0 SandPerfonned at University of California, Berkeley

Average Material Properties at the SRS Site

Summary of the Cyclic Triaxial Test Data on SRS Soil Samples Perfonnedat University of California, Berkeley

Summary of the Cyclic Torsional Test Data on Clean and Silty SandsPerfonned at University of Colorado

Summary of the Cyclic Triaxial Test Data on Northridge SamplesPerfonned at University of California, Berkeley

Summary of the Cyclic Triaxial Test Data on Clean Sands Perfonned atWayne State University

Summary of the Wildlife Site Earthquake Data and Recorded TimeHistories

Summary of Strain Energy Computation from Ground Response Analyses(November 24, 1987, 1315 GMT Earthquake)

vi

Page 9: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

LIST OF FIGURES

Figure 1.1 Relationships Between Stress Ratio Causing Liquefaction and (N 1)60

Values for Silty Sands for M = 7-1/2 Earthquakes (Seed et al., 1985)

Figure 2.1 Typical Time History Records of a Strain-Controlled Cyclic Triaxial Test

Figure 2.2 A Typical Plot of Shear Stress-Strain Hysteresis Loops Developed DuringCyclic Triaxial Tests

Figure 2.3 Grain Size Distribution for Monterey No. 0 Sand (Arango, 1994)

Figure 2.4 Strain Energy at Liquefaction Onset as a Function of Relative Density forMonterey No. 0 Sand - UCB Data

Figure 2.5 Strain Energy at Liquefaction Onset as a Function of Frequencies ofLoading for Monterey No. 0 Sand - UCB Data

Figure 2.6 Generalized Subsurface Soil Profile at the SRS Site

Figure 2.7 Typical Grain Size Distribution Curve for Tobacco Road Soil Material­SRS (Riemer and Seed, 1994)

Figure 2.8 Strain Energy as a Function of Confining Pressure for SRS Soil Samples ­UCBData

Figure 2.9 Grain Size Distribution of Silty Sands - UOC Samples (Koester, 1992)

Figure 2.10 Strain Energy at Liquefaction Onset as a Function of Relative Density forClean Sands - DOC Data

Figure 2.11 Strain Energy at Liquefaction Onset as a Function of Confining Pressurefor Silty Sands - VOC Data

Figure 2.12 Grain Size Distribution Curves for the Northridge Site Soil Samples(Arango and Migues, 1996)

Figure 2.13 Strain Energy at Liquefaction Onset as a Function of Relative Density forthe Northridge Samples - VCB Data

Figure 2.14 Grain Size Distribution Curves for Monterey No. 0 and KasumigauraSands (AI-Khatib, 1994)

vii

Page 10: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 2.15 Strain Energy at Liquefaction Onset as a Function of Relative Density forMonterey No. 0 and Kasumigaura Sands - WSU Data

Figure 2.16 Effect of Cyclic Loading Types on Strain Energy at Liquefaction Onsetfor Monterey No. 0 Sand - WSU Data

Figure 2.17 Effect of Cyclic and Transient Loading on Strain Energy at LiquefactionOnset for Monterey No. 0 Sand - WSU Data

Figure 2.18 Grain Size Distribution Curves for Soil Samples for the Lower SanFernando Dam and the Reid Bedford Sand (Figueroa et al., 1995)

Figure 2.19 Comparison of Strain Energy at Liquefaction Onset for All Test Groups ­Clean Sands

Figure 2.20 Comparison of Strain Energy at Liquefaction Onset for All Test Groups ­Silty Sands

Figure 3.1 Map of California with Locations of Parkfield and Wildlife LiquefactionArrays

Figure 3.2 Wildlife Liquefaction Array - Geotechnical Properties (Bennett et al.,1984)

Figure 3.3 Main Geological Units at the Wildlife Site and Their GeotechnicalCharacteristics (Bennett et al., 1984)

Figure 3.4 Comparison of Shear Wave Velocity Profiles from Crosshole and SASWTests at Wildlife Site (Bierschwale and Stokoe, 1984)

Figure 3.5 Variation in Normalized Shear Modulus with Shearing Strain for ChannelFill Sand (Ladd, 1982)

Figure 3.6 Variation in Normalized Shear Modulus with Shearing Strain for ImperialValley Clays (Turner and Stokoe, 1982)

Figure 3.7 Variation in Damping Ratio with Shearing Strain for Imperial Valley Soils(Ladd, 1982; Turner and Stokoe, 1982)

Figure 3.8 Instrumentation of the Wildlife Site (Bennett et aI., 1984)

Figure 3.9 Location Map of the Wildlife Site and the Epicenters of the Elmore Ranch(Ms = 6.2) and Superstition Hills (Ms = 6.6) Earthquakes (Porcella et al.,1987)

VlIl

Page 11: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 3.10 Earthquake Time Histories at 1315 GMT, November 24, 1987 at WildlifeArray - Horizontal Motions in 3600 Direction

Figure 3.11 Earthquake Time Histories at 1315 GMT, November 24, 1987 at WildlifeArray - Horizontal Motions in 900 Direction

Figure 3.12 Earthquake Time Histories at 1315 GMT, November 24,1987 at WildlifeArray - Vertical Motions

Figure 3.13 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison oitheSpectral Characteristics of Horizontal Motions

Figure 3.14 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison of theSpectral Characteristics of Vertical Motions

Figure 3.15 Normalized Pore Water Pressure Ratios - Wildlife Liquefaction Array,November 24, 1987, 1315 GMT Event (Matasovic et aI., 1993)

Figure 4.1 Wildlife Site Soil Profile Used in Response Analysis Based on Average ofSASW and Crosshole Shear Wave Velocity Measurements

Figure 4.2 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 360 Degree Direction - SHAKE Output at GroundSurface Calculated Using Crosshole Shear Wave Velocity Measurements

Figure 4.3 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 360 Degree Direction - SHAKE Output at GroundSurface Calculated Using SASW Shear Wave Velocity Measurements

Figure 4.4 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 360 Degree Direction - SHAKE Output at GroundSurface Calculated Using Average of SASW and Crosshole Shear WaveVelocity Measurements

Figure 4.5 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 360 Degree Direction - SHAKE Output at Depth of7.5 m with Cutoff Frequency of 25 Hz

ix

Page 12: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 4.6 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 90 Degree Direction - SHAKE Output at GroundSurface Calculated Using Average of SASW and Crosshole Shear WaveVelocity Measurements

Figure 4.7 Maximum Acceleration Distribution over Depth from SHAKE Results ­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 3600

Direction

Figure 4.8 Maximum Acceleration Distribution over Depth from SHAKE Results ­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 900

Direction

Figure 4.9 Maximum Shear Stress Distribution over Depth from SHAKE Results ­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 3600

Direction

Figure 4.10 Maximum Shear Stress Distribution over Depth from SHAKE Results ­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 900

Direction

Figure 4.11 Maximum Shear Strain Distribution over Depth from SHAKE Results ­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 3600

Direction

Figure 4.12 Maximum Shear Strain Distribution over Depth from SHAKE Results ­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 900

Direction

Figure 4.13 Shear Stress Time History at Depth 4.21 m from SHAKE Output ­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 3600

Direction

Figure 4.14 Shear Strain Time History at Depth 4.21 m from SHAKE Output­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 3600

Direction

Figure 4.15 Shear Stress-Shear Strain Hysteresis Loop at Depth 4.2 I m. Calculatedfrom SHAKE Output - Wildlife Site, November 24, 1987, 1315 GMTEarthquake in 3600 Direction. Soil Properties are Based on the Average ofSASW and Crosshole Shear Wave Velocity Measurements

x

Page 13: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 4.16 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake in 3600 Direction - SHAKEAnalysis Output

Figure 4.17 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake in 900 Direction - SHAKEAnalysis Output

Figure 4.18 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24,1987,1315 GMT Earthquake - Summation of SHAKEAnalysis Output in both 360° and 900 Directions

Figure 4.19 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 3600 Direction - BDESRA Output, Total StressAnalysis

Figure 4.20 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 90° Direction - BDESRA Output, Total StressAnalysis

Figure 4.21 Maximum Shear Stress Distribution over Depth from BDESRA Results ofTotal Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

Figure 4.22 Maximum Shear Strain Distribution over Depth from BDESRA Results ofTotal Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

Figure 4.23 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake in 3600 Direction - BDESRAOutput, Total Stress Analysis

Figure 4.24 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake in 90° Direction - BDESRAOutput, Total Stress Analysis

Figure 4.25 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake - Summation of BDESRATotal Stress Analysis Output in both 3600 and 900 Directions

xi

Page 14: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 4.26 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 3600 Direction - BDESRA Output, Effective StressAnalysis

Figure 4.27 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 900 Direction - BDESRA Output, Effective StressAnalysis

Figure 4.28 Maximum Shear Stress Distribution over Depth from BDESRA Results ofEffective Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

Figure 4.29 Maximum Shear Strain Distribution over Depth from BDESRA Results ofEffective Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

Figure 4.30 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake in 3600 Direction - BDESRAOutput, Effective Stress Analysis

Figure 4.31 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake in 900 Direction - BDESRAOutput, Effective Stress Analysis

Figure 4.32 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake - Summation ofBDESRAEffective Stress Analysis Output in both 3600 and 900 Directions

Figure 4.33 Normalized Pore Water Pressure Generation in Liquefied Sand Layer­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 3600

Direction, BDESRA Output, Effective Stress Analysis

Figure 4.34 Normalized Pore Water Pressure Generation in Liquefied Sand Layer­Wildlife Site, November 24, 1987, 1315 GMT Earthquake in 900

Direction, BDESRA Output, Effective Stress Analysis

Figure 4.35 Methodology Adopted in Estimating the Dynamic Stress and Strain TimeHistories in a Soil Layer from Field Records (After Zeghal and Elgamal,1994)

Figure 4.36 Shear Stress Time History at Depth of 5.06 m (16.6 ft) Based on DirectInterpolation of Recorded Motions, Wildlife Site, November 24, 1987,1315 GMT Earthquake in 3600 Direction

xii

Page 15: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 4.37 Shear Strain Time History at Depth of 5.06 m (16.6 ft) Based on DirectInterpolation of Recorded Motions, Wildlife Site, November 24, 1987,1315 GMT Earthquake in 3600 Direction

Figure 4.38 Shear Stress-Strain Hysteresis Loop at Depth of 5.06 m (16.6 ft) Based onDirect Interpolation of Recorded Motions, Wildlife Site, November 24,1987, 1315 GMT Earthquake in 3600 Direction

Figure 4.39 Shear Stress Time History at Depth of 5.06 In (16.6 ft) Based on DirectInterpolation of Recorded Motions, Wildlife Site, November 24, 1987,1315 GMT Earthquake in 900 Direction

Figure 4.40 Shear Strain Time History at Depth of 5.06 m (16.6 ft) Based on DirectInterpolation of Recorded Motions, Wildlife Site, November 24, 1987,1315 GMT Earthquake in 900 Direction

Figure 4.41 Shear Stress-Strain Hysteresis Loop at Depth of 5.06 m (16.6 ft) Based onDirect Interpolation of Recorded Motions, Wildlife Site, November 24,1987, 1315 GMT Earthquake in 900 Direction

Figure 4.42 Accumulation of Strain Energy in Liquefied Sand Layer Based on DirectInterpolation of Recorded Motions, Wildlife Site, November 24, 1987,1315 GMT Earthquake in 3600 Direction

Figure 4.43 Accumulation of Strain Energy in Liquefied Sand Layer Based on DirectInterpolation of Recorded Motions, Wildlife Site, November 24, 1987,1315 GMT Earthquake in 900 Direction

Figure 4.44 Accumulation of Strain Energy in Liquefied Sand Layer Based on DirectInterpolation of Recorded Motions, Wildlife Site, November 24, 1987,1315 GMT Earthquake - Summation of Strain Energy in both 3600 and900 Directions

Figure 4.45 Comparison of Shear Modulus Degradation Curves used in SHAKEAnalyses

Figure 4.46 Comparison of Damping Curves used in SHAKE Analyses

Figure 4.47 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 3600 Direction - SHAKE Output with EPRI (1993)Soil Curves

xiii

Page 16: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 4.48 Acceleration Response Spectra at 5% Damping - Wildlife LiquefactionArray, November 24, 1987, 1315 GMT Earthquake - Comparison ofHorizontal Motions in 900 Direction - SHAKE Output with EPRI (1993)Soil Curves

Figure 4.49 Shear Stress Time History at Depth of 4.21 m (13.8 ft) from SHAKEOutput with EPRI (1993) Soil Curves - Wildlife Site, November 24, 1987,1315 GMT Earthquake in 3600 Direction

Figure 4.50 Shear Strain Time History at Depth of 4.21 m (13.8 ft) from SHAKEOutput with EPRI (1993) Soil Curves - Wildlife Site, November 24, 1987,1315 GMT Earthquake in 3600 Direction

Figure 4.51 Shear Stress-Strain Hysteresis Loop at Depth of 4.21 m (13.8 ft).Calculated from SHAKE Output - Wildlife Site, November 24, 1987, 1315GMT Earthquake in 3600 Direction. Soil Properties are Based on theAverage of SASW and Crosshole Shear Wave Velocity Measurements.The EPRI (1993) G/Gmax and Damping Curves are used in theCalculation

Figure 4.52 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT EarthqUake in 3600 Direction - SHAKEOutput Using EPRI (1993) Soil Curves

Figure 4.53 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT EarthqUake in 900 Direction - SHAKEOutput Using EPRI (1993) Soil Curves

Figure 4.54 Accumulation of Strain Energy in Liquefied Sand Layer - Wildlife Site,November 24, 1987, 1315 GMT Earthquake - Summation of Strain Energyin both 3600 and 900 Directions - SHAKE Output Using EPRI (1993) SoilCurves

Figure 4.55 Total Strain Energy at Liquefaction Onset. Calculated from GroundResponse Analyses

Figure 4.56 Total Strain Energy at Liquefaction Onset. Calculated from GroundResponse Analyses (with All Points in Unliquefied Layers Removed)

Figure 4.57 Comparison of Total Strain Energy at Liquefaction Onset. GroundResponse Analyses and Laboratory Data - Wildlife Site,November 24, 1987, 1315 GMT Earthquake

xiv

Page 17: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

a, aCt)

CPT

d, d(t)

FC

G

Gmax

N

N 1

(Nl)60

v, vet)

oE,E1iq

~)'(t)

y, )'(t)

Yd

SPT

L

t, t(t)

:ret)

LIST OF SYMBOLS

acceleration at time t in cm/sec2

cone penetration data

displacement at time t in em

relative density - %

fines content

soil shear modulus

maximum soil shear modulus

SPT, blow-count

blow-count normalized to 1 ksc

normalized blow-count for a 60 percent energy ratio

velocity at time t in em/sec

energy per volume at the onset of liquefaction, Joules/m3

shear strain increment from time t to t +~ t

shear strain

dry unit weight, kN/m3

pore pressure ratio

effective confining pressure, kPa

standard penetration test

summation

shear stress

average shear stress at times t and t +~ t

xv

Page 18: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

UNITS CONVERSION FACTORS

1 Joules 0.0007376 ft-kip

1 kg/cm2 2.048 kip/tr

1 km 0.621 miles

I kN 0.225 kips

1 kN/m2 0.02088 kip/fe

1 kN/m3 6.3661b/fe

1m 3.281ft

1 m2 10.76 ft2

1 m3 35.31 fe

xvi

Page 19: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

CHAPTERl

INTRODUCTION

1.1 BACKGROUND

Liquefaction failure has been and continues to be a major cause of damage duringearthquakes. The direct and indirect costs associated with ground failure may far exceedthe damage caused by other types of failures such as structural collapses. Due to theenormous damage potential, research in the areas of liquefaction prediction andmitigation has continued, and the respective technologies have significantly improvedover the years.

Two basic methods are currently used to predict liquefaction potential. The most widelyused method, based on laboratory data and field performance data, was developed bySeed et al. (1983, 1985). In this method, the cyclic stress ratio in the field is predictedbased on a simple or a more detailed ground response analysis, and the demand resultingfrom the design earthquake is established. The cyclic shear strength of the material canbe obtained from laboratory testing of the soil samples or from the penetration data(Standard Penetration Test [SPT] data or Cone Penetration Test [CPT] data) along withthe index and gradation properties of the soil samples. The most widely used curves topredict the capacity of the soil in terms of cyclic shear strength are the set of curves bySeed et al. (1985), shown in Figure 1.1. From knowledge of the penetration resistanceand the fines content in the soil materials, the cyclic shear strength can be determined.However, the application of this method involves several empirical factors, including thecorrections for sample disturbance, earthquake magnitude, and overburden pressure.Recently, Arango (1994) presented the new developments for this method, including theeffects of higher frequency of loading on the cyclic shear strength of the soil and mostnotably, the recommendations made for revising the correction factors for earthquakemagnitudes. Another recent study (Koester, 1992) has shown that the correction foroverburden pressure is also a function of the fines content and that a reduction of thecyclic shear strength due to overburden pressure will significantly decrease if the finescontent of the materials increases. The recent publication by Ishihara (1993) alsoprovides an adjustment factor to incorporate the plasticity effects of the fines on thecyclic shear strength of the materials. Over the years, the "stress" method has proved tobe a conservative and reliable method for the prediction of liquefaction potential,especially for distant earthquake events, which was the basis of the data used fordevelopment of this method. However, the method lacks the flexibility to incorporaterecently recognized characteristics of the earthquake ground motions such as the near­field effects. For example, the "fling" effect resulting from the source and directivity ofthe rupture which was recently observed in the Kobe and the Northridge earthquakes,concentrates most of the energy in a short period of time. Such effects, combined with amuch higher intensity of the ground motion in excess of 19 peak ground acceleration

I-I

Page 20: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

recorded in urban areas in recent major earthquakes, require a more robust approach toinvestigate the liquefaction potential in such regions.

The second method for predicting liquefaction potential is based on the "strain"approach. This method was developed among others by Dobry et al. (1982). In thismethod, the shear strain in the field is compared with the laboratory data relating cyclicshear strain to excess pore pressure to determine the liquefaction potential. Similar to the"stress" method, the "strain" method also requires ground response analyses andlaboratory testing of the soil samples. The "strain" method is fundamentally differentfrom the "stress" method and lacks the wide range of the field and the laboratory databases that exist for the "stress" approach.

The "strain energy" method discussed in this report incorporates the basic elements ofboth the stress and strain approaches in the formulation. In this method, the amount oftotal strain energy at the onset of liquefaction is obtained from the stress and strain timehistories from laboratory testing and is compared with the same energy in the field due tothe design earthquake motion. The basis for this method is the observation made on thelaboratory data that the build-up of the excess pore pressure is proportional to the totalstrain energy in all loading cycles up to the initial liquefaction. This observation hasprompted the formulation of the "energy-based" method. This method has beeninvestigated in recent years by several researchers, including Figueroa et al. (1994, 1995)and Kagawa et al. (1990).

1.2 PURPOSE

The purpose of this study is to evaluate the feasibility of the development and applicationof the strain energy method for general use. The study is expected to continue with twoadditional phases that will develop generic "strain energy" liquefaction curves as afunction of the most relevant soil properties and generic "strain energy" demand as afunction of seismicity data and a wide range of site soil data and profiles. The limitedscope of the feasibility study did not permit laboratory testing for the purpose of the"strain energy" computation. Available laboratory data were used for this purpose.

1.3 OVERVIEW OF THE REPORT

In this report, Chapter 1 includes the introduction and scope of the study. Chapter 2presents the collection and synthesis of the laboratory data. Chapter 3 discusses the soiland earthquake data from the Wildlife Site. The ground response analyses andcomparison of the results with the laboratory data are presented in Chapter 4. Finally,Chapter 5 presents the summary and the recommendation. The references are listed inChapter 6. All the laboratory data used in this report are presented in Appendices Athrough D.

1-2

Page 21: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

50

NkJrginal NoLiquefoction Liquefaction

8

FINES CONTENT ~5%Mocified Chinese Code Proposal (cloy content=5%) @_

.29

0.4

0.2 :O"~IO r.G20· 4S ~10.o2lJ /10 "8 I

'Y\ 8:tJ --:>0 /.25 .i.!2 I""". _ /'l:.J I

22 / ....12 I~ / 13 ~

7S / P 1 ·12

75;:9" Sf 50+ i 8 30o I _60(.1T '';'''0 If)~ 02lJ

• 0, 0~' I 0O 1013 I 3027 •

;Y'! Liquefaction

31. I. Pan-Americor. data I

Japanese data _ 0 Q

I Chinese data A I ~oL.. ...L.-i -L1 ..l..-1 .l..-- ----I

o lO 20 30 40( N')60

O.6r------,...------;::;,...,:--r-.-----.-------r---------,CJ37 I

IPercent Rnes = 35 15 s 5II' . Ii U ;..l__-+.-( +- ~0.5,1-------+--!------4. I

. II 1/

I 1J J I'! I. I,: I

I il I :i ~ Ii 1 1 I

! l: fI t-...'....·2Q--L'---IT-+-------I-"""-------1

1 .fl' / /I I I J

I .J I / /

I ./ 1/ /en _20 ' I ~/ I

~ 031-----a::=.....-:!I----:---;r·--r---·I----I------I--------1

t .50+ I e12

/ /iIZl I / I I ._/

.;: I ! /}l/! 0~!M .27 I /18. )/;u 00 I ~+I "G 60··. ~20 i .A: ./ @ : II

10 .10 i3?£~ /f !;)

Figure 1.1 - Relationships Between Stress Ratio Causing Liquefaction and (Nr)6o Valuesfor Silty Sands for M = 7-112 Earthquakes (Seed et al., 1985)

1-3

Page 22: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit
Page 23: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

CHAPTER 2

COLLECTION AND SYNTHESIS OF LABORATORY DATA

Computation of the strain energy requires access to the stress and strain time historiesfrom cyclic (triaxial or simple shear) tests in the laboratory. Such data are usuallycomputer storage-intensive and are not maintained for a long period. However, anattempt was made to collect the available and reliable data to characterize the strainenergy. Most of the data were obtained in connection with various recent Bechtelprojects. The laboratory data used in this study are from:

• The cyclic stress- and strain-controlled tests on Monterey No. 0 sand, performed atthe University of California, Berkeley.

• The stress-controlled tests on soil samples from the Savannah River Site (SRS),performed at the University of California, Berkeley.

• The cyclic torsional shear tests on clean and silty sands, performed at the Universityof Colorado.

• The cyclic triaxial tests on clean sands, performed at Wayne State University.

• The summary of the laboratory data reduced to a set of relationships to compute strainenergy, as developed by Figueroa et al.

Altogether, a total of 150 cyclic test data sets have been processed. A limited number ofthese were excluded in the process due to peculiar stress and strain patterns andincompleteness of the respective time histories. The computation of the strain energyfrom each data set and a discussion on the validity of each group of tests follow.

2.1 STRAIN ENERGY COMPUTATION

In a typical cyclic laboratory test, the stress, strain and pore pressure time histories arerecorded. Typical recorded time histories for a strain-controlled cyclic triaxial test areshown in Figure 2.1. Hysteresis loops can be developed from the shear stress and straintime histories. The hysteresis loops corresponding to the stress and strain time historiesshown in Figure 2.1 are shown in Figure 2.2. From the shear stress, 't(t), and the shearstrain, ')'(t) at time t, the time history of the total strain energy up to time t, E(t), iscomputed from:

2-1

Page 24: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

T

E(T) = L ~ (t).L~:Y (t)t =0

(2.1)

where t is the time, r is summation over the time increment ~t up to time t, f (t) is theaverage shear stress from time t to t + ~t, and ~'Y(t) is the shear strain increment from timet to t + ~t. The strain energy for each cycle of loading amounts to the area inside thehysteresis loop. The computation of the instantaneous energy and its summation overtime intervals were performed until the onset of the liquefaction, at which time the porepressure ratio reached a value of unity. The summation of the energy at this time, ELiq,

was used as the measure of the capacity of the soil sample against initial liquefactionoccurrence in terms of the strain energy.

2.2 CYCLIC TRIAXIAL TESTS ON MONTEREY NO. 0 SAND,PERFORMED AT THE UNIVERSITY OF CALIFORNIA, BERKELEY(DeB)

The data were prepared as part of the Bechtel in-house technical research led by Arango(1994). The gradation curve for Monterey No. 0 sand is shown in Figure 2.3. The testswere both stress- and strain-controlled. The samples were prepared at relative densitiesranging from 40% to 60%, and the loads were applied at frequencies ranging from 0.10Hz to 20 Hz. All tests were conducted at a confining pressure of 100 kPa. More detailedinformation about the testing program and the testing apparatus may be obtained fromRiemer (Riemer et al., 1994). A total of 20 tests from this group were incorporated in thisstudy. A summary of the test data, including the computed total strain energy to the onsetof liquefaction for each test, is presented in Table 2.1. The recorded stress, strain, porepressure (in terms of the pore pressure ratio ru), and the computed ti~e history of thestrain energy for each test are shown in Appendix A. In addition to the strain energy timehistory, the energy time history normalized to the total energy at the time of ru =1, (ELiq),

is also plotted and compared with the ru time history, e. g. see Page A-3. As shown inthese plots, the normalized strain energy increase follows the pattern of the pore pressureratio increase and, on the average, shows a very good agreement for all the tests at a widerange of frequencies and at all the relative densities tested. The agreement holds whetherthe data are obtained from the stress- or the strain-controlled tests. As stated earlier, thisobservation was the basis for formulation of the strain energy method.

A summary of the results in terms of the total energy as a function of relative density isshown in Figure 2.4. As expected, the total energy to the onset of liquefaction increasesas the relative density of the sample increases. It can also be observed in this figure thatthe scatter in the strain-controlled test data is less severe than the scatter in the data fromthe stress-controlled test results.

2-2

Page 25: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

The strain energy for each test as a function of the frequency of loading is plotted inFigure 2.5, which shows a decreasing total energy as the frequency of loading increases.In this figure, the frequency of loading has a more pronounced effect on the total energyobtained from the stress-controlled tests than the strain-controlled tests. In addition, thestrain-controlled tests require lower total energy to develop initial liquefaction ascompared to the stress-controlled tests. It should also be noted that for a typical strain­controlled test, the pore pressure build-up takes place at a much faster rate in the firstseveral cycles of loading. On the other hand, in the stress-controlled test, the rate of porepressure build-up increases towards the end of loading cycles. This observation can alsobe made from the shape and size of the respective hysteresis loops. In the strain­controlled tests, the largest loops are the earlier loops, and they decrease in size as thesample degrades due to the pore pressure build-up. The opposite trend takes place in astress-controlled test, as shown in Appendix A, e. g. Pages A-4 and A-16.

2.3 CYCLIC TRIAXIAL TESTS ON SOIL SAMPLES FROM THESAVANNAB RIVER SITE~PERFORMED AT THE UNIVERSITY OFCALIFORNIA~BERKELEY (VCB)

The laboratory program for this group of tests was developed as part of one of theBechtel projects for the Department of Energy (DOE) at the Savannah River Site (SRS).Subsurface conditions for the site under consideration are shown in Figure 2.6. The soillayers of primary interest were the Tobacco Road (TR3 and TR4) and the Santeeformations.

A comprehensive site investigation program was conducted at the site. Relevant averagesoil properties of each soil layer at the SRS site, shown in Figure 2.6 are summarized inTable 2.2.

Most of the cyclic load tests were conducted on undisturbed soil samples from theTobacco Road formation from depths of 16 m to 23 m. As shown in Table 2.2, thismaterial has an average fines content of 23%, including 9% clay content (minus 2 micronparticle size) and an average plasticity index of 25%. A typical gradation curve for theTobacco Road Materials is shown in Figure 2.7. A total of 22 cyclic stress-controlledtests at 1 Hz were performed (Riemer and Seed, 1994). The confining pressure rangedfrom 200 kPa to 750 kPa. A summary of the test data and of the total strain energy foreach test in this group is presented in Table 2.3. Notable characteristic of this group oftests is the large confining pressure used in the tests and the relatively large fines contentin the soil samples tested. The plots of shear stress, strain, total energy and normalizedenergy, pore pressure ratios, and the hysteresis loops for this group are shown inAppendix B. As shown in this appendix, the increase of the normalized energy in generalfollows the pore pressure ratio ihcrease up to the pore pressure ratio of one. A summaryof the total energy as a function of the confining pressure is shown in Figure 2.8. Asexpected, the total strain energy is greater for the samples tested at higher confiningpressures. For the same confining pressure, tests on samples having a higher dry density

2-3

Page 26: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

resulted in the development of a larger total energy. This trend is similar to the trendobserved in Figure 2.4 with respect to the relative density of the samples.

2.4 CYCLIC TORSIONAL TESTS ON SOIL SAMPLES, PERFORMED ATTHE UNIVERSITY OF COLORADO (DOC)

The time histories for this group of tests were provided by Koester (1992). The test datawere developed as part of the research work for a doctoral dissertation at the Universityof Colorado (DOC). Only the time histories from nine tests were available. The testswere performed using the stress-controlled hollow torsional simple shear test apparatus.The cyclic loading was applied at a frequency of 0.1 Hz. Both clean sands and sandswith fines content up to 45% were tested.

The silty sand samples were prepared with a density such that the void ratio of the samplematched that of the parent clean sand at the selected relative densities. The confiningpressure in the tests ranged from 200 kPa to 300 kPa. A summary of the soil data and thetest results in terms of the total energy is shown in Table 2.4, whereas the gradation curveis shown in Figure 2.9. A more detailed description of the sample preparation and testingprogram can be obtained from Koester (1992).

The time histories of the stress, strain, pore pressure ratio, total energy, and hysteresisloops for this group are presented in Appendix C. In general, the hysteresis loops in thisgroup of tests start with a few narrow loops followed by one or two large loops beforereaching the initial liquefaction stage, suggesting a sudden contraction and collapse of thesamples. This behavior may have been the cause of the relatively low densities of thesamples. The test results in terms of the total strain energy as a function of relativedensity for the clean sand are shown in Figure 2.10. The results show a relatively largescatter in the energy at low relative densities. The results of the silty sand samples as afunction of the confining pressure are shown in Figure 2.11. These results showrelatively less scatter in the data.

2.5 CYCLIC TRIAXIAL TESTS ON SOIL SAMPLES FROM THENORTHRIDGE SITE, PERFORMED AT THE UNIVERSITY OFCALIFORNIA, BERKELEY (DCB)

The samples for this group of tests were prepared as part of the National ScienceFoundation (NSF)/Bechtel research work led by Arango (Arango and Migues, 1996). Aspart of the test program, a total of 8 reconstituted clean sand samples were prepared andtested in a stress-controlled cyclic triaxial test device. The samples were prepared atrelative densities ranging from 35% to 90%. The gradation curves for two soil samplesare shown in Figure 2.12. A summary of the test data and of the computed total strainenergy is presented in Table 2.5. Time history plots are included in Appendix D. Testresults in terms of the total strain energy as a function of relative density is presented in

2-4

Page 27: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figure 2.13. As shown previously, the total strain energy increases as the relative densityincreases.

2.6 CYCLIC TRIAXIAL TESTS ON CLEAN SANDS, PERFORMED ATWAYNE STATE UNIVERSITY (WSU)

The summary results of 91 cyclic triaxial stress-controlled tests on clean sands waspresented in the doctoral dissertation by AI-Khatib (1994). The tests were perfonned atWayne State University (WSU). All tests were perfonned on clean sands consisting ofMonterey No. 0 and Kasumigaura sand (K-sand). The gradation curves for the two sandsare shown in Figure 2.14. The breakdown of the tests is as follows:

• 28 tests on K-sand at low frequency with cyclic reversal loading (two-way cyclicloading)

• 28 tests on Monterey No. 0 sand at low frequency with cyclic reversal loading• 25 tests on Monterey No. 0, low frequency and one-way loading• 10 tests on Monterey No. 0 with earthquake simulated loading using the EI Centro

and Taft records

Time histories of the test data were not available; however, the total energy in terms ofaxial stress/strain has been reported by AI-Khatib (1994). The total energy was convertedto the total energy in terms of the shear strain and shear stress attributes and aresummarized in Table 2.6. The results in terms of the total strain energy as a function ofrelative density for the cyclic reversal loading cases are shown in Figure 2.15 whichshows a similar trend to the one observed in the UCB data (see Figure 2.4). As shown inthis figure, both the K-sand and the Monterey No. 0 sand have similar capacity in termsof total energy and consistently show an increase of the total energy with an increase inthe relative density. The scatter in the data appear to be minimal.

The results in terms of the cyclic one-way and two-way loadings are compared in Figure2.16. As shown, the two-way loading results in lower total energy capacity as comparedto the one-way loading. This trend is consistent with the intuitive indication that soilresistance to liquefaction will be higher due to the less damaging effects of the one-wayloading. Finally, the results of the two-way loading are compared with the earthquakeloading in Figure 2.17. The earthquake loading results in the lower total energy.Altogether, the results of this group of tests appear to be more unifonn with little scatterin tenns of the total energy.

2.7 SUMMARY DATA BY FIGUEROA et al.

A series of torsional shear hollow cylinder tests were perfonned on both clean sand andsilty sand by Figueroa et aI. (1994, 1995). Samples from the Reid Bedford sand (cleansand) were tested at relative densities ranging from 50% to 70%. The silty sand from the

2-5

Page 28: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Lower San Fernando Dam (LSFD) were tested at relative densities of 57% to 92%. Thegradation curves for both materials are shown in Figure 2.18. Each sample wassuccessively tested at confining pressures of 41.4 kPa, 82.7 kPa, and 124.1 kPa Actualdata points for this group of tests are not available. However, the authors performedregression analyses of the test results in terms of total strain energy and identified themost relevant parameters affecting the results of clean sand and silty sand. Based on thetest results, the authors recommended the following relationships (Figueroa et al., 1995):

Clean sand

Silty sand

Log BE = 2.062 + 0.0039 cr'e + 0.0124 Dr

Log BE = 2.529 + 0.00474 cr~

(2.2)

(2.3)

where oE is the total strain energy in Joules/m3, cr~ is the effective confining pressure in

kPa, and Dr is the relative density in percent. The relationship for clean sand shows theconfining pressure as one of the variables. However, the importance of this parameter isvery small due to the small coefficient associated with this parameter in Equation 2.2.

2.8 SUMMARY OF ALL LABORATORY DATA

Based on the results of the five groups of tests outlined above, summary plots have beenprepared to evaluate consistency between the various test groups.

For clean sand, the results of tests on Monterey No. 0 performed at the DCB (20 tests),the data on clean sands from the WSD (81 tests), the data from the Northridge samples(8 tests) also tested at the DCB, and the data from the DOC (4 tests) are compared withthe relationship by Figueroa et al. in Figure 2.19. As shown in this figure, except for thedata from the DOC, the remaining groups show a quite consistent pattern of the rate ofenergy dissipation and of the total energy absorbed. The confining pressure used in thetests at the DOC was at least 2 to 3 times larger than the pressure used for the rest of thetests. Also, the differences in the shape and size of the sand particles may havecontributed to some of the differences in the results. For relative densities in the range of40% to 70%, the data from DCB, WSD, and Figueroa et al. are in relatively goodagreement.

For silty sands, the results from the Savannah River Site (SRS) are compared with thedata from the DOC and the relationship by Figueroa et al. in Figure 2.20. The finescontent in each group are: 28% for the samples from the lower San Fernando Dam(Figuero et aI., 1995), 20% to 45% for soil samples tested at DOC (Koester, 1992), andthe average 23% for samples taken from the SRS site. The Plasticity Index of the

2-6

Page 29: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

materials in the groups also varies from 10 to 25%. Unfortunately, the confiningpressures used for each group of tests do not overlap. Nevertheless, each group of resultsfollows the pattern of the previous group and a consistent trend is maintained.

All of the results indicate that for clean sands, the energy to liquefaction can be quantifiedin terms of the relative density and the confining pressure. However, the limited dataavailable does not pennit a study of effects of the grain size and shape on the totalenergy.

Summary of the results for silty sands also shows that the energy to liquefaction can bequantified in tenns of the effective confining pressure. However, the effects of theplasticity index, the amount, and the type of fine need to be studied in the future.

As stated earlier in the report, the scope of this feasibility study did not include laboratorytesting. However, comparison of the data available from the various researchers andpractitioners at different institutes shows remarkably good agreement. This observationleads to the conclusion that development of generic total strain energy relationship as ameasure of soil resistance against liquefaction by means of laboratory testing is feasible.If consistent sampling, sample handling, and testing methods and specifications arefollowed, the results are expected to be more consistent and vary within narrower limits.

2-7

Page 30: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

N I 00

Tab

le2.

1-

Sum

mar

yo

fth

eC

ycli

cT

riax

ialT

estD

ata

onM

onte

rey

No.

0S

and

Per

form

edat

Uni

vers

ity

of

Cal

ifor

nia,

Ber

kele

y

No.

Te

st10

Sam

ple

Or(%

)E

llq(J

/m3 )

FC

(%)

'Yd(k

N/m

3 )C

on

tro

lC1

c'(k

Pa)

Fre

q.(H

z)L

oa

dS

hape

1M

ON

T4

Mon

tere

vN

o.O

61.8

2677

215

.6S

tres

s1

00

1S

inus

oida

l2-w

av

2M

ON

T1

0M

onte

rey

No.

O61

.01

93

32

15.5

Str

ess

10

01

Sin

usoi

dal2

-wa

v

3M

ON

T11

Mon

tere

vN

o.O

60.6

98

82

15.5

Str

ess

100

10

Sin

usoi

dal2

-wa

y

4M

ON

T1

2M

onte

rev

No.

O61

.024

812

15.5

Str

ess

100

1S

inus

oida

l2-w

ay

5M

ON

T1

4M

onte

rey

No.

O60

.215

832

15.5

Str

ess

100

20

Sin

usoi

dal2

-waY

6M

ON

T1

5M

onte

rey

No.

O60

.512

452

15.5

Str

ess

100

10

Sin

usoi

dal2

-waY

7M

ON

T1

7M

onte

rey

No.

O6

1.0

1878

215

.5S

trai

n10

01

Sin

usoi

dal2

-wa

y

8M

ON

T1

8M

onte

rey

No.

O61

.011

872

15.5

Str

ain

100

10

Sin

usoi

dal2

-wa

y

9M

ON

T1

9M

onte

rev

No.

O6

0.6

1483

215

.5S

trai

n10

01

5S

inus

oida

l2-w

av

10M

ON

T2

0M

onte

rey

No.

O4

0.9

851

21

5.0

Str

ain

10

01

Sin

usoi

dal2

-way

11M

ON

T21

Mon

tere

vN

o.O

41

.888

02

15.0

Str

ain

10

01

Sin

usoi

dal2

-wa

v

12M

ON

T2

2M

onte

rev

No.

O4

2.3

1078

215

.0S

trai

n10

01

Sin

usoi

dal2

-wa

v

13M

ON

T2

4M

onte

rev

No.

O5

1.8

2736

215

.3S

tres

s10

01

Sin

usoi

dal2

-wa

y

14M

ON

T2

5M

onte

rey

No.

O50

.429

852

15.3

Str

ess

100

1S

inus

oida

l2-w

aY

15M

ON

T2

6M

onte

rey

No.

O4

9.9

2769

215

.2S

tres

s1

00

1S

inus

oida

l2-w

ay

16M

ON

T3

0M

onte

reY

No.

O4

1.9

708

215

.0S

trai

n10

01

0S

inus

oida

l2-w

ay

17

MO

NT

33

Mon

tere

yN

o.O

40

.582

92

15.0

Str

ain

100

10

Sin

usoi

dal2

-way

18M

ON

T3

5M

onte

reY

No.

O6

1.8

4211

215

.6S

tres

s1

00

0.1

Sin

usoi

dal2

-wav

19M

ON

T3

7M

onte

rev

No.

O6

1.6

1388

215

.5S

trai

n1

00

1S

inus

oida

l2-W

8V

20M

ON

T3

8M

onte

rev

No.

O6

1.8

70

42

15

.6S

trai

n1

00

10

Sin

usoi

dal2

-wav

Page 31: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Table 2.2 - Average Material Properties at the SRS Site

PARAMETER/SOIL LAYER TR31fR4 SANTEEAVG AVG

SPTN-VALUE 15 58SHEAR WAVE VELOCITY, mlsec (ftls) 364 (1193) 381 (1251)CONE TIP RESISTANCE, Qc, tsf 52 111FRICTION RATIO 3 1IQclN 3.5 1.9PERCENT FINES «.074 mm) 23 25PERCENT SILT 9 12PERCENT CLAY «.002 mm) 14 13PLASTICITY INDEX, % 25 31LIQUID LIMIT, % 45 55PLASTICITY INDEX (-200 MATERIAL), % 101 78LIQUID LIMIT (-200 MATERIAL), % 144 112

DRY DENSITY, KN/m3 (pef) 16 (102) 13.8 (88)WATER CONTENT, % 22 32

WET DENSITY, KN/m3 (pef) 19.6 (125) 6.4 (116)SPECIFIC GRAVITY 2.68 2.67VOID RATIO 0.625 0.876AT-REST LAT. EARTH PRESS. COEFF 0.46 0.44OVERCONSOLIDATION RATIO 1.89 1.26TOTAL COHESION, !cPa (ksf) 91 (1.9) -TOTAL FRICTION ANGLE, de~ee 13 -EFFECTIVE COHESION, kPa (ksf) 0 0EFFECTIVE FRICTION ANGLE, de~ee 33 34DILAnON ANGLE, degree 1.7 1.3

2-9

Page 32: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

N I ......

o

Tab

le2.

3-

Sum

mar

yo

fthe

Cyc

licT

riax

ial

Tes

tDat

aon

SRS

Soil

Sam

ples

Per

form

edat

Uni

vers

ity

ofC

alif

orni

a,B

erke

ley

No

.T

est

10S

am

ple

Dr(

%)

Ellq

(J/m

J)

FC

(%)

'Yd(k

N/m

J)

Co

ntr

ol

(Jc'

(kP

a)

Fre

q.

(Hz)

Lo

ad

Sh

ap

e

18

23

P2

8C

YS

ante

eNf

A14

675

33.7

16.0

Str

ess

40

01

Sin

usoi

dal2

-way

28

23

P2

MC

YS

ante

eNf

A16

782

35.6

16.4

Str

ess

400

1S

inus

oida

l2-w

av

38

23

P2

TC

YS

ante

eNf

A11

402

32.6

16.8

Str

ess

400

1S

inus

oida

l2-w

av

48

23

P3

8C

YT

obac

coR

d.Nf

A49

2916

.616

.4S

tres

s20

01

Sin

usoi

dal2

-wav

58

23

P3

MC

YT

obac

coR

d.Nf

A55

8518

.515

.2S

tres

s20

01

Sin

usoi

dal2

-wav

68

23

P3

TC

YT

obac

coR

d.Nf

A29

2420

.516

.6S

tres

s20

01

Sin

usoi

dal2

-wav

78

12

P5

8C

YT

obac

coR

d.Nf

A14

918

27.0

15.8

Str

ess

300

1S

inus

oida

l2-w

ay

88

12

P5

MC

YT

obac

coR

d.Nf

A49

114

26.8

16.8

Str

ess

300

1S

inus

oida

l2-w

av

98

12

P5

TC

YT

obac

coR

d.Nf

A54

5022

.318

.0S

tres

s30

01

Sin

usoi

dal2

-way

10

81

2P

78

CY

Tob

acco

Rd.

N/A

7666

15.7

15.9

Str

ess

375

1S

inus

oida

l2-w

ay

118

12

P7

MC

YT

obac

coR

d.N/

A14

482

17.0

16.3

Str

ess

375

1S

inus

oida

l2-w

av

128

12

P7

TC

YT

obac

coR

d.N/

A38

5215

.716

.2S

tres

s37

51

Sin

usoi

dal2

-wav

138

2P

58

CY

CT

obac

coR

d.N/

A11

672

25.4

14.7

Str

ess

500

1S

inus

oida

l2-w

ay

148

2P

5M

CY

CT

obac

coR

d.N/

A23

344

29.6

15.4

Str

ess

500

1S

inus

oida

l2-w

ay

158

2P

5T

CY

CT

obac

coR

d.N/

A88

1926

.616

.7S

tres

s50

01

Sin

usoi

dal2

-way

168

23

P4

8C

YT

obac

coR

d.N/

A21

667

11.4

14.6

Str

ess

750

1S

inus

oida

l2-w

av

178

23

P4

MC

YT

obac

coR

d.N/

A36

680

16.5

15.5

Str

ess

700

1S

inus

oida

l2-

way

'18

82

3P

4T

CY

Tob

acco

Rd.

N/A

1796

828

.0N/

AS

tres

s75

01

Sin

usoi

dal2

-way

198

29

P2

TC

YT

obac

coR

d.N/

A23

637

23.0

16.7

Str

ess

750

1S

inus

oida

l2-

way

208

2P

68

CY

Tob

acco

Rd.

N/A

1798

518

.916

.7S

tres

s72

51

Sin

usoi

dal

2-w

ay

218

2P

6M

CY

Tob

acco

Rd.

N/A

1983

120

.116

.5S

tres

s74

31

Sin

usoi

dal

2-w

ay

228

2P

6T

CY

CT

obac

coR

d.N/

A14

446

22.4

16.0

Str

ess

750

1S

inus

oida

l2-w

ay

Page 33: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

N I I-'

I-'

Tab

le2.

4-

Sum

mar

yo

fth

eC

yclic

Tor

sion

alT

est

Dat

aon

Cle

anan

dSi

ltySa

nds

Per

form

edat

Uni

vers

ity

ofC

olor

ado

No.

Tes

t10

Sam

ple

Or(

%)

E"q

(J/m

3 )FC

(%)

¥d(k

N/m

3 )P

.I.

Co

ntr

ol

ae'

(kP

a)F

req

.(H

z)L

oad

Sh

ape

1U

OF

C5

F11

32.6

3728

014

.5st

ress

199.

90.

1S

inus

oida

l2-w

ay

2U

OF

C7

F11

41.0

1249

50

14.7

Str

ess

204.

80.

1S

inus

oida

l2-w

ay

3U

OF

C9

F11

42.0

1699

70

14.8

Str

ess

304.

10.

1S

inus

oida

l2-w

ay

4U

OF

C13

F43

N/A

3450

2015

.310

.0S

tres

s29

9.9

0.1

Sin

usoi

dal2

-wa

y

5U

OF

C14

F46

N/A

4753

2015

.225

.0S

tres

s1

99

.90.

1S

inus

oida

l2-w

ay

6U

OF

C15

F46

N/A

2485

2015

.225

.0S

tres

s20

1.3

0.1

Sin

usoi

dal2

-way

7U

OF

C17

F64

N/A

3427

4516

.215

.0S

tres

s20

3.4

0.1

Sin

usoi

dal2

-wa

y

8U

OF

C18

F64

N/A

3993

4516

.215

.0S

tres

s19

0.3

0.1

Sin

usoi

dal2

-wa

y

9U

OF

C23

F11

45.3

7437

014

,9S

tres

s19

9.9

0.1

Sin

usoi

dal2

-way

Page 34: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

N I ..... N

Tab

le2.

5-

Sum

mar

yo

fth

eC

ycli

cT

riax

ialT

estD

ata

onN

orth

ridg

eS

ampl

esP

erfo

rmed

atU

nive

rsit

yo

fCal

ifor

nia,

Ber

kele

y

No.

Te

st10

Sa

mp

le0,

(%)

Enq

(J/m

3 )F

C(%

)'Y

d(k

N/m

3 )C

on

tro

lCJ

c'(k

Pa)

Fre

q.(H

z)L

oa

dS

ha

pe

1B

TC

2CY

1N

orth

ridge

San

d58

.35

93

05

14.5

Str

ess

10

0.1

Sin

usoi

dal2

-wav

2B

TC

2CY

2N

orth

ridae

San

d78

.42

24

75

15.5

Str

ess

10

01

Sin

usoi

dal2

-wa

v

3B

TC

3CY

1N

orth

ridge

San

d82

.351

465

15.7

Str

ess

10

01

Sin

usoi

dal2

-wav

4B

TC

3CY

2N

orth

ridge

San

d89

.938

135

16.1

Str

ess

10

01

Sin

usoi

dal2

-wav

5B

TC

3CY

3N

orth

ridae

San

d97

.236

156

516

.5S

tres

s1

00

1S

inus

oida

l2-w

av

6B

TC

4CY

1N

orth

ridae

San

d9

3.7

7874

516

.3S

tres

s1

00

1S

inus

oida

l2-w

av

7B

TC

4CY

2N

orth

ridae

San

d10

0.0

6647

516

.7S

tres

s1

00

1S

inus

oida

l2-w

av

8B

TC

6CY

1N

orth

ridae

San

d35

.232

065

13.5

Str

ess

10

01

Sin

usoi

dal2

-wav

Page 35: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

\'-,) J ..... lJ,)

Tab

le2.

6-

Sum

mar

yo

fthe

Cyc

lic

Tri

axia

lT

estD

ata

onC

lean

San

dsP

erfo

rmed

atW

ayne

Sta

teU

nive

rsit

y

No.

Te

stID

Sam

ple

Dr(

%)

Euq

(J/m

3 )FC

(%)

'Yd

(kN

/m3 )

Co

ntr

ol

Ge'

(kP

a)F

req.

(Hz)

Lo

ad

Sha

pe

1W

S6-

1-1

K-S

and

67.0

2211

2.5

15.8

Str

ess

44.3

0.1

Sin

usoi

dal2

-way

2W

S6-

1-2

K-S

and

65.0

2397

2.5

15.7

Str

ess

56.5

0.1

Sin

usoi

dal2

-way

3W

S6-

1-3

K-S

and

59.0

1893

2.5

15.4

Str

ess

68.9

0.1

Sin

usoi

dal2

-way

4W

S6-

1-4

K-S

and

40.0

39

72.

514

.7S

tres

s33

.80.

1S

inus

oida

l2-w

ay

5W

S6-

1-5

K-S

and

32.0

29

32.

514

.4S

tres

s38

.60.

1S

inus

oida

l2-w

ay

6W

S6-

1-6

K-S

and

74.0

2163

2.5

16.1

Str

ess

26.2

0.1

Sin

usoi

dal2

-wav

7W

S6-

1-7

K-S

and

52.0

424

2.5

15.2

Str

ess

22.8

0.1

Sin

usoi

dal2

-way

8W

S6-

1-8

K-S

and

66.0

1690

2.5

15.7

Str

ess

36.5

0.1

Sin

usoi

dal2

-way

9W

S6-

1-9

K-S

and

34.0

289

2.5

14.5

Str

ess

35.2

0.1

Sin

usoi

dal2

-way

10W

S6-

1-10

K-S

and

48.0

486

2.5

15.0

Str

ess

31.8

0.1

Sin

usoi

dal2

-wa

y

11W

S6-

1-11

K-S

and

42.0

39

42.

514

.8S

tres

s31

.90.

1S

inus

oida

l2-w

ay

12W

S6-

1-12

K-S

and

23.0

1857

2.5

14.1

Str

ess

35.2

0.1

Sin

usoi

dal2

-way

13W

S6-

1-13

K-S

and

29.0

22

32.

514

.3S

tres

s35

.30.

1S

inus

oida

l2-w

ay

14W

S6-

1-14

K-S

and

50.0

463

2.5

15.1

Str

ess

27.0

0.1

Sin

usoi

dal2

-wav

15W

S6-

1-15

K-S

and

38.0

32

02.

514

.6S

tres

s32

.50.

1S

inus

oida

l2-w

ay

16W

S6-

1-16

K-S

and

55.0

64

22.

515

.3S

tres

s32

.40.

1S

inus

oida

l2-w

ay

17W

S6-

1-17

K-S

and

51.0

615

2.5

15.1

Str

ess

35.2

0.1

Sin

usoi

dal2

-way

18W

S6-

1-18

K-S

and

58.0

899

2.5

15.4

Str

ess

35.9

0.1

Sin

usoi

dal2

-way

19W

S6-

1-19

K-S

and

37.0

309

2.5

14.6

Str

ess

34.5

0.1

Sin

usoi

dal2

-wa

y

20W

S6-

1-20

K-S

and

47.0

46

72.

515

.0S

tres

s33

.10.

1S

inus

oida

l2-w

ay

21W

S6-

1-21

K-S

and

39.0

379

2.5

14.7

Str

ess

34.5

0.1

Sin

usoi

dal2

-way

22W

S6-

1-22

K-S

and

61.0

1120

2.5

15.5

Str

ess

35.2

0.1

Sin

usoi

dal2

-wav

23W

S6-

1-23

K-S

and

56.0

739

2.5

15.3

Str

ess

34.6

0.1

Sin

usoi

dal2

-way

24W

S6-

1-24

K-S

and

30.0

237

2.5

14.3

Str

ess

36.0

0.1

Sin

usoi

dal2

-way

25W

S6-

1-25

K-S

and

57.0

76

82.

515

.4S

tres

s33

.90.

1S

inus

oida

l2-w

ay

26W

S6-

1-26

K-S

and

38.0

358

2.5

14.6

Str

ess

35.2

0.1

Sin

usoi

dal2

-way

27

WS

6-1-

27K

-San

d44

.045

62.

514

.9S

tres

s34

.50.

1S

inus

oida

l2-w

ay

Page 36: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

N I ..... ~

Tab

le2.

6-

Sum

mar

yo

fth

eC

ycli

cT

riax

ialT

estD

ata

onC

lean

San

dsP

erfo

nned

atW

ayne

Sta

teU

nive

rsit

y(C

onti

nued

)

No

.T

est

10S

amp

leD

r(%)

Ella

(J/m

3 )F

C(%

)'Yd

(kN

/m3 )

Co

ntr

ol

C1c'

(kP

a)F

req

.(H

z)L

oad

Sh

ape

28W

S6

·1-2

8K

-San

d31

.026

82.

514

.4S

tres

s37

.20.

1S

inus

oida

l2-w

ay

29

WS

6-2·

1M

onte

rey

No.

062

.011

622

15.8

Str

ess

32.9

0.1

Sin

usoi

dal2

-way

30W

S6

-2-2

Mon

tere

yN

o.0

57.0

802

215

.6S

tres

s33

.60.

1S

inus

oida

l2·w

ay

31W

S6

·2-3

Mon

tere

yN

o.0

36.0

302

214

.8S

tres

s32

.50.

1S

inus

oida

l2-w

ay

32W

S6

·2·4

Mon

tere

yN

o.0

39.0

361

214

.9S

tres

s34

.30.

1S

inus

oida

l2-w

ay

33

WS

6·2

·5M

onte

rey

No.

038

.042

42

14.8

Str

ess

43.1

0.1

Sin

usoi

dal2

-way

34W

S6

·2-6

Mon

tere

yN

o.0

52.0

710

215

.4S

tres

s41

.40.

1S

inus

oida

l2-w

ay

35W

S6

-2·7

Mon

tere

yN

o.0

58.0

1083

215

.6S

tres

s42

.90.

1S

inus

oida

l2-w

ay

36W

S6

·2-8

Mon

tere

yN

o.0

60.0

1264

215

.7S

tres

s39

.60.

1S

inus

oida

l2-w

ay

37

WS

6-2-

9M

onte

rey

No.

065

.017

472

15.9

Str

ess

42

.70.

1S

inus

oida

l2·w

ay

38W

S6

-2·1

0M

onte

rey

No.

059

.092

62

15.7

Str

ess

34.4

0.1

Sin

usoi

dal2

-way

39W

S6-

2-11

Mon

tere

yN

o.0

66.0

1749

215

.9S

tres

s40

.80.

1S

inus

oida

l2-w

ay

40

WS

6·2

-12

Mon

tere

yN

o.0

26

.021

52

14.4

Str

ess

34.5

0.1

Sin

usoi

dal2

-Way

41W

S6

·2·1

3M

onte

rev

No.

032

.025

22

14.6

Str

ess

31.0

0.1

Sin

usoi

dal2

-wav

42W

S6-

2-14

Mon

tere

yN

o.0

30.0

239

214

.6S

tres

s31

.80.

1S

inus

oida

l2·w

ay

43W

S6

·2-1

5M

onte

rey

No.

055

.076

22

15.5

Str

ess

37.0

0.1

Sin

usoi

dal2

-way

44

WS

6·2

-16

Mon

tere

yN

o.0

54.0

615

215

.5S

tres

s32

.40.

1S

inus

oida

l2-w

ay

45

WS

6-2-

17M

onte

rey

No.

047

.043

62

15.2

Str

ess

33.5

0.1

Sin

usoi

dal2

-way

46

WS

6-2-

18M

onte

rey

No.

044

.041

32

15.1

Str

ess

32.3

0.1

Sin

usoi

dal2

-way

47

WS

6-2-

19M

onte

rey

No.

042

.032

02

15.0

Str

ess

27

.70.

1S

inus

oida

l2-w

ay

48W

S6

·2-2

0M

onte

rey

No.

072

.011

792

16.2

Str

ess

16.5

0.1

Sin

usoi

dal2

-way

49W

S6-

2-21

Mon

tere

yN

o.0

28.0

194

214

.5S

tres

s28

.10.

1S

inus

oida

l2·w

ay

50W

S6

·2-2

2M

onte

rey

No.

041

.037

42

15.0

Str

ess

33.4

0.1

Sin

usoi

dal2

-wa

y

51W

S6-

2-23

Mon

tere

yN

o.0

35.0

251

214

.7S

tres

s28

.20.

1S

inus

oida

l2-w

ay

52W

S6·

2-24

Mon

tere

yN

o.0

51.0

533

215

.3S

tres

s33

.80.

1S

inus

oida

l2-w

ay

53W

S6·

2-25

Mon

tere

yN

o.0

53.0

462

215

.4S

tres

s25

.90.

1S

inus

oida

l2-w

ay

54W

S6-

2-26

Mon

tere

yN

o.0

33.0

232

214

.7S

tres

s27

.30.

1S

inus

oida

l2-w

ay

Page 37: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

N I .... \JI

Tab

le2.

6-

Sum

mar

yo

fthe

Cyc

lic

Tri

axia

lT

estD

ata

onC

lean

San

dsP

erfo

rmed

atW

ayne

Sta

teU

nive

rsit

y(C

onti

nued

)

No.

Te

stID

Sam

ple

Dr(%

)ell

Cl(J

/m3 )

FC

(%)

'Yd

(kN

/m3 )

Co

ntr

ol

Ge'

(kP

a)F

req.

(Hz)

Lo

ad

Sha

pe

55W

S6-

2-27

Mon

tere

yN

o.0

49

.053

22

15.3

Str

ess

35.3

0.1

Sin

usoi

dal2

-way

56W

S6-

2-28

Mon

tere

vN

o.0

56.0

606

215

.5S

tres

s2

7.3

0.1

Sin

usoi

dal2

-wa

v

57

WS

6-3·

1M

onte

rey

No.

051

.02

42

32

15.3

Str

ess

61.0

0.1

Sin

usoi

dal

1-w

ay

58W

S6

-3·2

Mon

tere

yN

o.0

33.0

1114

214

.7S

tres

s67

.60.

1S

inus

oida

l1-w

ay

59

WS

B-3

-3M

onte

rey

No.

030

.075

52

14.6

Str

ess

60.4

0.1

Sin

usoi

dal

1-w

av

60

WS

6-3

-4M

onte

rev

No.

054

.031

512

15.5

Str

ess

67.1

0.1

Sin

usoi

dal

1-w

av

61W

S6-

3-5

Mon

tere

yN

o.0

53.0

2589

215

.4S

tres

s58

.80.

1S

inus

oida

l1-w

av

62W

S6-

3-6

Mon

tere

yN

o.0

43.0

1306

215

.0S

tres

s4

5.3

0.1

Sin

usoi

dal1

-way

63

WS

6-3-

7M

onte

rey

No.

02

8.0

547

214

.5S

tres

s51

.80.

1S

inus

oida

l1-w

ay

64

WS

6-3-

8M

onte

rev

No.

071

.044

682

16.1

Str

ess

45.6

0.1

Sin

usoi

dal

1-w

ay

65W

S6-

3-9

Mon

tere

yN

o.0

46.0

1679

215

.1S

tres

s52

.50.

1S

inu

soid

al1

-wa

v

66W

S6-

3-10

Mon

tere

vN

o.0

61.0

1944

215

.7S

tres

s33

.10.

1S

inus

oida

l1-w

ay

67

WS

6-3-

11M

onte

rev

No.

062

.02

04

72

15.8

Str

ess

32.3

0.1

Sin

usoi

dal1

-way

68W

S6-

3-12

Mon

tere

yN

o.0

38.0

633

214

.8S

tres

s2

9.6

0.1

Sin

usoi

dal1

-wav

69

WS

6-3-

13M

onte

rey

No.

066

.02

95

22

1B.0

Str

ess

34

.70.

1S

inus

oida

l1-w

ay

70W

S6

-3-1

4M

onte

rey

No.

066

.03

81

32

15.9

Str

ess

48.6

0.1

Sin

usoi

dal1

-wa

v

71W

S6-

3-15

Mon

tere

yN

o.0

73.0

50

14

216

.2S

tres

s44

.50.

1S

inus

oida

l1-w

av

72W

S6-

3-16

Mon

tere

vN

o.0

56.0

21

48

215

.5S

tres

s43

.10.

1S

inus

oida

l1-w

ay

73W

S6-

3-17

Mon

tere

yN

o.0

55.0

2031

215

.5S

tres

s4

2.3

0.1

Sin

usoi

dal

1-w

ay

74W

S6-

3-18

Mon

tere

vN

o.0

56.0

26

22

215

.6S

tres

s4

6.6

0.1

Sin

usoi

dal1

-way

75W

S6-

3-19

Mon

tere

yN

o.0

49

.011

842

15.3

Str

ess

31.9

0.1

Sin

usoi

dal1

-way

76W

S6

-3·2

0M

onte

rev

No.

032

.044

12

14.6

Str

ess

31

.70.

1S

inus

oida

l1-

way

77W

S6-

3·21

Mon

tere

yN

o.0

82.0

51

03

216

.6S

tres

s40

.50.

1S

inus

oida

l1-

way

78

WS

6-3

·22

Mon

tere

vN

o.0

50.0

1073

215

.3S

tres

s2

6.8

0.1

Sin

usoi

dal1

-wav

79W

S6

-3·2

3M

onte

rey

No.

052

.01

65

52

15.4

Str

ess

40.3

0.1

Sin

uso

ida

l1-w

ay

80W

S6-

3-24

Mon

tere

vN

o.0

36.0

511

214

.8S

tres

s27

.50.

1S

inus

oida

l1-w

av

81W

S6-

3-25

Mon

tere

vN

o.a

37.0

666

214

.8S

tres

s34

.10.

1S

inus

oida

l1-

wav

Page 38: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

N I ..... 0'\

Tab

le2.

6-

Sum

mar

yo

fth

eC

ycli

cT

riax

ialT

estD

ata

onC

lean

San

dsP

erfo

rmed

atW

ayne

Sta

teU

nive

rsit

y(C

onti

nued

)

No

.T

est

10S

amp

le0,

(%)

Ella

(J/m

3 )F

C(%

)'Yd

(kN

/m3 )

Co

ntr

ol

CJc'

(kP

a)F

req

.(H

z)L

oad

Sh

ape

82

WS

6-4·

1M

onte

rey

No.

049

.051

215

.3S

tres

s42

.0E

arth

quak

eE

arth

quak

e

83W

S6-

4-2

Mon

tere

yN

o.0

61.0

792

15.7

Str

ess

40

.7E

arth

quak

eE

arth

quak

e

84W

S6-

4-3

Mon

tere

yN

o.0

53.0

57

215

.4S

tres

s40

.1E

arth

quak

eE

arth

quak

e

85W

S6

·4-4

Mon

tere

yN

o.0

40.0

362

14.9

Str

ess

42.6

Ear

thqu

ake

Ear

thqu

ake

86W

S6

·4·5

Mon

tere

yN

o.0

89.0

105

217

.0S

tres

s15

.2E

arth

quak

eE

arth

quak

e

87

WS

6·4

·6M

onte

rey

No.

044

.04

02

15.1

Str

ess

41.3

Ear

thqu

ake

Ear

thqu

ake

88W

S6

·4·7

Mon

tere

yN

o.0

35.0

33

214

.7S

tres

s43

.2E

arth

quak

eE

arth

quak

e

89W

S6-

4-8

Mon

tere

yN

o.0

31.0

282

14.6

Str

ess

41.6

Ear

thqu

ake

Ear

thqu

ake

90

WS

6·4

-9M

onte

rey

No.

071

.071

216

.1S

tres

s23

.4E

arth

quak

eE

arth

quak

e

91W

S6

·4·1

0M

onte

rey

No.

080

.019

02

16.5

Str

ess

43.9

Ear

thqu

ake

Ear

thqu

ake

Page 39: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT1960.60.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10015

80 T"'""----------------------------------...,Ci' 60Q..:.::'";40rn~ 20-enIii 0+-'--+-+-+-1--+-+--+-,1--+-!'--\-f1---'\---f----:\---t---1r-fi'---1-+-\-+-l,-;4-\:-+---l,,--f-~+;_~.;_~,L_-'=_I

~ 0 1.2

en :I }time, t (sec)

0.3..,.------------------------------------.~ 0.2e:- 0.1C~ 0.0 -J=I--+--I--+-_!__+-H-+-+-+-+-+---t1--+--+-l--~f___t,~____j_+__t_+_f_+_+_+_I__+__l__+__t__+__!__+-1

~ 0

1-0·1 ten -0.2

-0.3 -----------------------------------time, t (sec)

2000 ,..----------------------------------..,waiE 1500=0_> ..... .€ 1000~~>-E' 500CIlcw

0.2 0.4 0.6time, t (sec)

0.8 1.2

1.20.80.6

time, t (sec)

0.40.2

1.2,..-----------------------------------,1.0 !-RU-ElEliql

0.8

0.6

0.4

0.2

0.0 ~..;;.-.:..o.---_-----_-----_+_-----;__----_----~o

Figure 2.1 - Typical Time History Records ofa Strain-Controlled Cyclic Triaxial Test

2-17

Page 40: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density COlo):Applied Shear Strain COlo):

MONT1960.60.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10015

Shear Stress vs. Shear Strain

.-----------------70-:------------------,

0.30.2

,

I1..o---------------30f--"------- ---------'

-0.3

l;...IiiIIIeo...m.=rh

Shear Strain, "{ (%)

Figure 2.2 • A Typical Plot ofShear Stress - Shear Strain Hysteresis Loops DevelopedDuring Cyclic Triaxial Tests

2-18

Page 41: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

0.10.20.5Grain Size-mm

I.- ~ -\

I- \ -~

~ -

I- \ -(oJ

- -.

-:-o2

20

80

roo

-c~ 40Q)Q.

Figure 2.3 - Grain Size Distribution Curve for Monterey No. 0 Sand (Arango, 1994)

2-19

Page 42: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

10080604020

Fines Content =2.0 percent2-Way Sinusoidal LoadingInitial Effective Confining Pressure (creo') =100 kPaMonterey No. 0 Sand

I

...

••<> Strain Controlled, Frequency=1 Hz •

- ~Strain Controlled, Frequency=10 Hz ..o Strain Controlled, Frequency=15 Hz

+Stress Controlled, Frequency=O.1 Hz

- • Stress Controlled, Frequency=1 Hz

•£ Stress Controlled, Frequency=10 Hz <>• Stress Controlled, Frequency=20 Hz

~

"'"<>

~<>

~

~~ ~

Ioo

500

4000

5000

4500

1000

3500

-..E-2.E"

Iii 3000.:CI)enc0c0 2500:::u~CI)~C"

:::i- 2000CIS>-~CI)cw

1500

Relative Density, Dr(%)

Figure 2.4 - Strain Energy at Liquefaction Onset as a Function ofRelativeDensity for Monterey No. 0 Sand - DeB Data

2-20

Page 43: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

10010Frequency (Hz)1

IFines Content =2.0 percent2-Way Sinusoidal Loading

I Initial Effective Confining Pressure (creo') =100 kPa -c-II Monterey No. 0 Sand!

I

I I<> Strain Controlled, Dr=41-42%

f--I I

• Strain Controlled, Dr=61-62%

o Stress Controlled, Dr=49-52%

f-c-I i • Stress Controlled, Dr=60-62%

I I

I II

I

~II

••I

I

I • I

1Ii

I ..•

•I

j~

I

I i Ib

I

~

II ~.

I

i I

I I ,

II I I I II,a

0.1

SOD

1000

5000

1500

3500

4000

4500

­...,~~

W 3000'SftilCoc~ 2500u

~:;,r:r::i1U 2000>-~CDCW

Figure 2.5 - Strain Energy at Liquefaction Onset as a Function ofFrequenciesofLoading for Monterey No. 0 Sand - DeB Data .

2-21

Page 44: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Ground Surface

0 0

Fill eSC)

4.2714

G.W.L. Tobacco Road 1 (SC with CM and CH)

34 10.36

Tobacco Road 2 (SM with SP)

53 16.15,......r::::: 8'-- Tobacco Road 3 (SC - SM) --..c t....fr 65 ----------------------------------- 19.81 Q)

0Tobacco Road 4 (SC - SM) 0

75 22.86

Dry Branch 1/3 (SP - SM)

104

Dry Branch 4 (CH - SC)

Santee eSC)

Figure 2.6 - Generalized Subsurface Soil Profile at SRS Site

2-22

31.70

Page 45: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

c .~c

c:c:

Cc:

•N

.....

.......

C...

..C

o<::

>....

........-

......,~~

2~

00

~0

I....

..,.;;t

ID..

..('0

1

10

0CD

(I'J

l\l

....

....

(1)

....

lI'l

.....

....

.....

I•

11

1'1

II

I'I'

I"o

I'll

II

1'1

II

90

80

1,

70

::

.:

:~

a:1

OJ ~

60

·.

·.

~1IJ.

.~

~5

.~~

OJ

..,

N(J

,0

:.

..

NO

J4

0~

i\

w0

.

":111

1:1~

..3

0I

:"1

:111

I:I:

I::

1:11

"I:

I1

1"'!

:~

~I"wj

20

II

1111

1111

1--

10 0 2

00

fOO

10

.01

.00

.10

.01

0.0

01

GR

AIN

SIZ

E-

mill

Fig

ure

2.7

-T

ypic

alG

rain

Siz

eD

istr

ibut

ion

Cur

vefo

rT

obac

coR

oad

Soi

lM

ater

ial,

SR

S(R

iem

eran

dS

eed,

1994

)

Page 46: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

•t--- Frequency =1 Hz

Stress Controlled2-Way Sinusoidal LoadingSilty Sand

Io santee Soil, FC=32.6-35.6 %, Dry Unit Weight = 16.04-16.75 kN/m30

o Tab. Rd. FC=11.4-18.5 %, Dry Unit Weight = 14.6-15.91 kN/m3 If-- .Tab. Rd. FC=15.7-18.9 %, Dry Unit Weight = 16.24-16.73 kN/m3

<> Tab. Rd. FC=25.4-27 %, Dry Unit Weight = 14.65-15.82 kN/m3

I I• Tab. Rd. FC=20.1-26.8 %, Dry Unit Weight = 16.03-16.78 kN/m3I

A Tab. Rd. FC=22.3 %, Dry Unit Weight=18.02 kN/m3i,--- • Tab. Rd. FC=29.6 %, Dry Unit Weight = 15.37 kN/m3

IX Tab. Rd. FC=28 %, Dry Unit Weight = N/A ii

IIn

II

•0

I

I ...• X

I(

I ;

I.(

I•I I

I I

1

0 i

1 0 t[)

I

••III

50000

45000

40000

35000-(")E-::lE

W 30000.:CDU)

C0c.2 25000-uoS!CD::::l0"::i1U 20000>.CD"-CDCw

15000

10000

5000

oa 100 200 300 400 500 600 700 800

Initial Effective Confining Pressure, (JeO' (kPa)

Figure 2.8 - Strain Energy at Liquefaction Onset as a Function ofConfiningPressure for SRS Soil Samples - DCB Data

2-24

Page 47: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

U.S

.st

an

da

rdsi

eve

nu

mb

er

48

2040

6010

020

0

0.00

1

-/--/-7-r-/-/-~-/-'-"

-_....

_....

-.~_.-

0.1

Gro

insi

ze,

mm

1

10 go

100

90-<

-'8

0..c C

Jl -70

OJ s >-·6

0..D I-

50

OJ c .-40

4-

-<-' c

30

Q)

lRa

ng

eo

fg

rad

ati

on

s.

u I-

20

fin

ep

are

nt

san

dm

ixtu

res

Q)

0.-

N I N VI

Figu

re2.

9-

Gra

inSi

zeD

istr

ibut

ion

ofSi

ltySa

nds

-U

nive

rsity

ofC

olor

ado

Sam

ples

(Koe

ster

,19

92)

Page 48: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

10080604020

• IIFines Content =0 %2-Way Sinusoidal LoadingFrequency = 0.1 HzStress Controlled

[J Init. Eff. Con. Pre. =200-205 (kPa)

.Init. Eff. Con. Pre. =304 (kPa)I-

e

, ,ao

15000

20000

5000

2500

17500

..:Q)encoco 10000~~Q)

=tT::i;;>. 7500e'Q)c

W

­....E.,"'i 12500W

Relative Density, Dr (%)

Figure 2.10 - Strain Energy at Liquefaction Onset as a Function ofRelativeDensity for Clean Sands - University ofColorado Data

2-26

Page 49: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

500400300200100

2-Way Sinusoidal LoadingFrequency = 0.1 HzStress Controlled

Cl FC=20 'lb, Dry Unit Weight =15.18-15.24kN/m3

.FC=45 'lb, Dry Unit Weight =16.18kN/m3i

[

•• []

I

oo

5000

2500

17500

15000

20000

-....e..,- 12500EuJ,.;Q)Ulc:0c:0 10000;;u~cv=c:r::J1ii>. 7500Cl...cvc:W

Initial Effective Confining Pressure, crea' (kPa)

Figure 2.11 - Strain Energy at Liquefaction Onset as a Function of ConfiningPressure for Silty Sands - University of Colorado Data

2-27

Page 50: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

SANDCLAYSILT

u.S. standardseivesizes

~ £o c:iz z

Fine

2 fa ~c:i d 0Z Z Z

Coarse tomedium

GRAVEL

c: c: c .5 .E.E - I I V• I

~ ~I I It') 0N CD If) f() fC') z• I I • f..

'''''"",~

• A1X A4 (after testing)

.I

I.,

,,

~ III: •

80

20

100

o

; 60cu:­cCDE~ 40

100 10 1 0.1 0.01 0.001

Grain Diameter, mm

Figure 2.12 - Grain Size Distribution Curves for the Northridge Site Soil Samples(Arango and Migues, 1996)

2-28

Page 51: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT461.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

o

A A A A A 1\ A A A A . A ~ 1\ A f\ f\1\ ~

\ I I

0 5

vD

V V \Jk \ ~ \ 2I VV~ V V V V V V V V , I

4030

Iic.:. 20..Vi 10III

~Ci) 0

~ -10.:::.U) .20

-30

time, t (sec)

5

-5.1.-----------------------------------'time, t (sec)

20155oL.---=:!~=:=:::::::::::::::::::==--_-___J

o

...CI>Cl.>- 1000E'CIII::W

_4000.,...----------------------------------~

!w 3000ojE~ 2000::>

1.5,..----------------------------------....

1.0

0.5

!-RU-EJEliql

201510time, t (sec)

50.0~D~~~~~==::::::::::::=----_+___----J

o

d:\nit\itp\cy_files'lMONT4.xLS 8/20/96 12:57 PM

A-3

Page 52: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%)Applied Stress Ratio:

MONT461.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

-5 -4

Shear Stress vs. Shear Strain

Shear Strain.! (%)

d:\nit\itp\cLfiles\MONT4.XLSA-4

8120/9612:57 PM

Page 53: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT10610.27

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

.

'II \0 5 10 15 20 25 30 3

~

20i:. 10..iii~ 0

en 5

l:f 1

30

time, t (sec)

5" n

0 5 10 15 2o~~Vl130 3

o ~V

V

5

,...e

0~

C'iii..0..<II -5III.cC/)

-10 .J- ~~~~~-----------------J

time, t (sec)

3530252015105

;;" 7000 ,.---------------------------------------,

~ 6000

~ 5000CIl

§ 4000'0:> 3000..CIll:l. 2000::0-

f:' 1000

S ol-----..,.--~!!!!!:!!!!!:~==~=::;:::=:::::~=::;::=~-__I,_----_t_----__Jo

time, t (sec)

3...-----------------------------------,2 j-Ru-ElEIiQI

3530252015105

o~~~~~~~g~=:::::~~~~~__;__-____Jo

time, t (sec)

d:lnitlitp\cLfiles\MONT10XLSA-S

8f21196 9:46 AM

Page 54: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Stress Ratio:

MONT10610.27

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1001

Shear Stress vs. Shear Strain

r-------------------------aD-r-------.-------..

Shear Strain, 1 (%)

d:\nit\itpIcLfiles\MONT10.XLS

A-68/21/969:46 AM

Page 55: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1160.60.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress10010

5

lime, 1 (seC)

~ A 10 A ~ h f\

~ \ I"

f\

(\ " \I1\ I,I

I

~'! \ 1

'I

I\ ~ ~. 10 0.5 1

~1.5

I J ~ ~I

~ IJ V V V v ~ ~-30

30

_ 20

:.:. 10..~

:J 0..Ci):; -10ell.c(/) -20

J

~:~ 1"-'D"'V-rC"V-r"''"'V--r='"';-V:-t='<\~7",v-r;-v~v--;-<V\;---r~iV\i\f\riJr;--~-=-----fI-------+------1-;;- -0.2 0 0.5 1 1.5 2.5a:;:: -0.4

~ -0.6

i -0.8

re -1.0.c'(/) -1.2

-1.4-1.6 .1.-. --:::---:-:---:- --.J

time, t (sec)

2.521.5time, t (sec)

0.5

..ellQ.

>. 500

I oL-~~===::::::::;:::::::::::=::::===:=:=-----_l_-----Jo

_ 2000 .,.----------------------------------,

!w 1500orE::l"6 1000>

2.0..,---------------------------------,

1.5

1.0

I-RU-ElEliq!

time, t (sec)1.5 2 2.5

d:lnit\itp\CLfilesIMONT11.XLS BI15/9611:18AM

A-7

Page 56: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1160.60.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress10010

l;...rnIII!en -1.6...~.cen

Shear Stress vs. Shear Strain

Shear Strain, r ("A,)

0.2

d:\nit\itp\CLfiles\MONT11 XLS

A-8B/15/9611:18AM

Page 57: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT12610.23

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

40

time, t (sec)

I I:

I fI I i , ,

'itlttttlttt,

I II

m

I I I 110C0 0 ,

] 0 ' I 1 1

11I1

!

III

11I1 ~III

30

'ill20

0.;. 10..iiiUl 0G.l..iii.. ·10'llG.l.c(/)

-20

-30

5

Page 58: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT12610.23

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

Shear Stress vs. Shear Strain

r-----------------------------;3~-------.,

-6

Shear Strain, ., (%)

2

d:\nit\itp\cy_filesIMONT12.xLSA-IO

8/15/96 11:22 AM

Page 59: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1460.20.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress10020

40..-------------------------------------.30

ii~ 20 Ai 10 I ! ~ ~ It /I rIu; 0 -fl--+-,f-H-++-t-t-++-H--+-+-H-+-H-II-+-t-+-++-H-l-t-l-H-\--H-H-++~rt-iI\H-+1\J+-H-\-\J\J++-I'.J'-4:~-:f--I<:,J,--\;:------1

!: I v v __~_·5__vv_v_,.,\!-v.,...,._\i_._IJ-~-v-_\J---------'rtime, t (sec)

0.2 ,..-----------------------------------~0.0 +'--''M-''ri--\-;r-:>.;--A--A-f'r;--t~,...,__...,...._h<_~___:--------_+----_:___rr__Pr__t\_rt_-__1

~ -0.2 0~

.5 -0.4E;; -0.6...III

l:! -0.8(/)

1.5

-1.0

-1.2 ........---------------~-~~-----------------'time, t (sec)

1.5time, t (sec)0.5

o~::::::::::::::::::::::=_--r_-__Jo

2000 ,..--------------------------------------,

~w1500arE::l'01000:>...ellQ.

>. 500EJellCW

1.2,--------------------------------------,

1.5time, t (sec)0.5

I-Ru-ElEliq!0.8

0.6

0.4

1.0

0.2L~~~:::::::::=----- __-----_J0.0o

8/15/96 11 :24 AM

A-ll

Page 60: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1460.20.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress·10020

Shear Stress vs. Shear Strain

Shear Strain, r (%)

0.2

d:\nitlitplcy_files\MONT14XLS

A-128/15/96 11 :24 AM

Page 61: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1560.50.22

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

stresS10010

30.,.....-----------------------------------..,20

~;. 10..iii~ 0en 0ia -10Ql.ctI) -20

5

~10

m15

-30 .-.-----------------------------------....time, t (sec)

-2 .1.- ~_:__~~----------------1

time, t (sec)

2000 -r-----------------------------------,

1510time, t (sec)5

ar$'0 1000:>liiQ.,

>- 500L=:::::=::=========-_~~~UJ o

o

i:iUJ 1500

1.5.,.....-----------------------------------,

1.0 1-Ru -ElEliq I

0.5

0.0 '"o 5 time, t (sec) 10 15

d:\nitlitp\cLfiles\MONT15.xLS 8/15/96 11 :28 AM

A-13

Page 62: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Stress Ratio:

MONT1560.50.22

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'10010

-1.2

Shear Stress vs. Shear Strain

Shear Strain, r (%)

0.2

d:\nitlilp\cLfiles\MONT15.xLS

A-148/15/96 11 :28 AM

Page 63: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT17610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

SO-r------------------------------------,_60tll

Co

;'40...rngJ 20...enl:; O~+_t+_+_+_t_+_+_jt_H__++_t_r++_l_++_+_t_;'_I_+_T_+__Hi_++~f__';_+_'<:+_\::_f!__'<::_f~"'__'::~d_~_'<:f'-----___lc»~ 0 ~

0:1 ---=~----1time, t (sec)

30

" II " II n

0 5 10 15

~ ~ ~ ~25

1 v lJ v II V V II V 1/ v u I

0.2

-0.2

-0.3

,....,~';: 0.1Ct;.. 00- .C/)

i -0.1~C/)

0.3

Page 64: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT17610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

-0.3

Shear Stress vs. Shear Strain

Shear Strain, r (%)

0.3

d:\nitlitp\CLfiles\MONT17.xLS

A-168/15/96 11 :31 AM

Page 65: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Shear Strain (%):

MONT18610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

80.,.....----------------------------------,7060

i 50:!-.. 40

:f30~ 20

CiS... 10l'll~ O¥-+-!----+-+---\--+--I-I---I-ff--\,..+---\-+-~'--..>.d_'--'_'+_-"""----=------+_-------__l

(/) -10 0 2

~~t----_-----~------------1time, t (sec)

f\ f\ f\ A {\ f\ A A fI f\ f\

nn f\ f\ {'

I

~ ~~20 0·t5

VV V V V V V V V V

0.2

0.3

......"$.-;::: 0.1C~ 0.0(I)

1-0.11-0.2 _-0.3 -J

time, t (sec)

21.51time, t (sec)

0.5

~ 1500..,..-------------------------------------,E:i 1250wGJ- 1000E-5 7SO:-...~ SOD

~ 2SOGJC

W

21.51

time, t (sec)0.5

0.2

0.0 ~.~':+ _+_--------_;_-------___;---------'lo

0.4

1.2 -r-----------------------------------,1.0

0.8

0.6

d:\nit\itp\cyjiles\MONT18.XLS 8.(15/96 11 :37 AM

A-I7

Page 66: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT18610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain·10010

-0.3

Shear Stress vs. Shear Strain

Shear Strain, "( (%)

0.3

d:\nit\itp\cy-fiIes\MONT18.XLS

A-IS8/15/9611:37 AM

Page 67: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT1960.60.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10015

70....-;-----::---------------------------------........60

:50=.40...fA 30:ll 20..(i) 10..al O+'--+-+--+-+-+-+-+-+-+-+-+--Il--+-+--+--/--\-i+--\-f--+--cf---'<:--J'+-T-f'---'~---''<c++--'<::_f_---''d_--->.=_J

~ -100 1.2

: t---:::. ~~~-__- __-_---.,;Itime, t (sec)

0.3....--------------------------------------.

~ A ~~~ 0.1CI::r4='---t--t---:1--I--+-++-0.2 -+-+-+-+-t--t+0.4-t---+--t-+---1,...--f0:6-t-+--t-+-+-l

JB

'-+-V--+-+-V-+--+--lH-+-+--I--\--I'I

-0.3 -----------------------------------time, t (sec)

1.20.80.6time, t (sec)

0.40.2

_ 2000 -r------------------------------------,1w 1500

~~ 1000:>..GICo:>. 500E!GICW

1.2....-----------------------------------..,

1.20.80.6time, t (sec)

0.40.2

I-Ru -ElEliq I0.8

0.6

0.4

1.0

0.2

0.0 ~...;;......l.I----_-----_-----;_----__;-----_+-----"'""'o

d:lnitlitp\cy-files\MONT19XLS 8/15/96 11 :42 AM

A-19

Page 68: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Testl.D.:Relative Density (%):Applied Shear Strain (%):

MONT1960.60.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain·10015

-0.3

Shear Stress vs. Shear Strain

Shear Strain,., (%)

0.3

d:\nit\itp\Cy-files\MONT19XLS

A-208/15/96 11 :42 AM

Page 69: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT2040.90.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

70 T,-::-----------------------------------...,

60

'l 50=.40...Ii 30

! 20Cii 10...~ O-jl-+--f--\---f+---\--f--\--f+--+-f-+--f+--+--f~__I.::::__7'_+--__'_::=":.--...i.""d+_~~=---__1

~ -100 12

~~~ t ~------------------'Itime, t (sec)

0.3 -r-'"I~---------------------------------.....,

0.2,.,~';:: 0.1C~ 0.0 fL----l---I--+-+--+--f--+-+--+--I--+-+----l---I----l---f--I---I---+-+--+-+----1en 0 12

~ ::1 I-D.3 --;;;.-.---------------------------------

time, t (sec)

121086time, t (sec)

42

- 1000 .,..-------------------------------------,

!w 800

arE 600:::I

~... 400Gle-

El 400GIs:::W

1.2 -r-----------------------------------....,

121086time, t (sec)

42

)-Ru -ElEliq I

0.4

0.2

0.0 ~,:-..----_+_------t-------t-------t------_+_-------!o

1.0

0.8

0.6

d:lnitlitp\cy-filesIMONT20.xLS

A-218/15/96 11 :47 AM

Page 70: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT2040.90.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

-0.3 -0.2

Shear Stress vs. Shear Strain

-20

Shear strain, y (%)

d:\nit\itp\cLfiles\MONT20.XLSA-22

8115/96 11 :47 AM

Page 71: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT2141.80.15

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

60

50

Ii 40~;. 30..rn 20IIIGI... 10iii... 0 (",GI

~ -10 0 25

~! Itime, t (sec)

5

A f\ A A n fI

~ ~1\ 1\ f\ fI

' ~ A A 1\

0 5

~b " ~5 V ~v ~2

V V V V V v v v v V v V v V

-0.2

0.2

~ 0.1'-';-

c~ 0.0..=GI

~ -0.1

Page 72: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (0/0):Applied Shear Strain (%):

MONT2141.80.15

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

Shear Stress vs. Shear Strain

0.200.150.10

40

30'

-~tII

-0.20

Shear Strain, r (%)

d:\nit\itP\CLfiles\MONT21,XLS

A-248/15/96 11 :53 AM

Page 73: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain:

MONT2242.30.08%

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

Page 74: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Shear Strain:

MONT2242.30.08%

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

-0.15

Shear Stress vs. Shear Strain

0.15

~----------------3:Q--l.---------------_---I

Shear Strain, y (%)

d:\nit\itp\cy-fiIes\MONT22.xLS

A-26

8121196 9:47 AM

Page 75: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2451.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1001

'A f\ f\ 1\ f\ f\ f\ . A A ~ (\ ~ ~\

VV

\ " I \0

Va ~52

V V V V V V V V V

40

30

i 20:... 10Iie 0en -10 0

!:t 1

time, t (sec)

o

l

r'\

n~- ...........

'\(;VV~0 5 \15 2

U

5

~ 0:-C'f! -5en~

IIIIII

~ -10

-15.1.-------------------------------------'

Page 76: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2451.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1001

Shear Stress vs. Shear Strain

30

-10 -6 6

d:\nit\itp\cy-files\MONT24XLS

Shear Strain, y (%)

A-288/21/96 9:48 AM

Page 77: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2550.40.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

Page 78: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2550.40.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

l;.....nell

!u; -7...fIlell.crn

-6 -5

Shear Stress vs. Shear Strain

-4

Shear Strain, r (%)

2

d:\nit\itP\cLfiles\MONT2S.xLS

A-308/20196 8:23 AM

Page 79: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2649.90.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

40...-------------------------------------.30

120;.... 10og: O+----+----1-----+---'f-----'<----r----T----lf---~--_+-----__l..;; _100 5 6

!:t 1

time, t (sec)

5...--------------------------------------.,~O+-----.::::::==±:=---=:::----+-;:::'--~--+jc::::::.==~----+-+--+----;------j:.-- 0 2 5 6C'! -5;;..IIIIII

c5i -10

~15 .L- --J

time, t (sec)

6543time, t (sec)

2

~

0~-~=;::::::=~___i1___--~---__+---__+---_1o

_ 5000 -r--------------------------------------,-:e~ 4000worE 3000='0~2000IIICo

~ 1000..IIICW

2.0...------------------------------------..,

1.5

1.0

0.5

I-RU-ElEIiQI

6543time, t (sec)

2

o.o.l..'O;;;;;;;;;;;;;;;;,~~~===~~---~~--~::::::...._T__--~:......----__1o

d:\nit\itP\cLfiles\MONT26.XLS 8/21/96 8:58 AM

A-31

Page 80: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Stress Ratio:

MONT2649.90.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

Shear Stress vs. Shear Strain

-8 -6 4

d:lnitlitp\cLfiles\MONT26.XLS

Shear Strain, r (%)

A-328/21/96 8:58 AM

Page 81: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%)Applied Shear Strain (%):

MONT3041.90.26

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'10010

0.1 0.2 0.3 0.4 0.5time, t (sec)

0.6 0.7 0.8 0.9

0.90.80.70.60.4 0.5time, t (sec)

0.30.20.1

0.2

0.0 .w..:-----l.,..,t-/------!-----+----i----+-----------+----+----..;-------!o

1.2 ......------------------------------------,

1.0 I-Ru-EJEliq!

0.8

0.6

0.4

d:\nit\itp\cy_filesIMONT30.XLS 8/21/96 9:08 AM

A-33

Page 82: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%)Applied Shear Strain (%):

MONT3041.90.26

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

-0.4

Shear Stress vs. Shear Strain

-2

Shear strain, y (%)

0.3

d:\nit\itp\cy-fiIesIMONT30XLS

A-348/21/96 9:08 AM

Page 83: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%)Applied Shear Strain (%)

MONT3340.50.08

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

o

time, t (sec)

~rN\11 ~ ~M~~~~~~~~A~A~AAAIV

0 2 4 6 8 1

1 I I

40

- 30IIIa.;. 20..IAIII 10ell...

<is... 0IIIell.=en -10

-20

0.10 -r--...-------------------------------------,~ 0.05:-C ._A~ QOO ~ I(;) 0 2 4 6 8 10

j ~05t I I I \ I-0.10 -----------------------------------......

time, t (sec)

1000-§:2- 800worE 600::I"0:>

400...ellQ.

>.E! 20011)

cW

0

0 2 4 time, t (sec) 6 8 10

1.2

1.0I-RU -ElEliq I

0.8

0.6

0.4

0.2

0.0

0 2 4 time, t (sec) 6 8 10

d:\nit\itp\cy-fiIes\MONT33.xLS 8/20/96 9:22 AM

A-35

Page 84: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (Ufo)Applied Shear Strain (%)

MONT3340.50.08

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

-0.10

Shear Stress vs. Shear Strain

L---------------_:2O-:-- ...J

Shear Strain,., ('Vo)

d:lnit\itp\cy_filesIMONT33.xLS

A-368/20/96 9:22 AM

Page 85: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%)Applied Stress Ratio:

MONT3561.80.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1000.1

120

120

I

100

time, t (sec)

40

30ii

20l1.;... 10~CIl 0CI)...

Ci) -10 0

! :14

2......e 0:-C _2 0~- -4(I)...ftJCI) -6.c(I)

-8

-10time, t (sec)

1201008060time, t (sec)

4020

_8000,..-------------------------------------,

~;;6000ajE:l'04000::>...GlCo>2000E'Gl

.n oL-...e!!~~c~=~:::=~"'"!_-----_;_-----_;_-----_t_----_Jo

2.0..---------------------------------------,

!-RU-ElEliql1.5

1.0

0.5

0.0 .~

o 20 40 60time, t (sec)

80 100 120

d:\nit\itp\cy_fiIes\MONT35.xLS 8/20/9610:42AM

A-37

Page 86: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT3561.80.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress·1000.1

Shear Stress vs. Shear Strain

Shear Strain, r (%)

d:lnit\itp\cLfilesIMONT35.xLS

A-388/20/9610:42AM

Page 87: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%)

MONT3761.60.17

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

60 -r--------------------------------------,50

'ii40~

:. 30.. 20

f 10(i) O-H--H-+t-+-t-H+H-H--H-++-H-H-H-H'-t-H--H-++-H-++-H-+i-f--lh'-'t-+'r+t-+t-+H+-f-H'hi'-h'-h----!i -100 35

~ :f ---JItime, t (sec)

5

~0 5

~o15 20

~30 3

-0.2

0.2

~ 0.1'""?-

C~ 0.0o..IIIGl

~ -0.1

time, t (sec)

- 1500 r-------------------~=::==:===::=::::;;:;;;;:---llwaj 1000E:=g~ 500Co>.ElGlCW

Page 88: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (0/0):Applied Shear Strain (0/0)

MONT3761.60.17

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

-0.25

Shear Stress vs. Shear Strain

Shear Strain, "{ (%)

0.25

d:lnit\itp\cy-ftles\MONT37XLS

A-408120196 10:47 AM

Page 89: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test to.:Relative Density (%):Applied Shear Strain (%):

MONT3861.80.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

70

60Ii 50I:l.:'40..

30rAen 20S1- 10CI)..0ClI

QI

~ -100 1.2

:i Itime, t (sec)

0.3

0.2.....~

';:: 0.1CE 0.0c;; a

~1.2..

~ ~.1II-0.2

-0.3time, t (sec)

1.20.80.6

time, t (sec)

0.40.2

~ 1000 .,.-------------------------------------,

~w 800oJE 600:='0~ 400CIlQ.

Ei 200CIcW

1.20.80.6time, t (sec)

0.40.2

1.4 ,.-------------------------------------,

1.2 1-Ru -ElEliq!

1.0

0.8

0.6

0.4

0.2

0.0 ~~....:..:.---+-------_-----_-----_-----,.....------!o

d:\nitlitp\cLfiles\MONT38.XLSA-41

8120/96 10:54 AM

Page 90: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT3861.80.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

Shear Stress vs. Shear Strain

...------------------70--,.------------------.

60

0.3

]

-0.1

50

-D.3

Shear Strain, r (%)

d:\nit\itp\cr-fi1es\MONT38XLS 8/20/96 10:54 AM

A-42

Page 91: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

APPENDIXB

LABORATORY TESTS ON SOIL SAMPLES FROM THE SAVANNAB RIVERSITE, PERFORMED AT THE UNIVERSITY OF CALIFORNIA, BERKELEY

B-1

Page 92: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

t>:I I N

Tab

le8.

1-

Sum

mar

yo

fthe

Cyc

licT

riaxi

alT

estD

ata

onSR

SSo

ilSa

mpl

esPe

rfor

med

atU

nive

rsity

ofC

alifo

rnia

,B

erke

ley

No.

Te

st10

Sam

ple

Dr(

%)

Ella

(JIm

")FC

(%)

Yd(k

N/m

")C

on

tro

l(J

e'(k

Pa)

Fre

q.

(Hz)

Lo

ad

Sh

ap

e

1B

23P

2BC

YS

ante

eN/

A14

675

33.7

16.0

Str

ess

400

1S

inus

oida

l 2-w

ay

2B

23P

2MC

YS

ante

eN/

A16

782

35.6

16.4

Str

ess

400

1S

inus

oida

l2

-wa

y

3B

23P

2TC

YS

ante

eN/

A11

402

32.6

16.8

Str

ess

400

1S

inus

oida

l2-w

ay

4B

23P

3BC

YT

obac

coR

d.N/

A49

2916

.616

.4S

tres

s2

00

1S

inus

oida

l2-w

ay

5B

23P

3MC

YT

obac

coR

d.N/

A55

8518

.515

.2S

tres

s20

01

Sin

usoi

dal

2-w

ay

6B

23P

3TC

YT

obac

coR

d.N/

A29

2420

.516

.6S

tres

s2

00

1S

inu

soid

al2

-wa

y

7B

12P

5BC

YT

obac

coR

d.N/

A14

918

27.0

15.8

Str

ess

300

1S

inus

oida

l2-w

ay

8B

12P

5MC

YT

obac

coR

d.N/

A49

114

26.8

16.8

Str

ess

300

1S

inus

oida

l2-w

ay

9B

12P

5TC

YT

obac

coR

d.N/

A54

5022

.318

.0S

tres

s30

01

Sin

usoi

dal2

-wa

y

108

12

P7

8C

YT

obac

coR

d.N/

A76

6615

.715

.9S

tres

s37

51

Sin

usoi

dal

2-w

ay

11B

12P

7MC

YT

obac

coR

d.N/

A14

482

17.0

16.3

Str

ess

375

1S

inus

oida

l2-w

ay

1281

2P7T

CY

Tob

acco

Rd.

N/A

3852

15.7

16.2

Str

ess

375

1S

inus

oida

l2-w

ay

13B

2P58

CY

CT

obac

coR

d.N/

A11

672

25.4

14.7

Str

ess

500

1S

inus

oida

l2-w

ay

14B

2P5M

CY

CT

obac

coR

d.N/

A23

344

29.6

15.4

Str

ess

500

1S

inus

oida

l2-w

ay

15B

2P5T

CY

CT

obac

coR

d.N/

A88

1926

.616

.7S

tres

s50

01

Sin

usoi

dal2

-wa

y

16B

23P

4BC

YT

obac

coR

d.N/

A21

667

11.4

14.6

Str

ess

750

1S

inus

oida

l2-w

ay

17B

23P

4MC

YT

obac

coR

d.N/

A36

680

16.5

15.5

Str

ess

700

1S

inus

oida

l2-w

ay

18B

23P

4TC

YT

obac

coR

d.N/

A17

968

28.0

N/A

Str

ess

750

1S

inus

oida

l2-w

ay

19B

29P

2TC

YT

obac

coR

d.N/

A23

637

23.0

16.7

Str

ess

750

1S

inus

oida

l2

-wa

y

20B

2P

68

CY

Tob

acco

Rd.

N/A

1798

518

.916

.7S

tres

s72

51

Sin

usoi

dal2

-wa

y

21B

2P6M

CY

Tob

acco

Rd.

N/A

1983

120

.116

.5S

tres

s74

31

Sin

usoi

dal2

-wa

y

22B

2P6T

CY

CT

obac

coR

d.N/

A14

446

22.4

16.0

Str

ess

750

1S

inus

oida

l2-w

ay

Test

Res

ults

Follo

win

gth

eS

eque

nce

ofTe

stID

'sar

eA

ttach

ed.

Page 93: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2BCY33.716.04

Controlled Parameter:Initial Effective Stress (kPa):

Stress·400

100 -r-------------------------------------,80

iii 60~ 40.. 20:§ O+L---+---+l----+---+l----\----t+-----\----t+-----\----H------l

i_~l 'I-120 f ~-~~----------------.

time, t (sec)

5..---------------------------------------.

6..... 0f----"""""""-+--=-"='"---1-""/'"-===-.;----t--r-~---+-_f_-_t--_+__{_-----1

~ 0~

C -5~en... -10IIIQl.ct/) -15

-20 ........-----------------------------------'time, t (sec)

6543time, t (sec)

2

;;--50000 ......-----------------------------------.......e24D000wcjE30000::::l'0~ 20000QlQ,

~ 10000

~ 0 I. 000111!~:;::::=::::::::::::=:~-_;_-----+__----~-----Jo

3.0 -r------------------------------------,

!-RU -EJEliq I2.0

1.0

6543time, t (sec)

2

0.0 ~:::::::::;;;;..tCZ.~::::::::=:::::~---=~----=_+_---__+---_lo

d:lnitlitp\cLfiJes\B23P2BCYXLSB-3

8120/96 5:01 PM

Page 94: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2BCY33.716.04

Controlled Parameter:Initial Effective Stress (kPa):

Stress400

Shear Stress vs. Shear Strain

,----------------------------'100--,.------......,

l:...iiiIII

~en -16..ftIell.cC/)

-14

Shear Strain, 'Y (%) .

4

d:\nitutp\CLfiles\B23P2BCYXLSB-4

8120/96 5:01 PM

Page 95: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2MCY35.616.43

Controlled Parameter:Initial Effective Stress (kPa):

Stress'400

2.0

1.0

0.0 Ao

d:\nitlitp\CLfiles\B23P2MCYXLS

!-RU-ElEliq!

2 4 time, t (sec)

B-S

6 8 10

8/21/96 9:49 AM

Page 96: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

B23P2MCY35.616.43

Controlled Parameter:Initial Effective Stress (kPa):

Stress·400

Shear Stress vs. Shear Strain

.-----------------------------'10Q-ro-----...,

::.:.:­..rAtil

!en -10..III.....:o

-8

Shear Strain, 1 (%)

2

d:\nit\itp\cy-files\B23P2MCYXLS

B-68/21/96 9:49 AM

Page 97: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2TCY32.616.75

Controlled Parameter:Initial Effective Stress (kPa):

Stress400

o

time, t (sec)

~ I I1

\ ~ ~0 10 20 30 40 5

t ~ ~ ~ ~ I-60

-80

80

60

l40=-.. 20iii! 0u; -20..III

ll-40U)

Page 98: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

823P2TCY32.616.75

Controlled Parameter:Initial Effective Stress (kPa):

Stress400

-14

Shear Stress vs. Shear Strain

Shear Strain, ., (%)

6

d:\nit\itP\cLfiles\B23P2TCYXLSB-8

8/21/96 7:44 AM

Page 99: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P3BCY16.616.4

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

40.-----------------------------------...,

~: 1

1

\fA I~+m~W+Ull1mt~W~~Wf}W+mwOOU++l~~J.U.ljfW.J++mlW.UW~W~.w.uW+W./1.Jj~ 0+1

~ _100 \ 20 40 60 80

!:f--,-_!iI_~I~~~:-----_~_---IItime, t (sec)

15.------------------------------------,

10......~';:: 5~

~ O+---~------....,...";-,,......,.....""""'r=_..nt'tt'I1't1'rf'r.frfi"fTf\i9rfrftitltJ'HtttHfl+tHffil_fttttti*H_I'tt_h

~ -510 20 8

1

0

;; -10

-15 ---J

time, t (sec)

806040time, t (sec)

20

w 60000arE::J"0 40000:>..II>

~ 20000E!

~ oL--------.oIIi!--=~========:=:=:;:::::=-----_;__--------Jo

_ 80000.---------------------------------~__.~::!.

20.0.----------------------------------~

15.0

l-Ru-ElEliq!10.0

5.0

806040time, t (sec)

20

o.oJ---~~~ ........--~~~=~~~~~~~~~~~~Jo

d:\nit\itP\CLfiles\B23P3BCy.xLS

B-98/21/96 7:48 AM

Page 100: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P3BCY16.616.4

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

'i:...iii'"~rn -15..~QI.crn

Shear Stress vs. Shear Strain

Shear Strain, y (%)

d:\nit\itp\cy_files\B23P3BCY.XLSB-lO

8/21/96 7:48 AM

Page 101: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Dep

th5.

06m

(16.

6ft.

)--"

-~

Sol

ipro

pert

ies

used

inth

ean

alys

isw

ere

p!.

I--"

base

don

aver

age

ofth

eC

ross

hole

and

--J'-

,.,...

SA

SW

shea

rw

ave

velo

city

mea

sure

men

ts.

Dep

th4.

21m

(13.

8ft.

)

l'

FD

epth

5.91

m(1

9.4

ft.)

J_

..Jl

,y-

~rJ·r

r-.J

"

~D

epth

3.3

5m

(11.

0ft.

)

~~~

~~

.If"

~~

500

40

0

-.., E30

03- ~ .. CI

) c W c~

'e20

0I

UiN W

100 o

o5

1015

20

Tim

e(S

eco

nd

)

25

303

540

Fig

ure

4.16

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edSa

ndL

ayer

-W

ildl

ife

Sit

e,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in36

00D

irec

tion

-S

HA

KE

Ana

lysi

sO

utpu

t

Page 102: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

--

Soi

lpro

pe

rtie

su

sed

inth

ea

na

lysi

sw

ere

ba

sed

ona

vera

ge

oft

he

Cro

ssh

ole

an

dS

AS

Wsh

ea

rw

ave

velo

city

me

asu

rem

en

ts.

---

--

Dep

th5.

06m

(16

.6ft.

)

~~

I-1

------------.-

--

-

~D

ep

th4.

21m

(13

.8ft.

)

(I

De

pth

5.91

m(1

9.4

ft.)

--~

~I

/.

..r

.."J

-D

ep

th3

.35

m(1

1.0

ft.)

~

.~

-~

50

0

40

0

II'

E3

00

::::i - e; CI) c UJ c

tg

200

N(J

).I:

-

10

0 oo

51

01

52

0

Tim

e(S

econ

d)

25

30

35

40

Figu

re4.

17-

Acc

umul

atio

nof

Stra

inE

nerg

yin

Liq

uefie

dSa

ndL

ayer

-W

ildlif

eSi

te,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in90

0D

irec

tion

-SH

AK

EA

naly

sis

Out

put

Page 103: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

800

-.iii

iiiii

40

35

30

Dep

th3.

35m

(11.

0ft.

)

25

Dep

th5.

06m

(16.

6ft.

)

20

Tim

e(S

eco

nd

)

1510

5

Soi

lpro

pert

ies

used

Inth

ean

alys

isw

ere

ba

sed

onav

erag

eo

fthe

Cro

ssho

lean

dS

AS

Wsh

ea

rw

ave

velo

city

mea

sure

men

ts.

o,

1""

'--

II

II

II

,

o

600

-

r- oE :2­ >- 140

0-1

II

IH

lePt~

c 'iij

~l-

Nen

l.J1

20

0-I

II

.111'-

I:/

-IfI

II

II

Fig

ure

4.18

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

athq

uake

-S

umm

atio

no

fSH

AK

EA

naly

sis

Out

puti

nbo

th36

00an

d90

0D

irec

tion

s

Page 104: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Rec

orde

dM

otio

na

tG

rou

nd

Sur

lace

-R

ecor

ded

Mot

ion

at

Dep

tho

f7.5

m(U

sed

asB

DE

SR

AIn

put)

••

•B

DE

SR

AO

utpu

tat

Gro

und

Sur

lace

,. l'•

,I'

I'

, ...•

~~

• •I

IhW

I\~ ~

r~

II~~

\~~

•\'.

J"

-,'

~/'

A

V~

,.f\V

\ ~i'\

,. '> rZ\

~u

..rv

~•

\~~

...-

.~

[,I,.

.. t\"

,.

l)--

'VIf~

~/I-

"".....

.....

•..

rt.t'

J~

.p­ I N ()'\

1.2

_0.

8S a ~ Q

) '80.

6~ ~ 8- en

0.4

0.2 o 0.

11

Fre

quen

cy(H

z)10

100

Figu

re4.

19-

Acc

eler

atio

nR

espo

nse

Spec

traat

5%D

ampi

ng-W

ildlif

eL

ique

fact

ion

Arr

ay,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

-Com

paris

onof

Hor

izon

talM

otio

nsin

3600

Dir

ectio

n-B

DE

SRA

Out

put,

Tot

alSt

ress

Ana

lysi

s

Page 105: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

100

101

II Rec

orde

dM

otio

na

tGro

un

dS

urf

ace

Rec

orde

dM

otio

na

tD

epth

of7

.5m

(Use

das

BD

ES

RA

Inpu

t)

••

•B

DE

SR

AO

utp

uta

tGro

un

dS

urf

ace

, ·,~

·, ••

•'I-

-"

•",

•,

•'"

,~,

•~"

J•

r\...''--

••

t\

", II1\

V~//

"

1J\

,..."

...

r~AN

~V' I\L

Jf\

MI)

hA

r'\JI

\."

II, V,.

to... e?

,...\-=

.....

-..

•I-

~f.!

.~

'"~~

lJ/

o 0.1

0.21

1.2

0.8

:§l c o ~ .. .9! 8

0.6

.'i '!!

\1"

g,.

en0.

4

Freq

uenc

y(H

z)

Figu

re4.

20-A

ccel

erat

ion

Res

pons

eSp

ectr

aat

5%D

ampi

ng-W

ildlif

eL

ique

fact

ion

Arr

ay,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

-Com

pari

son

ofH

oriz

onta

lMot

ions

in90

0D

irec

tion

-BD

ESR

AO

utpu

t,T

otal

Stre

ssA

naly

sis

Page 106: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Maximum Shear Stress (pst)

o 100 200 300 400 500 600 700

o,...---"!-----,..-.---....--~---.....jo----!----"""i_. 0

2

Initial soil properties were based onthe average of SASW and Cross Holeshear wave velocity measurements.5

10

4- Range of Liquefied -e. 15 ESand Layer -CI) CI)

0 0ca~'t:= =rn en

'0 '0C 6 c= 20 =0 0.. ..

CJ C'E E0 0.. ..- ....c Elevation of Downhole .c- -go 25 Earthquake Record Co

CI)c 8 c

30

-A-90 Degrees (EW)Motion

10

35-+-360 Degrees (NS)

Motion

12

3025201510540 -+.----....---~---____l----~---...,.--- ....--...

oMaximum Shear Stress (kPa)

Figure 4.21 - Maximum Shear Stress Distribution over Depth from BDESRA Results ofTotal Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

4-28

Page 107: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Maximum Shear Stain (%)

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

o+--~"""-""'---!---'!----!o---+---"'-""';---+---"" 0

5

Initial soil properties were based on theaverage of SASW and Crosshole shearwave velocity measurements.

2

10

4

- Range of Liquefied -£ 15 eSand Layer -Cl) Gla a

o{! Cll1::s :sen f/)

'a 'aC

6 c:s 20 :se 0..C ce e0 0.. ..- -.c

Elevation of Downhole .c- -Q. Q.Cl) 25 Earthquake Record Cl)Q Q

8

30

35

-.-90 Degrees (EW)Motion

-+-360 Degrees (NS)Motion

10

40~-------------------------_..

Figure 4.22 - Maximum Shear Strain Distribution over Depth from BDESRA Results ofTotal Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

4-29

12

Page 108: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

De

pth

5.4

9m

(18

.0ft.

)

1/

rD

ep

th4

.63

m(1

5.2

ft.)

~r;;

De

pth

6.3

6m

(20

.9ft.

)

----

V rD

ep

th3

.78

m(1

2.4

ft.)

~

De

pth

2.9

3m

(9.6

ft.)~

/

V~,..

,...-

~V

50

0

40

0

r- .e3

00

~ ~ .. CI) c w .6

.j:'

-,g:

20

0I

tJ)

w 0

10

0 oo

510

15

20

25

Tim

e(s

ec.)

30

35

40

·4

55

0

Fig

ure

4.23

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

ein

3600

Dir

ecti

on-

BD

ES

RA

Out

put,

Tot

alS

tres

sA

naly

sis

Page 109: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

De

pth

5.4

9m

(18

.0ft.

)

~~

II

De

pth

4.6

3m

(15

.2ft

.)

V,....

II

~D

ep

th6

.36

m(2

0.9

ft.)

~

1I

./

De

pth

3.7

8m

(12

.4ft

.)

~l.--

I ~

JD

ep

th2

.93

m(9

.6ft.

)

...

~~

.....

~'e.

~:J

/

250

200

- '" 15

0.€ ::2

- ~ .. CD C w .5+:

-2!

100

ItiS

w .......

50 oo

51

01

520

25

Tim

e(s

ec.)

30

35

40

45

50

Fig

ure

4.24

-A

ccum

ulat

ion

of

Str

ain

Ene

rgy

inL

ique

fied

San

dL

ayer

-W

ildl

ife

Sit

e,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in90

°D

irec

tion

-B

DE

SR

AO

utpu

t,T

otal

Str

ess

Ana

lysi

s

Page 110: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Dep

th5

.49

m(1

8.0

ft.)

~

(D

ep

th4

.63

m(1

5.2

ft.)

wr-

Dep

th6

.36

m(2

0.9

ft.)

)~V

.lf~

~D

epth

3.78

m(1

2.4

ft.)

~61

____

"/---

Dep

th2

.93

m(9

.6ft.

)

I---

~'/

.-d

'./"

800

700

600

;:""

500

.€ 3 ~ Gi40

0c w .5

~~

~fI

)30

0N

200

100 o

o5

1015

20

25

Tim

e(s

ec.)

3035

40

455

0

Fig

ure

4.25

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

e-

Sum

mat

ion

ofB

DE

SR

AT

otal

Str

ess

Ana

lysi

sO

utpu

tin

both

3600

and

90°

Dir

ecti

ons

Page 111: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

100

10Fr

eque

ncy

(Hz)

1

Rec

orde

dM

otio

nat

Gro

und

Sur

face

Rec

orde

dM

otio

nat

7.5m

Dow

nhol

e(S

peci

fied

asB

DE

SR

AIn

put)

....

..B

DE

SR

AO

utpu

tatG

roun

dS

urfa

ce

-

~\, •

j•

~~:

~r,

\CA~

I~~

\ 'oJ

~J

~'o

J\

~A.

A

VV

f\V

'.\VI

"'f\

\'/"

rvU

".. ~

~, -

•,

•~

",

••

,-

~,11

""!':

r'-

It,..~

li~

1/~

""'-

"-. .

.... .

..~...

...

...~

rv--

o 0.1

0.21

1.2

0.8

tn - c o i ~ CD 1l0.

6u ocr

: i U)

0.4

.p­ I W W

Fig

ure

4.26

-A

ccel

erat

ion

Res

pons

eS

pect

raat

5%D

ampi

ng-

Wil

dlif

eL

ique

fact

ion

Arr

ay,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

-C

ompa

riso

no

fHor

izon

tal

Mot

ions

in36

00D

irec

tion

-B

DE

SR

AO

utpu

t,E

ffec

tive

Str

ess

Ana

lysi

s

Page 112: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

100

101

II

Rec

orde

dM

otio

na

tG

rou

nd

Sur

face

Rec

orde

dM

otio

nat

Dep

tho

f7.5

m(U

sed

as

BD

ES

RA

Inpu

t)

--

-B

DE

SR

AO

utp

ut

atG

rou

nd

Sur

face

.'1\

...-

•I

•I

•,

\•

..,-

,\.A

J,1

:\

"I

.1,

rtr\~,

~I

YiW

V;•

f~

~~~~

M~

JI\.

1I ..

If\I/

~.'"':

f"o, ~

oW

~

~[,

-., V

~.~~

l/-

.. -

/o 0.

1

0.21

1.2

_0.

8m - c o ~ CD ~

0.6

i f/)

0.4

~ I W ~

Fre

quen

cy(H

z)

Figu

re4.

27-

Acc

eler

atio

nR

espo

nse

Spec

traat

5%D

ampi

ng-W

ildlif

eL

ique

fact

ion

Arr

ay,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

-Com

paris

onof

Hor

izon

talM

otio

nsin

900

Dire

ctio

n-B

DE

SRA

Out

put.

Eff

ectiv

eSt

ress

Ana

lysi

s

Page 113: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Maximum Shear Stress (pst)

o 100 200 300 400 500 600 700

O+----+----,...---~--__!---~---__+_---..... O

2

Initial soil properties were based onthe average of SASW and Crossholeshear wave velocity measurements.5

10

4- Range of Liquefied -5. 15 ESand Layer -C) CD

() ()

o! 4!;:, ;:,tn tn'C 'CC 6 c;:, 20 ;:,

~ 0..<:J <:JE Ee e... -~ Elevation of Downhole ~- -go 25 Earthquake Record a.

CDQ

8Q

so-+-S60 Degrees (NS)

Motion

-.-90 Degrees (EW)Motion

10

35

12

so25201510540 ......----+----.....;.-----1----0+-----....----+---...

oMaximum Shear Stress (kPa)

Figure 4.28 - Maximum Shear Stress Distribution over Depth from BDESRA Results ofEffective Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

4-35

Page 114: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Maximum Shear Strain (%)

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

o.....--!---....,.---!----!----i--~--~- ......--_+O--..... 0

5

Initial soil properties were based on theaverage of SASW and Crosshole shearwave velocity measurements.

2

10

4

- Range of Liquefied -== 15 E- -CI) Sand Layer CI)

u uCIS -!'t:::J :sen 0'g "c 6 c:s 20 :se e

Co:' Co:'E E0 0~ ..- -&: Elevation of Downhole .c- Q.Q, 25 Earthquake RecordCI) CI)

Q Q

8

......-360 Degrees (NS)

30Motion

-A-90 Degrees (EW)Motion

10

35

40 ....----------------------------12

Figure 4.29 - Maximum Shear Strain Distribution over Depth from BDESRA Results ofEffective Stress Analyses - Wildlife Site, November 24, 1987, 1315 GMTEarthquake

4-36

Page 115: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

--

II

Dep

th6.

36m

(20.

9ft.

)

--

---

100

II

I"r

50-I

II

~I

Il-

-JI

o- o

510

1520

2530

354

045

50

Tim

e(s

ec.

)

I30

0D

epth

4.63

m(1

5.2

ft.)

~.-

~...

~

I ID

epth

5.49

m(1

8.0

ft.)

-L--l--+----k;~¥4~==t-_:t=1:~~1

20

0.~.

.D

epth

2.9

3m

(9.6

ft.)

--+

-

250

;)' .e 3 >­ tn ai

150

.fi c ~

~ I W '-l

Figu

re4.

30-A

ccum

ulat

ion

ofSt

rain

Ene

rgy

inL

ique

fied

Sand

Lay

er-W

ildlif

eSi

te,N

ovem

ber2

4,19

87,1

315

GM

TE

arth

quak

ein

3600

Dire

ctio

n-B

DE

SRA

Out

put,

Eff

ectiv

eSt

ress

Ana

lysi

s

Page 116: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

300

-.iiiiii

iii

i

II

II

II

I25

0I

II

I

5045

40

35

30

25

Tim

e(s

ec.)

2015

105

JI~IIIIIII

o

50200

~ .€ ::l ~

150

c+

'-W

IC

w

~co

100 Figu

re4.

31-A

ccum

ulat

ion

ofSt

rain

Ener

gyin

Liq

uefie

dSa

ndL

ayer

-Wild

life

Site

,Nov

embe

r24,

1987

,131

5G

MT

Ear

thqu

ake

in90

0D

irect

ion

-BD

ESR

AO

utpu

t,E

ffec

tive

Stre

ssA

naly

sis

Page 117: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

.c-. I V

J\0

500

400

cr .e30

0::2

->

.~ CI

IC W C ~

200

100

Dep

th4

.63

m(1

5.2

ft.)

I

--r-

II

~D

epth

3.78

m(1

2.4

ft.)

~,.-/

---/' ,-/

I

~~

Dep

th5.

49m

(18.

0ft

.)

,..!"'&

-FI

I

7.---

Dep

th2.

93m

(9.6

ft.)

k~

II

~/

Dep

tha.

36m

(20.

9ft

.)

fYj/I

JJ'JV

::;.

r'

oo

'510

152

025

Tim

e(s

ec.)

30

35

40

45

50

Fig

ure

4.32

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Wil

dlif

eS

ite.

Nov

embe

r24

.19

87.

1315

GM

TE

arth

quak

e_

.S

umm

atio

no

fBD

ES

RA

Eff

ecti

veSt

ress

Ana

lysi

sO

utpu

tin

both

3600

and

900

Dir

ecti

ons

Page 118: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Dep

th3.

78m

(12.

4ft.

)

Dep

th2.

93m

(9.6ft.~

!r-I

Dep

th4.

63m

(15.

2ft.

)J

Dep

th5.

49m

(18.

0ft.

)

r~

J-I

(jV~

~D~pth

6.36

m(2

0.9

ft.)

v:-~

~---

--J--

----

~~

II

J I

~~

".

I"""".-

-:..

t.

_V

1.2 1

-g ~ - f0.

8::J In In f Do .. .e CIS

0.6

~3=

I(1

)~

..0

0 Do "C (1)

.!::!

0.4

m E ... 0 z

0.2 o

o5

1015

2025

Tim

e(s

ec.

)

3035

4045

50

Fig

ure

4.33

-N

orm

aliz

edP

ore

Wat

erP

ress

ure

Gen

erat

ion

inL

ique

fied

San

dL

ayer

-W

ildl

ife

Sit

e,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in36

00D

irec

tion

,BD

ES

RA

Out

put,

Eff

ecti

veS

tres

sA

naly

sis

Page 119: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

ID

eoth

2.93

m(

9.6

ft)

Dep

th3.

78m

12.4

ft.)

\D

epth

4.63

m(1

5.2

ft.)

\'

Dep

th5.

49m

(18.

0ft.

)\\t

\D

epth

6.36

m(2

0.9

ft.)~~\

\~~

r~,,-/----l----+---t-----j------t

rJ

-\\\

~~~=-

--+--

-jr-

----

t---

r--,

I~V--r-

~~p

£~:r

~

-~

~ I ~ f-'

1.2 1

- -g ~ - e0.8

::J 1/1 ~ a. a- .$ ~0.

6

2! ~ "C ~0.

4

~ z

0.2 o

o5

10

1520

25

Tim

e(s

ec.)

30

3540

45

50

Fig

ure

4.34

-N

orm

aliz

edP

ore

Wat

erP

ress

ure

Gen

erat

ion

inL

ique

fied

San

dL

ayer

-W

ildl

ife

Sit

e,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in90

QD

irect

ion,

BD

ESR

AO

utpu

t,E

ffec

tive

Stre

ssA

naly

sis

Page 120: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Acc

eler

atio

nat

Dep

thz:

Za

z=

ato

p+

(ab

ott

om

-ato

p)·

- h

ato

p,

dto

p

She

arS

tres

sat

Dep

thz:

1't

=-

·p·z

·(a

+a

)f

z2

top

z.l:

­N

hz •

az

She

arS

trai

nat

Dep

thz:

3b

ott

om

,d

bo

tto

m

h

d-d

"{=

top

bott

om

Fig

ure

4.35

-M

etho

dolo

gyA

dopt

edin

Est

imat

ing

the

Dyn

amic

Stre

ssan

dS

trai

nT

ime

His

tori

esin

aS

oil

Lay

erfr

omF

ield

Rec

ords

(Aft

erZ

egha

lan

dE

lgam

al,

1994

)

Page 121: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

20 15 10 -5

~ .¥ - lI) ~0

tn .. m.p

-oe

IU

)-5

.p-

w

-10

--

..~~

I',~

~AA

.ft.~A~

~"N

\...,

J\AL

oaM

~A

Jt\

,-'1'

'•

,1'1

'1~yv

V\

~~

V~

V\

~...

--.

-15

-20

o5

1015

20

25T

ime

(se

c.)

30

354

04

55

0

Fig

ure

4.36

-S

hear

Str

ess

Tim

eH

isto

ryat

Dep

tho

f5.0

6m

(16.

6f1

.)-

Bas

edon

Dir

ectI

nter

pola

tion

ofR

ecor

ded

Mot

ions

,W

ildl

ife

Sit

e,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in36

00D

irec

tion

Page 122: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

6 4 2 - "if. - .5 jg0

en a- m .c tJ)

-I:' I -I:'

-2-I

:'

--

----

An!~

N\/\

IIV

Vvr

\J\

.A!' .....

vv

\

-4 -6

o5

1015

2025

Tim

e(s

ec.)

3035

404

550

Fig

ure

4.37

-S

hear

Str

ain

Tim

eH

isto

ryat

Dep

tho

f5.

06m

(16.

6ft

.)-

Bas

edon

Dir

ectI

nter

pola

tion

of

Rec

orde

dM

otio

ns,

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

ein

3600

Dir

ecti

on

Page 123: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

20 ,..-----.,....-----..,...------r------,------,------.

321oShear Strain (%)

-1-2

15 1-------t-------!------+-----~-----f------1

10 1-------t-------!------+---.+-f-t--f-----1I---~-----1

-1 0 I------+------I----hr--~_+_.J-----I------__+_------I

-15 1------+------1------+---+11-----1-------1--------1

-20 L-- .J.- ....l...- -I- ...:... ...:... -'

-3

5-CISa.~-InInfl) 0~

(ji~

CISfl).J:.0

-5

Figure 4.38 - Shear Stress - Shear Strain Hysteresis Loop at Depth of 5.06 m (16.6 ft.)- Based on Direction Interpolation of Recorded Motions, Wildlife Site,November 24, 1987, 1315 GMT Earthquake in 3600 Direction.

4-45

Page 124: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

20iiiiiiiii

i.'

II

II

II

15-I

II-

II

II

1I

10+

-I

II

-ell !2 - CIl CIl !

0tiS a- m .c

~(/

)-5

I ~ 0'1

-10

-15

-I-I

11

II

l-I

II

I 50

4540

35

30

25

Tim

e(s

ec.)

2015

105

-20

'!

!I

I!

!I

,!

I

o Fig

ure

4.39

-S

hear

Str

ess

Tim

eH

isto

ryat

Dep

tho

f5.0

6m

(16.

6ft

.).

-B

ased

onD

irec

tInt

erpo

lati

ono

fRec

orde

dM

otio

ns,

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

ein

90°

Dir

ecti

on

Page 125: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

6 4 2 -~ ~ c 'j!0

US .. m .c.p

-C

/)I -l:-

-...J

-2

-

~

)\10 '{'

v--

M. ~

~~

f\f\I

N-4 -6

o5

1015

2025

Tim

e(s

ec.)

30

3540

455

0

Fig

ure

4.40

-S

hear

Str

ain

Tim

eH

isto

ryat

Dep

tho

f5.0

6m

(16.

6ft

.)-

Bas

edon

Dir

ectI

nter

pola

tion

ofR

ecor

ded

Mot

ions

,W

ildl

ife

Sit

e,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in90

°D

irec

tion

Page 126: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

20 ,....-----.,.-----...,.-----"""T"""----...,..-----...,..-----...,

321oShear Strain (%)

-1-2

15

10

-10 I-------+------+-----I-------j------+-----.,

-15

-20 L.- ..l.- ...l.- ......... ...l- ...l- -1

-3

5-t'CID..lIl:-(I)(I)

! 0-f1)

""asCD.cen

-5

Figure 4.41 - Shear Stress - Shear Strain Hysteresis Loop at Depth of 5.06 m (16.6 ft.)- Based on Direct Interpolation of Recorded Motions, Wildlife Site,

November 24, 1987, 1315 GMT Earthquake in 900 Direction

4-48

Page 127: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Dep

th5.

91m

(19.

4ft.

)

-~;h

5.D

6m(1

6.6

ft.)

~..r-

/

Vf

Oej

lh4.

21m

(13·

ift.)

J(

De~th

3.35

m(1

1.0

ft.)

J-

---I

~---

)

f-

~-

)'~

-~

rJtv

'jr

J

~t'

rr--

r-

~rJf

t'.~

..J~r~

~r-

J~

.j::-

.I .j::-

.\0

600

50

0

400

or ~ ~ :u

300

c w c 'e tiS2

00

100 o

o5

1015

2025

Tim

e(s

ec)

30

35

404

55

0

Fig

ure

4.42

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Bas

edon

Dir

ectI

nter

pola

tion

ofR

ecor

ded

Mot

ions

,W

ildl

ife

Sit

e,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

in36

00D

irec

tion

Page 128: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Ii

II

,I

I2

50

II

II

50

45

40

35

30

25

TIm

e(s

ec)

20

1510

50l

II!l""'iI~1

II

II

II

20

0-I-

II

II

II

IJ"Ifc;J

VI

1

50

-II

II

I,.J

U...

,·""c

J"L

I1

--+

1-----

- E150

II

-I

II

II

,-4"

'""""

3 ~ ~ c w c

t~

10

0-I

II

r-----

II

If"I

1""'"

IU

II

II

VI o

Fig

ure

4.43

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Bas

edon

Dir

ectI

nter

pola

tion

of

Rec

orde

dM

otio

ns,

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

ein

90°

Dir

ecti

on

Page 129: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

5045

4035

3020

1510

5

II

Dep

th5.

91m

(19.

4ft.

)

.,.N

~;.06m

(16.

6ft.

)

JV

,~

~:.21m

(13.

8ft.

)A

-r

0~

~Pth

:.3

5m

(11.

0ft.

)

....

~~

V--

I"

/:;::~

-

jv~~

rv

JI'~

~

~r

rrJjr

;:;:::

{J~r-

.~/

25

Tim

e(s

ec)

Fig

ure

4.44

-A

ccum

ulat

ion

of

Str

ain

Ene

rgy

inL

ique

fied

San

dL

ayer

-B

ased

onD

irec

tInt

erpo

lati

ono

fR

ecor

ded

Mot

ions

,W

ildl

ife

Site

,Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

e-

Sum

mat

ion

ofS

trai

nE

nerg

yin

both

3600

and

90°

Dir

ecti

ons

oo

100

700

800

600

-50

0"'E :::, - >. m ...

400

cu c w c 'e.j:

:-.tiS

300

I V1 ......

200

Page 130: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

1\

(}"y

=9.

6kP

a/V

~I

11

11

11

11

I1

11

11

11

11

11

11

11

11

I1

III

~~

IIJJ

EP

RI

Sat

urat

edS

and,

Effe

ct.

rIi!

1~t'

--.

Ver

t.S

tres

s=9

5.8

kPa

II

1-+

-+-1

+-I

",n

":~:

")l'

'-

~--

EP

RI

Sat

urat

edS

and,

Effe

ct.

I"

..~~~~

(}'y=9

5.8

kPa

Ver

t.S

tres

s=9

.6kP

a~

:.:~~

/-

-.-.

-Int

erpo

late

d,E

ffect

.V

ert.

'-I---I--~-

··':llI..~~

Str

ess

=47

.9kP

a1\

.:::.

-...

--In

terp

olat

ed,

Effe

ct.

Ver

t.1\

'.::.

',S

tres

s=

57.5

kPa

H--

H+

II

I1

\"'\

.,~

..•••

-Int

erpo

late

d,E

ffect

.V

ert.

.:: :

.S

tres

s=6

7.0

kPa

\•:

::::.

.-

-.-

-Int

erpo

late

d,E

ffect

.V

ert.

I--I

--+

-+--

H+

HI

I-H~++-I

\'.,:~\.

Str

ess=7

6.6

kPa

'.t::·,

--C

ha

nn

el

Fill

San

d(L

add,

.:::~

1982

),

-~III

--.;~

--I=

=t=

I=t

F+

lF

II

II

III

i\:::

:~N-1

--+-

1--1

--1

H1

-->

-+-1

-H

+H

-1\

':':W--I

II-

jI

II

II

II

II

I

"~

1.0

0.9

1-·-

-

0.8 0.7

0.6

1--

--_.

-

~ E C>0.

5-C>

+:-- I

0.4

.,-V

!N

~-

0.3

101

0.01

0.1

Cyc

licS

hear

Str

ain

(%)

0.00

1

0.2

l-----l-I---+----l--~-I--I

II

I1-

+-1

III

I+

-1

II

IH

0.1

+-

II

1--+

+--1

-++-

1I

III-++~

II

--~

II

III

I-I

II

II

-t-I

-++

H

O.0

.1--...I--l...-.L..J-l--L.l..J...I----l.-..I.-.I.-.1.-L.J.-U..f---...l.--l--l-...J....l......I-l...l..I-_--l.._.l-L...-L..J-l.~t__--I---1..~-i.-..l~_9

0.00

01

Fig

ure

4.45

-C

ompa

riso

no

fShe

arM

odul

usD

egra

dati

onC

urve

sU

sed

inS

HA

KE

Ana

lyse

s

Page 131: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

~I

EP

RI

Sat

urat

edS

and,

Effe

ct.

Ver

t.S

tres

s=

95.8

kPa

.~

~Ioo"

EP

RI

Sat

urat

edS

and,

Effe

ct.

".".

Ver

t.S

tres

s=

9.6

kPa

..;'

·-•.

.-I

nter

pola

ted,

Eff

ect.

Ver

t.J.,..lI~

Str

ess

=47

.9kP

a\.I

·-•

...

Inte

rpol

ated

,E

ffec

t.V

ert.

j,oI,;'

Str

ess=5

7.5

kPa

I.t -·.•

-.-I

nter

pola

ted,

Eff

ect.

Ver

t.V

/f\

Str

ess

=67

.0kP

a

/I

:.1\·.

••-

-Int

erpo

late

d,E

ffec

t.V

ert.

(j'y

=9.6

kPa

I..

f-:.'

Str

ess=7

6.6

kPa

,'.

::~n,

--C

ha

nn

el

Fill

San

d(L

add,

V~ VV

I~~

(:'..

1982

)I

'" ..LI

l:".

~,j

'" ,;)

---

-1

--.,.

'"

W~

.._-

1Iti",

, ,""

(j'y

=95.

8kP

aV

,'

,

'Ii,

~~

./

"..~~

I--

1--

-'.

V,h~Cf

.v,~

tI. ~

V

l.1~~V

I.-~

l,..-oI;

'

~v

~~

~'..=

=:="

~, ~

i:_

.-JJ

.~I-

--

-~

1-

1-1-

1--

!J!.

• J,...

...1

1.l

~-;

.,.

35 30

_25

"#. - C) c: 'Q. ~

20

iU CJ ,- :e.j:

-.0

I'0

15\J

1 wc: 0 n e! u.

10 5 o 0.00

010.

001

0.01

0.1

110

Cyc

licS

hear

Str

ain

(%)

Figu

re4.

46-

Com

paris

onof

Dam

ping

Cur

ves

Use

din

SHA

KE

Ana

lyse

s

Page 132: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

100

10Fr

eque

ncy

(HZ)

1

Rec

orde

dM

otio

nat

Gro

und

Sur

face

Rec

orde

dM

otio

nat

Dep

tho

f7.5

m(S

peci

fied

as

SH

AK

EIn

put)

-•

-S

HA

KE

Ou

tpu

tatG

roun

dS

urf

ace

"(W

ithE

PA

IC

urve

s)... •

I•

•/)

- ••

•,.

, ~•

•,

••

r}f•

~r I'

~lJ

~II~

t~~

l ~J

•V

Ul

AIi

Vf

~

..f\J

\~'~

V\

~

~lJ

•'II

iV

1\:::-~

,,

,, 1\

",•

'"-... ..

--I-

..I

~-

.ri

I,..

lt...

.,vIf~

..V

I-'

.......

I':jV

o 0.1

0.2

m0.

8- c o ~ C

I) B0.

6~ ~

.j::-

.C

I)I

g,

~(J

J0.

41

1.2

Figu

re4.

47-A

ccel

erat

ion

Res

pons

eSp

ectra

at5%

Dam

ping

-Wild

life

Liq

uefa

ctio

nA

rray

,Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

e-C

ompa

rison

ofH

oriz

onta

lMot

ions

in36

00D

irec

tion

-SH

AK

EO

utpu

twith

EPR

I(1

993)

Soil

Cur

ves.

Page 133: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

100

10F

requ

ency

(Hz)

1

IR

ecor

ded

Mot

ion

atG

roun

dS

urfa

ce

-R

ecor

ded

Mot

ion

atD

epth

of7.

5m-

-

(Spe

cifie

das

SH

AK

EIn

put)

--

•S

HA

KE

Out

puta

tGro

und

Sur

face

(With

EP

RI

Cur

ves)

•~

,' . • ,,

•,

,

\~,

,.',

,,

,,

",

",

J•

\,l"\'

,

't~V~I

h0,

ft'I

f~,'A

N1\

"l/f\M

~[}

J~

,•

II, 1/,...

r...~

I'-'

'...

..L

~If-

o.V

r-•••

10

.-•

•..- ""

...

~J

..~~

/,

o 0.1

1

1.2

0.2

m0.

8

- S ~ .. CD ~0.

6u <C li! 13 8. U)

0.4

.J:'­ I \J1

\J1

Fig

ure

4.48

-A

ccel

erat

ion

Res

pons

eS

pect

raat

5%D

ampi

ng-

Wil

dlif

eL

ique

fact

ion

Arr

ay,N

ovem

ber

24,

1987

,13

15G

MT

Ear

thqu

ake

-C

ompa

riso

no

fHor

izon

tal

Mot

ions

in90

°D

irec

tion

-S

HA

KE

Out

putw

ith

EP

RI

(199

3)S

oilC

urve

s

Page 134: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

20 15 10 -5

III

Q.~ - II) II

) ~0

en .. lB~

.cI

fI)

-5V

10

\

-10

~-

I.-

-"

W.~

~II

An~.

a~

~nn

,.A

IA

l/V1A

~A

V,

-"

V,UV

n~\

V1

VVV

-Vv-.

V~

V

-15

-20

o5

1015

20

Tim

e(s

ec.)

25

30

3540

Figu

re4.

49-S

hear

Stre

ssT

ime

His

tory

atD

epth

of4.

21m

(13.

8ft.

)fr

omSH

AK

EO

utpu

twith

EPR

I(1

993)

Soil

Cur

ves

­W

ildlif

eSi

te,N

ovem

ber

24,

1987

,131

5G

MT

Ear

thqu

ake

in36

00D

irect

ion

Page 135: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

0.5

0.4

0.3

0.2

'0'

0.1

~ -c: .~

0(;) .. (l

J CD .c:

~en

-0.1

I 1Il

'-l

-0.2

-0.3

-0.4

---

JtI

}~

~AN

AI\

A_

.....~

AIN

III\A

IV"

1\V

wIV

V v\

~~

!

-0.5

o5

1015

20

Tim

e(s

ec.)

2530

3540

Fig

ure

4.50

-S

hear

Str

ain

Tim

eH

isto

ryat

Dep

tho

f4.2

1m

(13.

8ft

.)fr

omS

HA

KE

Out

putw

ith

EP

RI

(199

3)S

oilC

urv

es­

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

ein

3600

Dir

ecti

on

Page 136: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

0.50.40.30.20.1o-0.1-0.2-0.3-0.4

20 1----f----f----f----f----f-------lf-----t-----i----+-----1

25

15

10 J----t----t------,I---t----t-------j~'-----t---+-----t-_T_--1

-1 0 1--+-t------:~~:.--~I£---t----l------ii__--+----+-----I----1

-15 1----f----f----f----f----;-------lf-----t---t----+-----1

-20 J----t----t------;I---t----I------j----t---+-----t----1

-25 L..-__l..-__l..-_--"L...-__l..-__L...-_--"__--.l.__---'-__-..:..__.......

-0.5

- 5faa..¥-rnrne 0-(I)..faCD~

rn -5

Shear Strain (%)

Figure 4.51 - Shear Stress - Shear Strain Hysteresis Loop at Depth of4.21 m (13.8 ft.).Calculated from SHAKE Output - Wildlife SIte, November 24, 1987,1315 GMT Earthquake in 3600 Direction. Soil Properties Are Based onthe Average of SASW and Crosshole Shear Wave Velocity Measurements.The EPRI (1993) G/Gmax and Damping Curves Are Used in the Calculation.

4-58

Page 137: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

IS

olip

rope

rtie

sus

edin

the

anal

ysis

wer

e.-

base

do

nav

erag

eof

the

Cro

ssho

lea

nd

Dep

th4.

21m

(13.

8ft

.)S

AS

Wsh

ea

rw

ave

velo

city

mea

sure

men

ts.

~~

.r--

&.J

-"'"

Th

eE

PRI

(199

3)so

ilde

grad

atio

ncu

rves

rr.---

_:3~

wer

eus

edin

the

anal

ysis

.

~>

-D

epth

5.0

6m

(16.

6ft

.)

r~p-

II-

Dep

th3

.35

m(1

1.0

ft.)

r~

bYD

epth

5.91

m(1

9.4

ft.)

~~

-~

N---

.~

_..I.~

-:::;-

IJIJ

I

oJ

.p­ I Vt

1.0

500

400

¥30

0

~ CD C W C ~2

00

100 o

o5

1015

20

Tim

e(s

ec.)

25

303

540

Fig

ure

4.52

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

ein

3600

Dir

ecti

on-

SH

AK

EO

utpu

tUsi

ngE

PR

I(1

993)

Soi

lCur

ves

Page 138: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

~ I 0'\ o

500

400

;;-' ~

300

f c w c '!20

0(j)

100

Soi

lpro

pert

ies

used

inth

ean

alys

isw

ere

base

don

aver

age

oft

he

Cro

ssho

lean

dS

AS

Wsh

ear

wav

eve

loci

tym

easu

rem

ents

.

EP

RI

(199

3)so

ilde

grad

atio

ncu

rves

wer

eus

edin

the

anal

ysis

.S

oilp

rope

rtie

sw

ere

first

itera

ted

by

the

36

0de

gree

mot

ion,

then

used

dire

ctly

Inth

e90

degr

eem

otio

nru

nw

ithou

tfu

rthe

rite

ratio

n.

Dep

th4.

21m

(13.

8ft.

)

l..r-

f~

lJ.-I

'"\

1\-

De

pth

5.0

6m

(16.

6ft.

)

VI\-

De

pth

3.3

5m

(11.

0ft.

)

f~D

epth

5.91

m(1

9.4

ft.)

,r-/'

"'"-

-<I

'lV

-~.

oo

510

15

20

Tim

e(s

ec.

)

253

03

54

0

Fig

ure

4.53

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

ein

90°

Dir

ecti

on-

SH

AK

EO

utpu

tUsi

ngE

PR

I(1

993)

Soi

lCur

ves

Page 139: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

II

I\

Soi

lpro

pe

rtie

su

sed

inth

ea

na

lysi

sw

ere

De

pth

4.21

m(1

3.8

ft.)

--'"

ba

sed

on

ave

rag

eo

fthe

Cro

ssh

ole

an

d

~S

AS

Wsh

ea

rw

ave

velo

city

me

asu

rem

en

ts.

/"

.-:.

----

Th

eE

PR

I(1

993)

soli

de

gra

da

tion

curv

es

/'-

k-

we

reu

sed

inth

ean

alys

is.

V~

~f-

De

pth

5.06

m(1

6.6

ft.)

,I-

De

pth

3.35

m(1

1.0

ft.)

~~

A~

Dep

th5.

91m

(19.

4ft.

)

~~

~~~

.Jr

--

r/'

~~J

,.,.

YJ

-

.p. I 0

'\t-

o

800

70

0

600

'"50

0~ :2

->0

­m :u

400

c w c 'i! Ui30

0

20

0

100 o

o5

1015

20

Tim

e(s

ec.

)

25

30

35

40

Fig

ure

4.54

-A

ccum

ulat

ion

ofS

trai

nE

nerg

yin

Liq

uefi

edS

and

Lay

er-

Wil

dlif

eS

ite,

Nov

embe

r24

,19

87,

1315

GM

TE

arth

quak

e­S

umm

atio

no

fStr

ain

Ene

rgy

inbo

th36

00an

d90

0D

irec

tion

s-

SH

AK

EO

utpu

tUsi

ngE

PR

I(1

993)

Soi

lC

urve

s

Page 140: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

•S

HA

KE

·Im

peria

lVal

ley

Sol

iCur

ves

oS

HA

KE

-E

PR

ISol

iCur

ves

~B

DE

SR

A-T

otal

Stre

ss

11B

DE

SR

A-E

ffect

ive

Stre

ss

oB

ased

onD

irect

Inte

rpol

atio

nof

Rec

orde

dM

otio

ns

00

[JC •

• 0~

0t

11•

"•

110

~~

11 •

1,50

0

- '" .s .., - g1,0

00UJ i c 0 c .2 t5 -m

-l:'-

:JI

.2"(j\

-I

N1U >-

500

tn .. Ql

C UJ

oo

2550

Initi

alE

ffec

tive

Con

finin

gP

ress

ure,

CJc

o'(k

Pa)

7510

0

Fig

ure

4.55

-T

otal

Str

ain

Ene

rgy

atL

ique

fact

ion

Ons

et.

Cal

cula

ted

from

Gro

und

Res

pons

eA

naly

ses

Page 141: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

•S

HA

KE

-Impe

rialV

alle

yS

oliC

UlV

es

oS

HA

KE

-EP

AIS

oliC

urve

s

&B

DE

SA

A-T

otal

Stre

ss--

AB

DE

SA

A-E

ffect

ive

Stre

ss

oB

ased

onD

irect

Inte

rpol

atio

nof

Rec

orde

dM

otio

ns[J

[J

• 0

0t

•A

A&

A

1,50

0

-.., E ~ - g1,00

0w i c 0 C 0 'fi J!! (I

)::

lg

o~

::iI

1U50

00

\W

>- ~ (I) c W

oo

2550

Initi

alE

ffec

tive

Con

finin

gP

ress

ure,

(JcO

'(k

Pa)

7510

0

Figu

re4.

56-T

otal

Stra

inE

nerg

yat

Liq

uefa

ctio

nO

nset

.Cal

cula

ted

from

Gro

und

Res

pons

eA

naly

ses

(All

Poin

tsin

Unl

ique

fied

Lay

ers

Rem

oved

)

Page 142: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

.SH

AK

Impe

rialV

alle

yS

oliC

urve

s

AB

DE

SR

Tot

alS

tres

s

AB

DE

SR

A•

Effe

ctiv

eS

tres

s

oB

ased

onD

irect

Inte

rpol

atio

no

fRec

orde

dM

otlo

ns-_

.-

•W

ildlif

Ext

rapo

late

dLa

bora

tory

Dat

a(F

igue

roa

etal

..199

4)

0

0 •• 0

A•

..•

• 0t

•to

AA

•A

~A A

500

~

I (J'\~

1,50

0

c:>" .e 3 g

1,00

0w i c o 6 U J! CI

l::I 0

" :::; 1U >- e' CIl c W

oo

2550

Initi

alE

ffect

ive

Con

finin

gP

ress

ure,

CJc

o'(k

Pa)

7510

0

Figu

re4.

57-C

ompa

rison

ofT

otal

Stra

inE

nerg

yat

Liq

uefa

ctio

nO

nset

:Gro

und

Res

pons

eA

naly

ses

and

Lab

orat

ory

Dat

a-W

ildlif

eSi

te,N

ovem

ber2

4,19

87,1

315

GM

TE

arth

quak

e.

Page 143: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

CHAPTERS

SUMMARY AND RECOMMENDATION

A feasibility study was conducted to detennine the applicability of the strain energymethod for liquefaction potential evaluation. This study consisted of collection andsynthesis of available laboratory test data and evaluation of the strain energy as a measureof soil resistance to liquefaction. The data obtained by several groups of researchersconfirm the observation that the strain energy (in normalized form) follows the timehistory of the pore pressure ratio increase up to the onset of liquefaction. The data alsoshow that by using the relative density for clean sands and the confining pressure for siltysands, development of the generic strain energy relationships for liquefaction resistance isfeasible. However, other factors such as the shape and size of the sand particles, the typeand the amount of fines content, and the effect of the rate and type of loading on thestrain energy need to be investigated and quantified.

The feasibility study also successfully predicts the strain energy required for liquefactionto take place in the field based on the recorded data at the Wildlife Site. The groundresponse analyses performed for this site, using the conventional methods of the groundresponse analyses, resulted in consistent results, with a scatter typically expected in suchanalyses. However, all methods used in the ground response analyses were one­dimensional, and the summation of the strain energy due to shaking in each direction is atbest an approximation. Nevertheless, the comparison of the laboratory data with theresults of ground response analyses is encouraging. Such favorable comparison suggestsalso that the goal of developing the strain energy approach for generic application to theevaluation of the soil liquefaction potential should be pursued in future phases of theproject.

Based on the results of the feasibility study, it is recommended to:

• Perform laboratory testing, preferably on soil samples from the Wildlife Siteat confining pressures in the range of 26 kPa to 50 kPa to cover the low end ofthe test results.

• Perform ground response analyses using a nonlinear computer program withmulti-directional shaking capability to validate or modify the summation ofthe total strain energy calculated by the methods limited to uni-directionalshaking capability as used in the current study.

• Apply the energy based method to liquefaction/no liquefaction sites atNorthridge, Kobe in Japan where recorded motions are available, and at theWildlife Site for the Elmore Ranch earthquake during which no liquefactionoccurrence was observed.

5-1

Page 144: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

The energy method provides a sound approach to the evaluation of liquefaction potential.It is based on the basic principles of the "stress" and "strain" approaches in which the soilcapacity to resist liquefaction is measured in terms of the strain energy. It can also handlethe special characteristics of the ground motion, such as the near-field effects. Themethod also has the capability of providing an estimate of the amount of pore pressurebuild-up before the onset of liquefaction. In this approach, the laboratory data can alsobe corroborated as more field data from the sites that have or have not liquefied becomeavailable.

5-2

Page 145: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

CHAPTER 6

REFERENCES

AI-Khatib, M. A. (1994). "Liquefaction Assessment by Strain Energy Approach,"Doctoral Dissertation Submitted to the Graduate School of Wayne State University,Detroit, Michigan.

Arango, I. (1994). "Methodology for Liquefaction Evaluation of Sites East of theRockies," Bechtel Corporation, Technical Grant. San Francisco, California, June.

Arango, 1., Migues, R. E. (1996), "Investigation of the Seismic Liquefaction of Old SandDeposits," a Report Prepared for the National Science Foundation Grant No. CMS­9416169, Bechtel Corporation, San Francisco, California, March.

Bennett, M. 1., McLaughlin, P. V., Sarmiento, P. V., Youd, T. L. (1984). "GeotechnicalInvestigation of Liquefaction Sites, Imperial Valley, California," USGS Open-File Report84-252.

Bierschwale, J. G., Stokoe, K. H. (1984). "Analytical Evaluation of LiquefactionPotential of Sands Subjected to the 1981 Westmoreland Earthquake," GeotechnicalEngineering Report GR84-15, Geotechnical Engineering Center, Civil EngineeringDepartment, The University of Texas at Austin, Austin, Texas.

Dobry, R., Elgamal, A. W., Baziar, M. (1989). "Pore Pressure and Acceleration Responseof Wildlife Site During the 1987 Earthquake," Proceedings from the 2nd US - JapanWorkshop on Liquefaction, Large Ground Deformation and Their Effects on Lifelines,held at the Grand Island Holiday Inn in Grand Island, New York from September 26-28and at the Cornell University in Ithaca, New York on September 29; also TechnicalReport NCEER-89-0032.

Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., Powell, D. (1982). "Prediction ofPore Water Pressure Build-Up and Liquefaction of Sands During Earthquakes by theCyclic Strain Method," NBS Building Science Series 138, National Bureau of Standards,US Department of Commerce, July.

Electric Power Research Institute (EPRI), (1993). Guidelines for Determining DesignBasis Ground Motion," EPRI Report No. TR-102293, November.

Etheredge, R. P., Maley, R., Switzer, J. (1987). Strong-Motion Data from the SuperstitionHills Earthquakes of 0154 and 1315 (GMT), November 24, 1987," USGS Open-FileReport 87-672, December.

6-1

Page 146: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Figueroa,1. L., Saada, A. S., Liang, L., Dahisaria, N. M. (1994). "Evaluation of SoilLiquefaction by Energy Principles," Journal of the Geotechnical Engineering, Vol. 120,No.9, September.

Figueroa, J. L., Saada, A. S., Liang, L., (1995). "Effect of the Grain Size on the Energyper Unit Volume at the Onset of Liquefaction," Proceedings of the 3rd InternationalConference on Recent Advances in Geotechnical Earthquake Engineering and SoilDynamics, April 2-7, St. Louis, Missouri, Vol. 1.

Haag, E. D., Stokoe, K. (1985). "Laboratory Investigation of Static and DynamicProperties of Sandy Soils Subjected to the 1981 Westmoreland Earthquake,"Geotechnical Engineering Report GR85-11, Geotechnical Engineering Center, CivilEngineering Department, The University of Texas at Austin, Austin, Texas.

Holzer, T. L., Bennett, M. J., Youd, T. L. (1989). "Lateral Spreading Field Experimentsby the US Geological Survey," Proceedings from the 2nd US - Japan Workshop onLiquefaction, Large Ground Deformation and Their Effects on Lifelines, held at theGrand Island Holiday Inn in Grand Island, New York from September 26-28 and at theCornell University in Ithaca, New York on September 29; also Technical ReportNCEER-89-0032.

Holzer, T. L., Youd, L., Bennett, M. J. (1988). "In Situ Measurement of Pore PressureBuild-Up During Liquefaction," Proceedings of the 20th Joint Meeting of The US - JapanCooperative Program in Natural Resources, Panel on Wind and Seismic Effects, NISTReport SP 760.

Ishihara, K. (1993). "Liquefaction and Flow Failure During Earthquakes," 33rd RankineLecture, Geotechnique, Vol. 43, No.3, pp. 351-415.

Kagawa, T., AI-Khatib, M. A. (1990). "Use of Shear-Strain Energy for LiquefactionPrediction," Proceedings of 4th US National Conference on Earthquake Engineering,May 20-24, Palm Springs, California, Vol. 3.

Koester, J.P. (1992). "Cyclic Strength and Pore Pressure Generation Characteristics ofFine-Grained Soils," A Thesis Submitted to the Faculty of the Graduate School of theUniversity of Colorado, Denver, Colorado.

Ladd, R. S., (1982). "Geotechnical Laboratory Testing Program for Study and Evaluationof Liquefaction Ground Failure Using Stress and Strain Approaches: Heber Site, October15, 1979 Imperial Valley Earthquake," Woodward-Clyde Consultants, Wayne, NewJersey, February.

6-2

Page 147: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Lee, M. K., Finn, W. L. (1978). "DESRA-2C, Dynamic Effective Stress Analysis of SoilDeposits with Energy Transmitting Boundary Including Assessment of LiquefactionPotential," the University of British Columbia, British Columbia, Canada; Modified byBechtel Corporation to include Martin-Davidenkov Soil Model, Bechtel Corporation, SanFrancisco, California.

Magistrale, H., Jones, L., Kanamori, H. (1989). "The Superstition Hills, California,Earthquake of 24 November 1987," Bulletin of the Seismological Society of America,Vol. 79, April.

Matasovic, 1., Vucetic, M. (1993). "Analyses of Seismic Records Obtained on November24, 1987 at the Wildlife Liquefaction Array," Research Report, Civil EngineeringDepartment, University of California, Los Angeles, California, May.

Porcella, R., Etheredge, E., Maley, R., Switzer, J. (1987). "Strong-Motion Data from theSuperstition Hills Earthquakes of 0154 and 1315 (GMT), November 24, 1987," USGSReport, 87-672.

Riemer, M. F., Gookin, W. B., Bray, J. D, Arango,!. (1994). "Effects of LoadingFrequency and Control on the Liquefaction Behavior of Clean Sands," GeotechnicalEngineering report No. UCB/GT/94-07, Geotechnical Engineering, Department of CivilEngineering, University of California, Berkeley.

Riemer, M. F., Seed. R. B. (1994). "Dynamic Testing of Soils from the SRSIITPFacility," Geotechnical Engineering Report No. UCB/GT/94-02, GeotechnicalEngineering, Department of Civil Engineering, University of California, Berkeley, May.

Schnabel, P. B., Lysmer, J., Seed, H. B. (1972), "SHAKE, A Computer Program forEarthquake Response Analyses of Horizontally Layered Sites," Report EERC 72-12,University of California, Berkeley; Modified by Bechtel Corporation, San Francisco,California, 1995.

Seed, H. B., Idriss, 1. M., Arango, 1. (1983). "Evaluation of Liquefaction Potential UsingField Performance Data," Journal of Geotechnical Engineering, Vol. 109, No.3, March.

Seed, H. B., Tokimatsu, K., Harder, L. F. (1985). "Influence of SPT Procedures in SoilLiquefaction Resistance Evaluations," Journal of Geotechnical Engineering, Vol. 111,No. 12, February.

Thilakaratne, V., Vucetic, M. (1990). "Analysis of the Seismic Response at the ImperialWildlife Liquefaction Array in 1987," Proceedings of the 4th US National Conference onEarthquake Engineering, May 20-24, Palm Springs, California, Vol. 3.

6-3

Page 148: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Turner, E., Stokoe, K. H. (1982). "Static and Dynamic Properties of the Clayey SoilsSubjected to the 1979 Imperial Valley Earthquake," Geotechnical Engineering ReportGR82-86, The University of Texas at Austin, Texas, October.

Vucetic, M., Thilakaratne, V. (1989). "Liquefaction at the Wildlife Site - Effect of SoilStiffness on Seismic Responses," Proceedings of the 4th International Conference on SoilDynamics and Earthquake Engineering, Mexico City, October.

Wald, D 1., HeImberger, D. V., Hartzell, S. H. (1990). "Rupture Process of the 1987Superstition Hills Earthquake from the Inversion of Strong-Motion Data," Bulletin of theSeismological Society of America, Vol. 80, No.5, October.

Youd, T. L., Holtzer, T. L., Bennett, M. J. (1989). "Liquefaction Lessons Learned fromthe Imperial Valley, California," Proceedings of the 12th International Conference onSoil Mechanics and Foundation Engineering, Rio de Janeiro.

Zeghal, M., Elgamal, A. W. (1994). "Analysis of Site Liquefaction Using EarthquakeRecords," Journal of Geotechnical Engineering, Vol. 120, No.6, June.

6-4

Page 149: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

APPENDIX A

LABORATORY TESTS ON MONTEREY NO. 0 SAND, PERFORMED AT THEUNIVERSITY OF CALIFORNIA, BERKELEY

A-I

Page 150: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

:r N

Tab

leA

.I-

Sum

mar

yo

fthe

Cyc

lic

Tri

axia

lT

estD

ata

onM

onte

rey

No.

0S

and

Per

form

edat

Uni

vers

ity

ofC

alif

orni

a,B

erke

ley

No.

Te

st10

Sa

mp

leO

r(%)

ElIQ

(J/m

3 )F

C(%

)'Y

d(k

N/m

3 )C

on

tro

lG

e'(k

Pa)

Fre

q.(H

z)L

oa

dS

hape

1M

ON

T4M

onte

rey

No.

O61

.826

772

15.6

Stre

ss10

01

Sin

usoi

dal2

·wav

2M

ON

T10

Mon

tere

vN

o.O

61.0

1933

215

.5S

tress

100

1S

inus

oida

l2-w

av

3M

ON

T11

Mon

tere

yN

o.O

60.6

988

215

.5S

tress

100

10S

inus

oida

l2-w

ay

4M

ON

T12

Mon

tere

yN

o.O

61.0

2481

215

.5S

tress

100

1S

inus

oida

l2-w

ay

5M

ON

T14

Mon

tere

yN

o.O

60.2

1583

215

.5S

tress

100

20S

inus

oida

l2·w

ay

6M

ON

T15

Mon

tere

yN

o.O

60.5

1245

215

.5S

tress

100

10S

inus

oida

l 2-w

ay

7M

ON

T17

Mon

tere

vN

o.O

61.0

1878

215

.5S

train

100

1S

inus

oida

l2·w

av

8M

ON

T18

Mon

tere

yN

o.O

61.0

1187

215

.5S

train

100

10S

inus

oida

l2-w

ay

9M

ON

T19

Mon

tere

yN

o.O

60.6

1483

215

.5S

train

100

15S

inus

oida

l2-w

av

10M

ON

T20

Mon

tere

vN

o.O

40.9

851

215

.0S

train

100

1S

inus

oida

l2-w

ay

11M

ON

T21

Mon

tere

yN

o.O

41.8

880

215

.0S

train

100

1S

inus

oida

l 2-w

ay

12M

ON

T22

Mon

tere

yN

o.O

42.3

1078

215

.0S

train

100

1S

inus

oida

l2-w

av

13M

ON

T24

Mon

tere

yN

o.O

51.8

2736

215

.3S

tress

100

1S

inus

oida

l2·w

av

14M

ON

T25

Mon

tere

yN

o.O

50.4

2985

215

.3S

tress

100

1S

inus

oida

l2-w

ay

15M

ON

T26

Mon

tere

yN

o.O

49.9

2769

215

.2S

tress

100

1S

inus

oida

l 2-w

ay

16M

ON

T30

Mon

tere

yN

o.O

41.9

708

215

.0S

train

100

.10

Sin

usoi

dal2

·wav

17M

ON

T33

Mon

tere

vN

o.O

40.5

829

215

.0S

train

100

10S

inus

oida

l2-w

ay

18M

ON

T35

Mon

tere

vN

o.O

61.8

4211

215

.6S

tress

100

0.1

Sin

usoi

dal2

·wav

19M

ON

T37

Mon

tere

yN

o.O

61.6

1388

215

.5S

train

100

1S

inus

oida

l2-w

aY

20M

ON

T38

Mon

tere

yN

o.O

61.8

704

215

.6S

train

100

10S

inus

oida

l2-w

ay

Tes

tR

esul

tsF

ollo

win

gth

eS

eque

nce

ofT

est1

0's

are

Atta

ched

.

Page 151: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT461.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

o

A A A A A 1\ A A A A . A ~ 1\ A f\ f\1\ ~

\ I I

0 5

vD

V V \Jk \ ~ \ 2I VV~ V V V V V V V V , I

4030

Iic.:. 20..Vi 10III

~Ci) 0

~ -10.:::.U) .20

-30

time, t (sec)

5

-5.1.-----------------------------------'time, t (sec)

20155oL.---=:!~=:=:::::::::::::::::::==--_-___J

o

...CI>Cl.>- 1000E'CIII::W

_4000.,...----------------------------------~

!w 3000ojE~ 2000::>

1.5,..----------------------------------....

1.0

0.5

!-RU-EJEliql

201510time, t (sec)

50.0~D~~~~~==::::::::::::=----_+___----J

o

d:\nit\itp\cy_files'lMONT4.xLS 8/20/96 12:57 PM

A-3

Page 152: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%)Applied Stress Ratio:

MONT461.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

-5 -4

Shear Stress vs. Shear Strain

Shear Strain.! (%)

d:\nit\itp\cLfiles\MONT4.XLSA-4

8120/9612:57 PM

Page 153: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT10610.27

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

.

'II \0 5 10 15 20 25 30 3

~

20i:. 10..iii~ 0

en 5

l:f 1

30

time, t (sec)

5" n

0 5 10 15 2o~~Vl130 3

o ~V

V

5

,...e

0~

C'iii..0..<II -5III.cC/)

-10 .J- ~~~~~-----------------J

time, t (sec)

3530252015105

;;" 7000 ,.---------------------------------------,

~ 6000

~ 5000CIl

§ 4000'0:> 3000..CIll:l. 2000::0-

f:' 1000

S ol-----..,.--~!!!!!:!!!!!:~==~=::;:::=:::::~=::;::=~-__I,_----_t_----__Jo

time, t (sec)

3...-----------------------------------,2 j-Ru-ElEIiQI

3530252015105

o~~~~~~~g~=:::::~~~~~__;__-____Jo

time, t (sec)

d:lnitlitp\cLfiles\MONT10XLSA-S

8f21196 9:46 AM

Page 154: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Stress Ratio:

MONT10610.27

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1001

Shear Stress vs. Shear Strain

r-------------------------aD-r-------.-------..

Shear Strain, 1 (%)

d:\nit\itpIcLfiles\MONT10.XLS

A-68/21/969:46 AM

Page 155: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1160.60.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress10010

5

lime, 1 (seC)

~ A 10 A ~ h f\

~ \ I"

f\

(\ " \I1\ I,I

I

~'! \ 1

'I

I\ ~ ~. 10 0.5 1

~1.5

I J ~ ~I

~ IJ V V V v ~ ~-30

30

_ 20

:.:. 10..~

:J 0..Ci):; -10ell.c(/) -20

J

~:~ 1"-'D"'V-rC"V-r"''"'V--r='"';-V:-t='<\~7",v-r;-v~v--;-<V\;---r~iV\i\f\riJr;--~-=-----fI-------+------1-;;- -0.2 0 0.5 1 1.5 2.5a:;:: -0.4

~ -0.6

i -0.8

re -1.0.c'(/) -1.2

-1.4-1.6 .1.-. --:::---:-:---:- --.J

time, t (sec)

2.521.5time, t (sec)

0.5

..ellQ.

>. 500

I oL-~~===::::::::;:::::::::::=::::===:=:=-----_l_-----Jo

_ 2000 .,.----------------------------------,

!w 1500orE::l"6 1000>

2.0..,---------------------------------,

1.5

1.0

I-RU-ElEliq!

time, t (sec)1.5 2 2.5

d:lnit\itp\CLfilesIMONT11.XLS BI15/9611:18AM

A-7

Page 156: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1160.60.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress10010

l;...rnIII!en -1.6...~.cen

Shear Stress vs. Shear Strain

Shear Strain, r ("A,)

0.2

d:\nit\itp\CLfiles\MONT11 XLS

A-8B/15/9611:18AM

Page 157: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT12610.23

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

40

time, t (sec)

I I:

I fI I i , ,

'itlttttlttt,

I II

m

I I I 110C0 0 ,

] 0 ' I 1 1

11I1

!

III

11I1 ~III

30

'ill20

0.;. 10..iiiUl 0G.l..iii.. ·10'llG.l.c(/)

-20

-30

5

Page 158: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT12610.23

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

Shear Stress vs. Shear Strain

r-----------------------------;3~-------.,

-6

Shear Strain, ., (%)

2

d:\nit\itp\cy_filesIMONT12.xLSA-IO

8/15/96 11:22 AM

Page 159: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1460.20.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress10020

40..-------------------------------------.30

ii~ 20 Ai 10 I ! ~ ~ It /I rIu; 0 -fl--+-,f-H-++-t-t-++-H--+-+-H-+-H-II-+-t-+-++-H-l-t-l-H-\--H-H-++~rt-iI\H-+1\J+-H-\-\J\J++-I'.J'-4:~-:f--I<:,J,--\;:------1

!: I v v __~_·5__vv_v_,.,\!-v.,...,._\i_._IJ-~-v-_\J---------'rtime, t (sec)

0.2 ,..-----------------------------------~0.0 +'--''M-''ri--\-;r-:>.;--A--A-f'r;--t~,...,__...,...._h<_~___:--------_+----_:___rr__Pr__t\_rt_-__1

~ -0.2 0~

.5 -0.4E;; -0.6...III

l:! -0.8(/)

1.5

-1.0

-1.2 ........---------------~-~~-----------------'time, t (sec)

1.5time, t (sec)0.5

o~::::::::::::::::::::::=_--r_-__Jo

2000 ,..--------------------------------------,

~w1500arE::l'01000:>...ellQ.

>. 500EJellCW

1.2,--------------------------------------,

1.5time, t (sec)0.5

I-Ru-ElEliq!0.8

0.6

0.4

1.0

0.2L~~~:::::::::=----- __-----_J0.0o

8/15/96 11 :24 AM

A-ll

Page 160: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1460.20.3

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress·10020

Shear Stress vs. Shear Strain

Shear Strain, r (%)

0.2

d:\nitlitplcy_files\MONT14XLS

A-128/15/96 11 :24 AM

Page 161: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT1560.50.22

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

stresS10010

30.,.....-----------------------------------..,20

~;. 10..iii~ 0en 0ia -10Ql.ctI) -20

5

~10

m15

-30 .-.-----------------------------------....time, t (sec)

-2 .1.- ~_:__~~----------------1

time, t (sec)

2000 -r-----------------------------------,

1510time, t (sec)5

ar$'0 1000:>liiQ.,

>- 500L=:::::=::=========-_~~~UJ o

o

i:iUJ 1500

1.5.,.....-----------------------------------,

1.0 1-Ru -ElEliq I

0.5

0.0 '"o 5 time, t (sec) 10 15

d:\nitlitp\cLfiles\MONT15.xLS 8/15/96 11 :28 AM

A-13

Page 162: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Stress Ratio:

MONT1560.50.22

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'10010

-1.2

Shear Stress vs. Shear Strain

Shear Strain, r (%)

0.2

d:\nitlilp\cLfiles\MONT15.xLS

A-148/15/96 11 :28 AM

Page 163: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT17610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

SO-r------------------------------------,_60tll

Co

;'40...rngJ 20...enl:; O~+_t+_+_+_t_+_+_jt_H__++_t_r++_l_++_+_t_;'_I_+_T_+__Hi_++~f__';_+_'<:+_\::_f!__'<::_f~"'__'::~d_~_'<:f'-----___lc»~ 0 ~

0:1 ---=~----1time, t (sec)

30

" II " II n

0 5 10 15

~ ~ ~ ~25

1 v lJ v II V V II V 1/ v u I

0.2

-0.2

-0.3

,....,~';: 0.1Ct;.. 00- .C/)

i -0.1~C/)

0.3

Page 164: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT17610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

-0.3

Shear Stress vs. Shear Strain

Shear Strain, r (%)

0.3

d:\nitlitp\CLfiles\MONT17.xLS

A-168/15/96 11 :31 AM

Page 165: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Shear Strain (%):

MONT18610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

80.,.....----------------------------------,7060

i 50:!-.. 40

:f30~ 20

CiS... 10l'll~ O¥-+-!----+-+---\--+--I-I---I-ff--\,..+---\-+-~'--..>.d_'--'_'+_-"""----=------+_-------__l

(/) -10 0 2

~~t----_-----~------------1time, t (sec)

f\ f\ f\ A {\ f\ A A fI f\ f\

nn f\ f\ {'

I

~ ~~20 0·t5

VV V V V V V V V V

0.2

0.3

......"$.-;::: 0.1C~ 0.0(I)

1-0.11-0.2 _-0.3 -J

time, t (sec)

21.51time, t (sec)

0.5

~ 1500..,..-------------------------------------,E:i 1250wGJ- 1000E-5 7SO:-...~ SOD

~ 2SOGJC

W

21.51

time, t (sec)0.5

0.2

0.0 ~.~':+ _+_--------_;_-------___;---------'lo

0.4

1.2 -r-----------------------------------,1.0

0.8

0.6

d:\nit\itp\cyjiles\MONT18.XLS 8.(15/96 11 :37 AM

A-I7

Page 166: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT18610.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain·10010

-0.3

Shear Stress vs. Shear Strain

Shear Strain, "( (%)

0.3

d:\nit\itp\cy-fiIes\MONT18.XLS

A-IS8/15/9611:37 AM

Page 167: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT1960.60.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10015

70....-;-----::---------------------------------........60

:50=.40...fA 30:ll 20..(i) 10..al O+'--+-+--+-+-+-+-+-+-+-+-+--Il--+-+--+--/--\-i+--\-f--+--cf---'<:--J'+-T-f'---'~---''<c++--'<::_f_---''d_--->.=_J

~ -100 1.2

: t---:::. ~~~-__- __-_---.,;Itime, t (sec)

0.3....--------------------------------------.

~ A ~~~ 0.1CI::r4='---t--t---:1--I--+-++-0.2 -+-+-+-+-t--t+0.4-t---+--t-+---1,...--f0:6-t-+--t-+-+-l

JB

'-+-V--+-+-V-+--+--lH-+-+--I--\--I'I

-0.3 -----------------------------------time, t (sec)

1.20.80.6time, t (sec)

0.40.2

_ 2000 -r------------------------------------,1w 1500

~~ 1000:>..GICo:>. 500E!GICW

1.2....-----------------------------------..,

1.20.80.6time, t (sec)

0.40.2

I-Ru -ElEliq I0.8

0.6

0.4

1.0

0.2

0.0 ~...;;......l.I----_-----_-----;_----__;-----_+-----"'""'o

d:lnitlitp\cy-files\MONT19XLS 8/15/96 11 :42 AM

A-19

Page 168: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Testl.D.:Relative Density (%):Applied Shear Strain (%):

MONT1960.60.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain·10015

-0.3

Shear Stress vs. Shear Strain

Shear Strain,., (%)

0.3

d:\nit\itp\Cy-files\MONT19XLS

A-208/15/96 11 :42 AM

Page 169: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT2040.90.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

70 T,-::-----------------------------------...,

60

'l 50=.40...Ii 30

! 20Cii 10...~ O-jl-+--f--\---f+---\--f--\--f+--+-f-+--f+--+--f~__I.::::__7'_+--__'_::=":.--...i.""d+_~~=---__1

~ -100 12

~~~ t ~------------------'Itime, t (sec)

0.3 -r-'"I~---------------------------------.....,

0.2,.,~';:: 0.1C~ 0.0 fL----l---I--+-+--+--f--+-+--+--I--+-+----l---I----l---f--I---I---+-+--+-+----1en 0 12

~ ::1 I-D.3 --;;;.-.---------------------------------

time, t (sec)

121086time, t (sec)

42

- 1000 .,..-------------------------------------,

!w 800

arE 600:::I

~... 400Gle-

El 400GIs:::W

1.2 -r-----------------------------------....,

121086time, t (sec)

42

)-Ru -ElEliq I

0.4

0.2

0.0 ~,:-..----_+_------t-------t-------t------_+_-------!o

1.0

0.8

0.6

d:lnitlitp\cy-filesIMONT20.xLS

A-218/15/96 11 :47 AM

Page 170: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT2040.90.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

-0.3 -0.2

Shear Stress vs. Shear Strain

-20

Shear strain, y (%)

d:\nit\itp\cLfiles\MONT20.XLSA-22

8115/96 11 :47 AM

Page 171: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT2141.80.15

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

60

50

Ii 40~;. 30..rn 20IIIGI... 10iii... 0 (",GI

~ -10 0 25

~! Itime, t (sec)

5

A f\ A A n fI

~ ~1\ 1\ f\ fI

' ~ A A 1\

0 5

~b " ~5 V ~v ~2

V V V V V v v v v V v V v V

-0.2

0.2

~ 0.1'-';-

c~ 0.0..=GI

~ -0.1

Page 172: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (0/0):Applied Shear Strain (%):

MONT2141.80.15

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

Shear Stress vs. Shear Strain

0.200.150.10

40

30'

-~tII

-0.20

Shear Strain, r (%)

d:\nit\itP\CLfiles\MONT21,XLS

A-248/15/96 11 :53 AM

Page 173: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain:

MONT2242.30.08%

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

Page 174: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Shear Strain:

MONT2242.30.08%

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

-0.15

Shear Stress vs. Shear Strain

0.15

~----------------3:Q--l.---------------_---I

Shear Strain, y (%)

d:\nit\itp\cy-fiIes\MONT22.xLS

A-26

8121196 9:47 AM

Page 175: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2451.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1001

'A f\ f\ 1\ f\ f\ f\ . A A ~ (\ ~ ~\

VV

\ " I \0

Va ~52

V V V V V V V V V

40

30

i 20:... 10Iie 0en -10 0

!:1 1

time, t (sec)

o

l

r'\

n~- ...........

'\(;VV~0 5 \15 2

U

5

~ 0:-C'f! -5en~

IIIIII

~ -10

-15.1.-------------------------------------'

Page 176: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2451.80.31

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1001

Shear Stress vs. Shear Strain

30

-10 -6 6

d:\nit\itp\cy-files\MONT24XLS

Shear Strain, y (%)

A-288/21/96 9:48 AM

Page 177: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2550.40.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

Page 178: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2550.40.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

l;.....nell

!u; -7...fIlell.crn

-6 -5

Shear Stress vs. Shear Strain

-4

Shear Strain, r (%)

2

d:\nit\itP\cLfiles\MONT2S.xLS

A-308/20196 8:23 AM

Page 179: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT2649.90.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

40...-------------------------------------.30

120;.... 10og: O+----+----1-----+---'f-----'<----r----T----lf---~--_+-----__l..;; _100 5 6

!:1 1

time, t (sec)

5...--------------------------------------.,~O+-----.::::::==±:=---=:::----+-;:::'--~--+jc::::::.==~----+-+--+----;------j:.-- 0 2 5 6C'! -5;;..IIIIII

c5i -10

~15 .L- --J

time, t (sec)

6543time, t (sec)

2

~

0~-~=;::::::=~___i1___--~---__+---__+---_1o

_ 5000 -r--------------------------------------,-:e~ 4000worE 3000='0~2000IIICo

~ 1000..IIICW

2.0...------------------------------------..,

1.5

1.0

0.5

I-RU-ElEIiQI

6543time, t (sec)

2

o.o.l..'O;;;;;;;;;;;;;;;;,~~~===~~---~~--~::::::...._T__--~:......----__1o

d:\nit\itP\cLfiles\MONT26.XLS 8/21/96 8:58 AM

A-31

Page 180: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%):Applied Stress Ratio:

MONT2649.90.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress1001

Shear Stress vs. Shear Strain

-8 -6 4

d:lnitlitp\cLfiles\MONT26.XLS

Shear Strain, r (%)

A-328/21/96 8:58 AM

Page 181: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%)Applied Shear Strain (%):

MONT3041.90.26

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'10010

0.1 0.2 0.3 0.4 0.5time, t (sec)

0.6 0.7 0.8 0.9

0.90.80.70.60.4 0.5time, t (sec)

0.30.20.1

0.2

0.0 .w..:-----l.,..,t-/------!-----+----i----+-----------+----+----..;-------!o

1.2 ......------------------------------------,

1.0 I-Ru-EJEliq!

0.8

0.6

0.4

d:\nit\itp\cy_filesIMONT30.XLS 8/21/96 9:08 AM

A-33

Page 182: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%)Applied Shear Strain (%):

MONT3041.90.26

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

-0.4

Shear Stress vs. Shear Strain

-2

Shear strain, y (%)

0.3

d:\nit\itp\cy-fiIesIMONT30XLS

A-348/21/96 9:08 AM

Page 183: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Relative Density (%)Applied Shear Strain (%)

MONT3340.50.08

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

o

time, t (sec)

~rN\11 ~ ~M~~~~~~~~A~A~AAAIV

0 2 4 6 8 1

1 I I

40

- 30IIIa.;. 20..IAIII 10ell...

<is... 0IIIell.=en -10

-20

0.10 -r--...-------------------------------------,~ 0.05:-C ._A~ QOO ~ I(;) 0 2 4 6 8 10

j ~05t I I I \ I-0.10 -----------------------------------......

time, t (sec)

1000-§:2- 800worE 600::I"0:>

400...ellQ.

>.E! 20011)

cW

0

0 2 4 time, t (sec) 6 8 10

1.2

1.0I-RU -ElEliq I

0.8

0.6

0.4

0.2

0.0

0 2 4 time, t (sec) 6 8 10

d:\nit\itp\cy-fiIes\MONT33.xLS 8/20/96 9:22 AM

A-35

Page 184: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (Ufo)Applied Shear Strain (%)

MONT3340.50.08

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

-0.10

Shear Stress vs. Shear Strain

L---------------_:2O-:-- ...J

Shear Strain,., ('Vo)

d:lnit\itp\cy_filesIMONT33.xLS

A-368/20/96 9:22 AM

Page 185: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%)Applied Stress Ratio:

MONT3561.80.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress'1000.1

120

120

I

100

time, t (sec)

40

30ii

20l1.;... 10~CIl 0CI)...

Ci) -10 0

! :14

2......e 0:-C _2 0~- -4(I)...ftJCI) -6.c(I)

-8

-10time, t (sec)

1201008060time, t (sec)

4020

_8000,..-------------------------------------,

~;;6000ajE:l'04000::>...GlCo>2000E'Gl

.n oL-...e!!~~c~=~:::=~"'"!_-----_;_-----_;_-----_t_----_Jo

2.0..---------------------------------------,

!-RU-ElEliql1.5

1.0

0.5

0.0 .~

o 20 40 60time, t (sec)

80 100 120

d:\nit\itp\cy_fiIes\MONT35.xLS 8/20/9610:42AM

A-37

Page 186: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Stress Ratio:

MONT3561.80.35

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Stress·1000.1

Shear Stress vs. Shear Strain

Shear Strain, r (%)

d:lnit\itp\cLfilesIMONT35.xLS

A-388/20/9610:42AM

Page 187: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%)

MONT3761.60.17

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain1001

60 -r--------------------------------------,50

'ii40~

:. 30.. 20

f 10(i) O-H--H-+t-+-t-H+H-H--H-++-H-H-H-H'-t-H--H-++-H-++-H-+i-f--lh'-'t-+'r+t-+t-+H+-f-H'hi'-h'-h----!i -100 35

~ :f ---JItime, t (sec)

5

~0 5

~o15 20

~30 3

-0.2

0.2

~ 0.1'""?-

C~ 0.0o..IIIGl

~ -0.1

time, t (sec)

- 1500 r-------------------~=::==:===::=::::;;:;;;;:---llwaj 1000E:=g~ 500Co>.ElGlCW

Page 188: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (0/0):Applied Shear Strain (0/0)

MONT3761.60.17

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain'1001

-0.25

Shear Stress vs. Shear Strain

Shear Strain, "{ (%)

0.25

d:lnit\itp\cy-ftles\MONT37XLS

A-408120196 10:47 AM

Page 189: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test to.:Relative Density (%):Applied Shear Strain (%):

MONT3861.80.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

70

60Ii 50I:l.:'40..

30rAen 20S1- 10CI)..0ClI

QI

~ -100 1.2

:i Itime, t (sec)

0.3

0.2.....~

';:: 0.1CE 0.0c;; a

~1.2..

~ ~.1II-0.2

-0.3time, t (sec)

1.20.80.6

time, t (sec)

0.40.2

~ 1000 .,.-------------------------------------,

~w 800oJE 600:='0~ 400CIlQ.

Ei 200CIcW

1.20.80.6time, t (sec)

0.40.2

1.4 ,.-------------------------------------,

1.2 1-Ru -ElEliq!

1.0

0.8

0.6

0.4

0.2

0.0 ~~....:..:.---+-------_-----_-----_-----,.....------!o

d:\nitlitp\cLfiles\MONT38.XLSA-41

8120/96 10:54 AM

Page 190: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Relative Density (%):Applied Shear Strain (%):

MONT3861.80.25

Controlled Parameter:Initial Effective Stress (kPa):Frequency (Hz):

Strain10010

Shear Stress vs. Shear Strain

...------------------70--,.------------------.

60

0.3

]

-0.1

50

-D.3

Shear Strain, r (%)

d:\nit\itp\cr-fi1es\MONT38XLS 8/20/96 10:54 AM

A-42

Page 191: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

APPENDIXB

LABORATORY TESTS ON SOIL SAMPLES FROM THE SAVANNAB RIVERSITE, PERFORMED AT THE UNIVERSITY OF CALIFORNIA, BERKELEY

B-1

Page 192: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

t>:I I N

Tab

le8.

1-

Sum

mar

yo

fthe

Cyc

licT

riaxi

alT

estD

ata

onSR

SSo

ilSa

mpl

esPe

rfor

med

atU

nive

rsity

ofC

alifo

rnia

,B

erke

ley

No.

Te

st10

Sam

ple

Dr(

%)

Ella

(JIm

")FC

(%)

Yd(k

N/m

")C

on

tro

l(J

e'(k

Pa)

Fre

q.

(Hz)

Lo

ad

Sh

ap

e

1B

23P

2BC

YS

ante

eN/

A14

675

33.7

16.0

Str

ess

400

1S

inus

oida

l 2-w

ay

2B

23P

2MC

YS

ante

eN/

A16

782

35.6

16.4

Str

ess

400

1S

inus

oida

l2

-wa

y

3B

23P

2TC

YS

ante

eN/

A11

402

32.6

16.8

Str

ess

400

1S

inus

oida

l2-w

ay

4B

23P

3BC

YT

obac

coR

d.N/

A49

2916

.616

.4S

tres

s2

00

1S

inus

oida

l2-w

ay

5B

23P

3MC

YT

obac

coR

d.N/

A55

8518

.515

.2S

tres

s20

01

Sin

usoi

dal

2-w

ay

6B

23P

3TC

YT

obac

coR

d.N/

A29

2420

.516

.6S

tres

s2

00

1S

inu

soid

al2

-wa

y

7B

12P

5BC

YT

obac

coR

d.N/

A14

918

27.0

15.8

Str

ess

300

1S

inus

oida

l2-w

ay

8B

12P

5MC

YT

obac

coR

d.N/

A49

114

26.8

16.8

Str

ess

300

1S

inus

oida

l2-w

ay

9B

12P

5TC

YT

obac

coR

d.N/

A54

5022

.318

.0S

tres

s30

01

Sin

usoi

dal2

-wa

y

108

12

P7

8C

YT

obac

coR

d.N/

A76

6615

.715

.9S

tres

s37

51

Sin

usoi

dal

2-w

ay

11B

12P

7MC

YT

obac

coR

d.N/

A14

482

17.0

16.3

Str

ess

375

1S

inus

oida

l2-w

ay

1281

2P7T

CY

Tob

acco

Rd.

N/A

3852

15.7

16.2

Str

ess

375

1S

inus

oida

l2-w

ay

13B

2P58

CY

CT

obac

coR

d.N/

A11

672

25.4

14.7

Str

ess

500

1S

inus

oida

l2-w

ay

14B

2P5M

CY

CT

obac

coR

d.N/

A23

344

29.6

15.4

Str

ess

500

1S

inus

oida

l2-w

ay

15B

2P5T

CY

CT

obac

coR

d.N/

A88

1926

.616

.7S

tres

s50

01

Sin

usoi

dal2

-wa

y

16B

23P

4BC

YT

obac

coR

d.N/

A21

667

11.4

14.6

Str

ess

750

1S

inus

oida

l2-w

ay

17B

23P

4MC

YT

obac

coR

d.N/

A36

680

16.5

15.5

Str

ess

700

1S

inus

oida

l2-w

ay

18B

23P

4TC

YT

obac

coR

d.N/

A17

968

28.0

N/A

Str

ess

750

1S

inus

oida

l2-w

ay

19B

29P

2TC

YT

obac

coR

d.N/

A23

637

23.0

16.7

Str

ess

750

1S

inus

oida

l2

-wa

y

20B

2P

68

CY

Tob

acco

Rd.

N/A

1798

518

.916

.7S

tres

s72

51

Sin

usoi

dal2

-wa

y

21B

2P6M

CY

Tob

acco

Rd.

N/A

1983

120

.116

.5S

tres

s74

31

Sin

usoi

dal2

-wa

y

22B

2P6T

CY

CT

obac

coR

d.N/

A14

446

22.4

16.0

Str

ess

750

1S

inus

oida

l2-w

ay

Test

Res

ults

Follo

win

gth

eS

eque

nce

ofTe

stID

'sar

eA

ttach

ed.

Page 193: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2BCY33.716.04

Controlled Parameter:Initial Effective Stress (kPa):

Stress·400

100 -r-------------------------------------,80

iii 60~ 40.. 20:§ O+L---+---+l----+---+l----\----t+-----\----t+-----\----H------l

i_~l 'I-120 f ~-~~----------------.

time, t (sec)

5..---------------------------------------.

6..... 0f----"""""""-+--=-"='"---1-""/'"-===-.;----t--r-~---+-_f_-_t--_+__{_-----1

~ 0~

C -5~en... -10IIIQl.ct/) -15

-20 ........-----------------------------------'time, t (sec)

6543time, t (sec)

2

;;--50000 ......-----------------------------------.......e24D000wcjE30000::::l'0~ 20000QlQ,

~ 10000

~ 0 I. OOOIII!~:;::::=::::::::::::=:~-_;_-----+__----~-----Jo

3.0 -r------------------------------------,

!-RU -EJEliq I2.0

1.0

6543time, t (sec)

2

0.0 ~:::::::::;;;;..tCZ.~::::::::=:::::~---=~----=_+_---__+---_lo

d:lnitlitp\cLfiJes\B23P2BCYXLSB-3

8120/96 5:01 PM

Page 194: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2BCY33.716.04

Controlled Parameter:Initial Effective Stress (kPa):

Stress400

Shear Stress vs. Shear Strain

,----------------------------'100--,.------......,

l:...iiiIII

~en -16..ftIell.cC/)

-14

Shear Strain, 'Y (%) .

4

d:\nitutp\CLfiles\B23P2BCYXLSB-4

8120/96 5:01 PM

Page 195: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2MCY35.616.43

Controlled Parameter:Initial Effective Stress (kPa):

Stress'400

2.0

1.0

0.0 Ao

d:\nitlitp\CLfiles\B23P2MCYXLS

!-RU-ElEliq!

2 4 time, t (sec)

B-S

6 8 10

8/21/96 9:49 AM

Page 196: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

B23P2MCY35.616.43

Controlled Parameter:Initial Effective Stress (kPa):

Stress·400

Shear Stress vs. Shear Strain

.-----------------------------'10Q-ro-----...,

::.:.:­..rAtil

!en -10..III.....:o

-8

Shear Strain, 1 (%)

2

d:\nit\itp\cy-files\B23P2MCYXLS

B-68/21/96 9:49 AM

Page 197: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P2TCY32.616.75

Controlled Parameter:Initial Effective Stress (kPa):

Stress400

o

time, t (sec)

~ I I1

\ ~ ~0 10 20 30 40 5

t ~ ~ ~ ~ I-60

-80

80

60

l40=-.. 20iii! 0u; -20..III

ll-40U)

Page 198: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

823P2TCY32.616.75

Controlled Parameter:Initial Effective Stress (kPa):

Stress400

-14

Shear Stress vs. Shear Strain

Shear Strain, ., (%)

6

d:\nit\itP\cLfiles\B23P2TCYXLSB-8

8/21/96 7:44 AM

Page 199: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P3BCY16.616.4

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

40.-----------------------------------...,

~: 1

1

\fA I~+m~W+Ull1mt~W~~Wf}W+mwOOU++l~~J.U.ljfW.J++mlW.UW~W~.w.uW+W./1.Jj~ 0+1

~ _100 \ 20 40 60 80

! :f--,-_!!I_~I~~~:-----_~_---IItime, t (sec)

15.------------------------------------,

10......~';:: 5~

~ O+---~------....,...";-,,......,.....""""'r=_..nt'tt'I1't1'rf'r.frfi"fTf\i9rfrftitltJ'HtttHfl+tHffil_fttttti*H_I'tt_h

~ -510 20 8

1

0

;; -10

-15 ---J

time, t (sec)

806040time, t (sec)

20

w 60000arE::J"0 40000:>..II>

~ 20000E!

~ oL--------.oIIi!--=~========:=:=:;:::::=-----_;__--------Jo

_ 80000.---------------------------------~__.~::!.

20.0.----------------------------------~

15.0

l-Ru-ElEliq!10.0

5.0

806040time, t (sec)

20

o.oJ---~~~ ........--~~~=~~~~~~~~~~~~Jo

d:\nit\itP\CLfiles\B23P3BCy.xLS

B-98/21/96 7:48 AM

Page 200: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P3BCY16.616.4

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

'i:...iii'"~rn -15..~QI.crn

Shear Stress vs. Shear Strain

Shear Strain, y (%)

d:\nit\itp\cy_files\B23P3BCY.XLSB-lO

8/21/96 7:48 AM

Page 201: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

823P3MCY18.515.22

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

5

35

tllne, t (sec)

" A f'l {', ,n r f\ n .r- ~ ~ ~ ~ 'C' V V V V" VVVV' U I ~~ ~ 30 5 10 15 VO

v

f f ~f ~ I1\, ,

J~I .

11~ ~ ~ ~ ~~'[

0 5 10 30

t ~I J

I

50

40

Ii' 30a.:!.. 20..iii 10IIIGI... 0Ci)... -10tVGI.c -20en

-30

-40

5

.....e0>-

c~...in..tV -5GI.cen

-10time, t (sec)

~ 30000

~w~ 20000:::l'0:>! 10000>.e'GIs::::W 0

0 5 10 15 20 25 30 35time, t (sec)

5.0

4.0

3.0 !-Ru-ElEliql

2.0

1.0

0.0

0 5 10 15 20 25 30 35time, t (sec)

d:\nit\itp\cy_files\B23P3MCY.XLS 8/21/96 7:52 AM

B-ll

Page 202: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

823P3MCY18.515.22

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

l=-..'Ii'"~o ·10-:g.cC/)

Shear Stress vs. Shear Strain

Shear Strain, r (%)

6

d:\nit\ilp\cy_files\B23P3MCY.XLS

B-128/21/96 7:52 AM

Page 203: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

823P3TCY20.516.63

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

5

tllne, t (sec)

\ ~ f

AI

~b 'I\

I

I0 5 15 20 2

V v v V v v v l v v v v V Vv

5040

l 30

==- 20..Iii 10~ 0..(j) ~10

~ -20~ ~30

-40~50

15.,------------------------------------..,

10......e 5~

C O+-~---=-="""<_"'""'__rr="t__1=r_p'r__f_+_++_H__\_!'_t__f_ii_++_1_+_+I_+__1Y__t_!_+_+_+_+_H_+_I_+_+_+_--_1

~ -510 20 2

1

5! ~10~15

-20 -------------------------------------'time, t (sec)

252015time, t (sec)105oL--~~::::::=-___+--_+___-_J

o

..CI)Q"

>0 20000E'CI)cw

_ 80000 -r------------------------------------.-:e:2-w 60000arE.g 40000:>

25.0...---------------------------------------.

20.0

15.0

10.0

5.0

I-RU-ElEliq!

252010 time, t (sec) 155

0.0 L.--.....~~~~~~~::::::::::::::::::::::::::~::::::::::::::::::::::::::::=::::::::::::::::::::::::::;:::::~::::::::::::::.-_Jo

d:lnit\itP\CLfiles\B23P3TCYXLSB-13

8/21/967:57 AM

Page 204: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P3TCY20.516.63

Controlled Parameter:Initial Effective Stress (kPa):

Stress200

Shear Stress vs. Shear Strain

15

""'------------------_6:Q--Io-- ----I

Shear Strain,., (%)

d:lnitlitp\cLfiles\B23P3TCY.XLS

B-148/21196 7:57 AM

Page 205: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B12P5BCY2715.82

Controlled Parameter:Initial Effective Stress (kPa):

Stress'300

40

II

];II - I I'---

I I80 r I

1~II

0 12 1

Ii II Ii III I Iii!-60

-80

80

60

:40;... 20vi~ 0...c;; -20...l'O

~-40In

time (sec)

0.5,.....-------------------------------------,,...~;:: 0.0c~U)

~ -0.5.cIn

20ViI

I40

m60

mI

80

m140

-1.0..1.------------------------------------'time, t (sec)

14012010060 80time, t (sec)

40205OO~ L~~~:::~::::::=----_+_----_+_---__!----_+_------J

o

;:- 35000 ...---------------------------------.

! 30000

~ 25000d)

§ 20000o:::0 15000ta. ooסס1>.

iow

2.5.,----------------------------------,

i- Ru -ElEliq I2.0

1.5

1.0

0.50.0

o 20 40 60 80

time, t (sec)

100 120 140

d:\nit\itp\cLfiles\B12P5BCYXLSB-15

8/20/96 4:34 PM

Page 206: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B12P5BCY2715.82

Controlled Parameter:Initial Effective Stress (kPa):

Stress·300

ii'll.;.....rnIII

l!!Ci) -0.8...IIIGI.cU)

Shear Stress vs. Shear Strain

Shear Strain, 1 (%)

0.4

d;\nitUtP\cLfiles\B12P5BCYXLSB-16

8/20/96 4:34 PM

Page 207: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (0/0):Dry Density (kN/m3

):

B12P5MCY26.816.78

Controlled Parameter:Initial Effective Stress (kPa):

Stress'300

80.,...--------------------------------------.50

l40:... 20~ I~ O++++++++++++++++H-!++H+H-i+t+-H-H-H-f++++++++++++l-l++i+H-H-H-++++++++-H-H++H+i-H++H+H-i++H+H-H-H-i+t+-i+t+-H-H-i+t+-H-f+I------1

i: 0 Ii i ~ ir ~ t-80.L.-----------------~~~------------------'time (sec)

15,..------------------------------------,10,....

~

; : ~AAMAAAA~,M~~ OVVVVVVVVVUVV

III -5s::en

-10

20

-15.J.--------------------------------------'time, t (sec)

6040time, t (sec)20o.l-~:=:::::::=:=---+__------+__-----__+-----.J

o

..... 350000 .,...-------------------------------::-------,

§ 300000::!.~ 250000G)

$ 200000'0:> 150000li;~ 100000OlIii 50000cw

70605030 40time, t (sec)

2010

7.0.,...------------------------------,..-----,6.0

5.0 1-Ru -ElEliq I4.0

3.0

2.0

1.0 T.c~~~~~~~~JY}.~~~~~~~~~~~~~~~~~~:!!.~---_JO.O.ji; fI

o

d:lnit\itp\cy-files\B12P5MCYXLS 8/20/95 4:42 PM

B-17

Page 208: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B12P5MCY26.816.78

Controlled Parameter:Initial Effective Stress (kPa):

Stress300

"ie....viCIlell..Cii -15..IIIell.::r.n

Shear Stress vs. Shear Strain

Shear Strain, r (%)

15

d:lnitlitp\cLfiles\B12P5MCYXLSB-18

8120/964:42 PM

Page 209: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

812P5TCY22.318.02

Controlled Parameter:Initial Effective Stress (kPa):

Stress300

80

60c;-

40c.;... 20iiiUl 0Q)...en -20...1lI

~-40C/)

-60

-80

10

,...,5e

:--CE 0en...1lIell.c -5C/)

-10

,1~ ~

I0 20 40

~ ~tllne (sec)

~r"'Annnf\nnnnnnn nr0

vvvvvvvvvuuuuvu hb 40v

~ ~

Page 210: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

812PSTCY22.318.02

Controlled Parameter:Initial Effective Stress (kPa):

Stress'300

Shear Stress vs. Shear Strain

60

Shear Strain, r (%)

6

d:\nitlitp\cr-fi1es\B12PSTCYXLSB-20

8/20/96 4:45 PM

Page 211: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B12P7BCY15.715.91

Controlled Parameter:Initial Effective Stress (kPa):

Stress'375

A '\\

0

~10

~ l ~20 3

v v V

80

60

: 40=. 20..~ 0~ 0

~ :t Iili -60

-1-: ---:':_~_:__-----------------Jtime (sec)

/' rr r

.r r1 r..... n n n n

0 '-' V V U UU~b

~3

\) v'-'

\.,

v

......e 5~

.5 0

i:it----------------I'

15

10

time, t (sec)

3020time, t (sec)10o.l---~~::::::=--__+_--------_+__-------__J

o

ooסס10_ -r------------------------------------,lw 75000orE::::I'0 ooסס5:>..Glg.

>- 25000E!GlCW

15.0 -r-----------------------------------.

10.0 !--Ru -ElEliq I

5.0

3020time, t (sec)10

0.0 j....~~;;;;,.;~~~~::::::::C:::::::::::=:::::::::::;;::::;;::~~~~-------___Jo

d:\nit\itp\cLfiles\B12P7BCYXLS B-21 8/20/96 4:50 PM

Page 212: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B12P7BCY15.715.91

Controlled Parameter:Initial Effective Stress (kPa):

Stress'375

l.:II:

"";: -20uiIII

l!!<;;..I'CIGI.=(I)

d:\nit\itp\cY-files\B12P7BCYXLS

Shear Stress vs. Shear Strain

Shear Strain,"( (%)

B-22

15·

8/20/96 4:50 PM

Page 213: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

B12P7MCY1716.25

Controlled Parameter:Initial Effective Stress (kPa):

Stress375

I

~ fl ~ d1

0

~~o20 30

1

II

40

~ ~ I ~

40

60

'iii~ 20..iii 0III~ ~

i~1 ~~ -J1time (sec)

.~ " rl Ii n nnnnnfI nn ~0 10

v v v V V V IJ kbIJ ~ U~U

.J> 5

~

,.....~-;:: 5c~ 0o 0

j :::! I

15

10

40 50

5.0

I-Ru-EJEliql

504020 time, t (sec) 3010

0.0 1-.~~~~~~~::::~~~~:=~~~::::::~~::::~-Jo

d:\nitlitpI.cLfiles\B12P7MCYXLSB-23

8/20/96 4:54 PM

Page 214: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B12P7MCY1716.25

Controlled Parameter:Initial Effective Stress (kPa):

Stress·375

"iiic.;. .15..oltl

!(;)..:B.::f/)

Shear Stress vs. Shear Strain

Shear Strain,., (%)

15

d:lnit\itp\cy_files\B12P7MCYXLS

B-248/20/96 4:54 PM

Page 215: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

--------------- _.-------

Test 1.0.:Fines Content (%):Dry Density (kN/mJ

):

B12P7TCY15.716.24

Controlled Parameter:Initial Effective Stress (kPa):

Stress'375

fA ,A ~ f\ f\ f\ 1\ A ~ f\

tA n A A {\

I0

V V VV ~ 05 2

V V V V V

80

60

l40=-.. 20<Ii~ 0...

i~t----_-----------Jrtime, t (sec)

10.,__--------------------------------,

~ 5l-

e~ O+--'--=--..=-'"""=,........~""""__t_r=~_f_'t__t_r__t__t_t_+_H__+__+_~I_i__+__+__I_1Ht_+__+_+_----_1

... 0 ~

~ ~t I-101--------------------------------.

time, t (sec)

201510time, t (sec)

5

~40000.,-----------------------------------,

iw 30000(jjE::l

~ 20000...Gl

~ 10000~

~ 0 1.-------~~::::::::::==-___1~-------+__------_Jo

10.0.,---------------------------------...,

1-Ru -EJEliq I5.0

201510time, t (sec)

5

0.0 l.-~....,;;;;;;;;~~¥~~~~~~~:::::::::::=::::~~::::::::~--_Jo

d:\nitlitp\cLfiles\B12P7TCYXLSB-25

8f21/96 9:48 AM

Page 216: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B12P7TCY15.716.24

Controlled Parameter:Initial Effective Stress (kPa):

Stress"375

Shear Stress vs. Shear Strain

Shear Strain, y (%)

d:\nitlitp\cy_files\B12P7TCy.xLSB-26

8/21/96 9:48 AM

Page 217: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):

Dry Density (kN/m3):

82P58CYC25.4

14.65

Controlled Parameter:Initial Effective Stress (kPa):

Stress·500

150...-------------------------------------___.

..cA! Oi'--+-+-\---+---+----;----j-+-+-,...-4;-+-+--+--i.--+---+--+---'\---l/--+--+-i--I--------j~ 0 15

JOSOl IU) -100

-150 ~=~=~--------~--------J

_ 100

:.=.. 50

S...------------------------------~-----___.

15

15

10

10

time, t (sec)

time, t (sec)

time, t (sec)

5

5

1-Ru -EJEliq I

-20

120000

! 100000war ooסס8E:::J'0 60000::-...ell 40000Co>.til 20000...ellCW

0

0

10.0

8.0

6.0

4.0

2.0

0.0

0

d:\nit\itp\cy-files\B2PSBCYCXLSB-27

8/21/96 8:59 AM

Page 218: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B2P5BCYC25.414.65

Controlled Parameter:j Initial Effective Stress (kPa):

Stress'500

Shear Stress vs. Shear Strain

....---------------------------15,o-r-------.,

'i::...viCIl

!CiS -20..11l.cen

1---------------------15 IShear Strain, r (%)

d:\nit\itp\cy_fiIes\B2P5BCYC.xLSB-28

8/21/96 8:59 AM

Page 219: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

B2P5MCYC29.615.37

Controlled Parameter:Initial Effective Stress (kPa):

Stress500

n

r~ ~

f ~ ~. I

0

~ ~ ~ J~ 10 J .15 20 25

l~~ I3

V ~

125100

1 75::. 50..rn 25~ 0

i ::i 1

5

en -75

-100-125 ~~~__:__--------------....J

time, t (sec)

5

.......~0"-' 0~

: 0 5 30 35T!

~-fJ)~

lIS -5GI.=.en

-10time, t (sec)

.t:"" 100000.§~ 80000wa;E 60000:l'0:> 40000~

GIC.>. 20000ell...ellCW 0

0 5 10 15 20 25 30 35time, t (sec)

5.0.,.------------------------------------,

!-Ru -ElEliql

4.0

3.0

2.0

5 10 15 20time, t (sec)

25 30 35

d:\nit\itp\cy-files\B2P5MCYC.XlS

B-298/21/968:21 AM

Page 220: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

82P5MCYC29.615.37

Controlled Parameter:Initi~1 Effective Stress (kPa):

Stress500

l:,;..IiIII

~o -10..tilell

.s::.o

Shear Stress vs. Shear Strain

'-------------------------15 IShear Strain, r (%)

d:lnit\itp\CLfiles\82P5MCYC.xLS

B-308121/968:21 AM

Page 221: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (0/0):Dry Density (kN/m3

):

82P5TCYC26.616.71

Controlled Parameter:Initial Effective Stress (kPa):

Stress500

fI f\

~ ~fI f\ fI f\ fI

~fI fI f'1 f\ (\ I'i f\ fI

f

VI

0

V15 20

V V V V V V V V V V V V V V V

125

10075

l 50;... 25

~ 0

~ :~~il! -75en -100

-125

-150 ---------------~__:__:___:__----------------'time, t (sec)

10-r---------------------------------~

5

-15

20

-20~---------------------------------'time, t (sec)

201510time, t (sec)

5

_ 140000,.------------------------------------,

!120000

w 100000~

§ 80000'0> ooסס6"­elia. 40000>.

r20~ L---~~~::::::~:::::::=::=~,..._-------~-------Jo

201510time, t (sec)

5

I-RU-ElEliq!

16.0 -r-----------------------------------,14.0

12.0

10.0

8.0

6.0

4.0

2.0 l __~~~~~~~:;~~:::::::::::::::::::::::C:::::~:::::::::::::~:C-~0.0o

d:\nitVtP\cLfiles\B2P5TCYC.XLS 8/21/96 8:25 AM

B-31

Page 222: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

82P5TCYC26.616.71

Controlled Parameter:Initial Effective Stress (kPa):

Stress500

Shear Stress vs. Shear Strain

.-----------------------150-,.------------.

~;-..IIi(I)

~;; -20..IIICl.co

Shear Strain, r (%)

100

10

d:lnitlitpI.cLfiles\B2PSTCYC.XLSB-32

8/21/96 8:25 AM

Page 223: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P4BCY11.414.6

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

120 -r-----------------------------------..,10080

'l 60e;. 40.. 20~ 0 -fI--I--__+-f---I--+--+-l-+-+--il-1-+-I---\--I--l---i-J,--I--\--+l----lr---!-+--+----':--/-----1

i ~iO Iv5 10 \J 1

1

5.~:_ V

-140 -----------------~-':""':"'"__:_----------------time, t (sec)

10...---------------------------------------,

~ 5 I?- 0 +--~--=~--=----="..---=:~-~:::__..."...._r=r-f_+__I__+_H-r__+__t___+__!'---+I----l

r:: 0 5 I 15.~ -5ii)...~ -10

.:::o

-15-20 .L- -J

time, t (sec)

1510time, t (sec)5O~-------~~~::=:c-----_t__-------~

o

60000.,--------------------------------------.~was 40000E=g~20000>-~GlJ::W

3.0 -r--------------------------------------,

2.0

1.0

0.0 . r-....

o

I-Ru-E1Eliqj

5 time, t (sec) 10 15

d:\nitUtp\cLfiles\B23P4BCY.XLS

B-338/21/96 8:01 AM

Page 224: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P4BCY11.414.6

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

Shear Stress vs. Shear Strain

Shear Strain, 1 (%)

d:lnitlitplcLfilesl823P4BCY.XLS

B-348121/96 8:01 AM

Page 225: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test J.D.:Fines Content (%):Dry Density (kN/m3

):

B23P4MCY16.515.53

Controlled Parameter:Initial Effective Stress (kPa):

Stress700

200 -r------------------------------------,150

faQ. 100:!... 50iii~ Ot..<.----\----++-----';---H---\-----+-,f----+---+-I---4c-----1~ aD 5

I ::1 -:-:---:-:--:-- ----J1time, t (sec)

10.,-----------------------------------...,

,..... 5e?-c 0+---===-~--t-~::::::::==~--_+__+_--*--_+__!_--_+_--_+__!_--_\_--_1

i::1 1time, t (sec)

543time, t (sec)2

o.L---~=:;:=:~::::::=-__+_---__;_---____+---____Jo

50000 -r------------------------------------.l40000wasE 30000="5~ 20000Gla.>-El10000GIcW

1.5 -r------------------------------------,

1.0

0.5

j-Ru-ElEliQI

543time, t (sec)20.0 Lo;;;;;;;;;;=;;;;;;;;;;;~==~::::::::.-------- __----_'!_----_t

a

d:lnit\itp\cr-fi1es\623P4MCY.XLS

B-358/21/96 8:05 AM

Page 226: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B23P4MCY16.515.53

Controlled Parameter:Initial Effective Stress (kPa):

Stress700

-12 -10

Shear Stress vs. Shear Strain

6 8

'----------------------:200-'---------------'Shear Strain, 1 (%)

d:\nit\itplcr-files\B23P4MCYXLSB-36

8/21/968:05 AM

Page 227: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

823P4TCY28N/A

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

5

tune, t (sec)

A n

~ rn

O~I '~f~r~~~~"n ~

, I I \ \ I\0

~5

.~ ~o ~ ~5 III IIf ~2

1 Ii

Vv jv~\"v V V \I V V IJ ~ V \I

o

150

-150

la -50Ql

.s::.(I) -100

100l:::. 50

5,...--------------------------------,

Page 228: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

823P4TCY28N/A

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

Shear Stress vs. Shear Strain

6

.......------------------15D-"---------------...IShear Strain, 1 (%)

d:\nit\itp\cy-files\B23P4TCYXLS

B-388/21/96 8:09 AM

Page 229: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

829P2TCY2316.7

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

r f\ r f\ r ~

~r (I (\, r 0 (\, f\ !\ f1 0

\J \ ,

o V ~l I

~5 10 15 2

I I

V\j \j \J V \i V ~ \ V V V V V V

oo

j -501 Io ~::: _

time, t (sec)

150

100iiiC1.::5. 50

Page 230: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

829P2TCY2316.7

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

Shear Stress vs. Shear Strain

....----------------------15D-r-----------..,

4

1...----------------------'150--"------------...1

Shear Strain, r (%)

d:\nit\itp\cr-fi1es\B29P2TCYXLS B-40 8/21/968:13 AM

Page 231: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

):

B2P6BCY18.916.73

Controlled Parameter:Initial Effective Stress (kPa):

Stress725

150

100:.=- 50..iii! 0enlii -50ell

.&:II) -100

-150

(I n 0 ~ n fI f\ n n

r r \ (i

I0 5 10 1

\j ~ V ~ ~ \J V ~ ~ \1 \, \time, t (sec)

5

5~----------------------------------..,

,.....e-

O....C 0

Cii..en..Il:l -5ell

.&:f/)

-10

n15

time, t (sec)

1510time, t (sec)

50.L--~~::=:~::::;:=------__+_-----_l

o

-. 60000.,.------------------------------------.!50000woS 40000E:I"0 30000:::-~ 20000>-e' 10000~w

4.0.,-----------------------------------,

3.0

2.0

1.0

I-RU-EJEJiQI

1510time, t (sec)50.0k~~~~~~:::~=-~=--=--=;__~~---__J

o

d:\nit\itp\cy-files\B2P6BCYXLS

B-418/21/96 8:29 AM

Page 232: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B2P6BCY18.916.73

Controlled Parameter:Initial Effective Stress (kPa):

Stress725

::=- -10..viIII

!iii..IIIQl

.cen

Shear Stress vs. Shear Strain

Shear Strain, r (%)

4 6

d:lnitlitp\cy_files\B2P6BCYXLS

B-428/21/96 8:29 AM

Page 233: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B2P6MCY20.116.5

Controlled Parameter:Initial Effective Stress (kPa):

Stress743

200 -r--------------------------------------,150

l 100;... 50iiiXl Ofl--+--+--\,---i-/-_+--+--\--+/--+--+-----1,---hI---\---+--I--+l---I-----_l

IE -50 0 10

I::t --------Itime, t (sec)

10.,..--------------------------------------,

1082

......e~ O+-=-=.--.~_=::::_±:;::,..==-,;;:____"7=~-H-_';_-_+_-\___++___T-___I-_+-+_+-_+_----_l

C 0~ -5CD

~ -10.c:(I)

5

-15

-20 -'---------------------------------------....time, t (sec)

1086time, t (sec)42oL---~~~=:::::::=---_+___---+___--_J

o

woSE 60000~

'0:: 40000GlCo>.~ 20000ellCW

ooסס10 ..-------------------------------------~

180000

5.0,..--------------------------------------,

4.0

3.0

2.0

1.0

I-RU-ElEliq!

1086time, t (sec)42

0.0 L;:;;;;,....~~~~~:::::::::~=.::::::-~::_~~-~_~--~o

d:\nit\itp\cy-fiJes\B2P6MCY.XLSB-43

8/21/96 8:33 AM

Page 234: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

):

B2P6MCY20.116.5

Controlled Parameter:Initial Effective Stress (kPa):

Stress743

Shear Stress vs. Shear Strain

......---------------------20~-----------__r

150

100

-15 10

L....---------------------:200-.:..-.------------..JShear Strain, 'Y (%)

d:\nit\itp\cy_files\B2P6MCYXLSB-44

8/21/96 8:33 AM

Page 235: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test J.D.:Fines Content (%):Dry Density (kN/m3

):

B2P6TCYC22.416.03

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

2oo-r---------------------------------~--___,

150

;;-100~... 50vi~ O-J-L---+-----+-+----+------''r-f----'l----l-,f---+----+-I-----\r-----1fg _500 5

J::: ~ I-200 t ~-~-----------------.....J.

time, t (sec)

5-r------------------------------"'--------___,

5~ O+----=====--=:::::::::±:~'O::::::==="""'=_-~~--~---+-_f--_\----+IL-.--t_---f

:- 0Ce -5en..IIIG>

~ -10

_15.1.----------------------- ---1

time, t (sec)

543time, t (sec)2

50000,.-----------------------------------~

~::2. 40000UltiE 30000::I"S~ 20000Clc.::>-~10000 ~

~ oL----~~::;::~===:::::=:::::::::::::=:=--"i_------_t_------Jo

3.0...--------------------------------------,

2.0 1-Ru -ElEliq I

1.0

543time, t (sec)20.0W::::::~~~~~::::==:::::_---.:::---=J

o

d:\nit\itp\CLfiles\B2P6TCYC.xLS

B-458/21/968:36 AM

Page 236: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/rn3

):

82P6TCYC22.416.03

Controlled Parameter:Initial Effective Stress (kPa):

Stress750

Shear Stress vs. Shear Strain

...-------------------------:200--,.---------.

-10 -8 -6 4

L....------------------------:20(}-l----------'Shear Strain,"( (%)

d:lnit\itp\cy-files\B2P6TCYCXLSB-46

8/21 f96 8:36 AM

Page 237: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

APPENDIXC

LABORATORY TESTS ON SOIL SAMPLES, PERFORMED AT THEUNIVERSITY OF COLORADO

C-l

Page 238: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

(') I N

Tab

leC

.I-

Sum

mar

yo

fthe

Cyc

licT

orsi

onal

Tes

tDat

aon

Cle

anan

dSi

ltySa

nds

Perf

orm

edat

Uni

vers

ityo

fCol

orad

o

No

.Te

st10

Sam

ple

Or(

%)

Euq

(J/m

3 )FC

(%)

¥d(k

N/m

3 )P

.I.

Co

ntr

ol

ae'(

kPa)

Fre

q.

(Hz)

Lo

adS

hap

e

1U

OF

C5

F11

32.6

3728

014

.5S

tres

s19

9.9

0.1

Sin

usoi

dal

2-w

ay

2U

OF

C7

F11

41.0

1249

50

14.7

Str

ess

204.

80.

1S

inus

oida

l2-w

ay

3U

OF

C9

F11

42.0

1699

70

14.8

Str

ess

304.

10.

1S

inus

oida

l2-w

ay

4U

OF

C13

F43

N/A

3450

2015

.310

.0S

tres

s29

9.9

0.1

Sin

usoi

dal2

-way

5U

OF

C14

F46

N/A

4753

2015

.225

.0S

tres

s1

99

.90.

1S

inus

oida

l2-w

ay

6U

OF

C15

F46

N/A

2485

2015

.225

.0S

tres

s20

1.3

0.1

Sin

usoi

dal2

-way

7U

OF

C17

F64

N/A

3427

4516

.215

.0S

tres

s20

3.4

0.1

Sin

usoi

dal2

-way

8U

OF

C18

F64

N/A

3993

4516

.215

.0S

tres

s19

0.3

0.1

Sin

usoi

dal2

-way

9U

OF

C23

F11

45.3

7437

014

.9S

tres

s19

9.9

0.1

Sin

usoi

dal2

-way

Tes

tR

esul

tsF

ollo

win

gth

eS

eque

nce

ofT

est

ID's

are

Atta

ched

.

Page 239: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density (%):

UOFC5Clean Sand32.6

Controlled Parameter:Initial Effective Stress (kPa):

Stress'200

60,..---------------------------------------.40::

::s-O' 20ene 0+------.J--H--+-+-+----tt-~-_\_-_I_-+_-+_---:~_+-_\f_--------1

o 0 100

1:1 1time, t (sec)

100806040 time, t (sec)20

-oJ----~~~~~==:::::::::;::::::::::::::..--!___--__l

o

5000

4000

3000

1000

7000 I----------~-------------___;=;:;:;;;;;:;:;;;;=-=-=-~

~6000~wmE::l

;g~

<II

~ 2000E!<IICW

1008040 time, t (sec) 6020

1-Ru -ElEliq I

~~---

0.5

0.0o

2.0

1.0

'1.5

d:\nitlitp\cy-files\UOFC5.XLS

C-38/19/964;18 PM

Page 240: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density (%):

UOFC5Clean Sand32.6

Controlled Parameter:Initial Effective Stress (kPa):

Stress·200

Shear Stress vs. Shear Strain

30

20

l=-..rnCIl

~o -15"­lISCl).::(/)

-10 -5

-10

5 10

-20

-30

d:\nit\itp\cy_fiIes\UOFCS.xLS

lShear Strain• ., (%)

C-48/19/964:18 PM

Page 241: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density (%):

UOFC7Clean Sand41

Controlled Parameter:Initial Effective Stress (kPa):

Stress'205

r~

~

~ ~,

0 100 200 30C 40

~ ~ ~

80

60

:40;... 20Iig: 0'-

i ~t -,I'

Page 242: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density (%):

UOFC7Clean Sand41

Controlled Parameter:Initial Effective Stress (kPa):

Stress205

Shear Stress vs. Shear Strain

80

Shear Strain. y (%)

I

!

6 8

d:lnit\itp\CLfiles\UOFC7.XLS C-6 8/21/969:22 AM

Page 243: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density (%):

UOFC9Clean Sand42

Controlled Parameter:Initial Effective Stress (kPa):

Stress'304

2.5.,---------------------------------------,

2.0I-Ru-ElEliql

1.5

1.0

0.5

806040time, t (sec)

200.0.I-----.......;:;;;;.~~=:::::::::::::;:::::::::==----_;__---~~~

o

d:lnit\itp\cy-fiIes\UOFC9.XLSC-7

8/21/969:23 AM

Page 244: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density (%):

UOFC9Clean Sand42

Controlled Parameter:Initial Effective Stress (kPa):

Stress'304

Shear Stress vs. Shear Strain

...--------------!200-,...----------------------...,

150

-10 10 15 20 25

-1~1L..------------2DO--'-----------------------....

Shear Strain, r (%)

d:\nillitp\cLfiles\UOFC9XLSC-8

8/21/969:23 AM

Page 245: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC132015.26

Controlled Parameter:Initial Effective Stress (kPa):

Stress'300

~ I I r--I

J

0 I 100 200 3( 40

~ ~ ~ ~ ~

40

30

l 20:.... 10iiig: 0...(;) -10 0

J:t -----"I

Page 246: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC132015.26

Controlled Parameter:Initial Effective Stress (kPa):

Stress300

Shear Stress vs. Shear Strain

30

20

-9 -8 -7 -6 -5 -4 -3 -2 -1

10

2

Shear Strain, 1 (%)

-20

d:\nillitpIcLfiles\UOFC13XLS

C-IO8121/96 9:29 AM

Page 247: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC142015.18

Controlled Parameter:Initial Effective Stress (kPa):

Stress'200

oo

~

~ f.cI

~ I rr~50~0 100 200 400 600 70

~ ~ ~ ~ ~ lin ~ ~

30

-30

IV -10Go>

.J:.(/) -20

ii 20Cl.

:. 10..iiiIII

~

time, t (sec)

00

time, t (sec)

"""""" ",""",,""" f\ fI fI f\ f\ A~ y " 600 v ~0 100 200 300 400 500 7

54

,.....3e 2~=11~ 0en~ -1III.! -2(/)-3

-4

-5

700600500300 time, t (sec) 400200100

7000.,...----------------------------------+-----,

g 6000:J,.w 5000aj

§ 4000'0:> 3000~

Go>

~ 2000

i 100: l----....-~~~~======:::=;:::::::::=:::====::::::-"=----Jo

3.0,..-------------------------------------'"1

2.0 !-Ru -ElEliq I

1.0

700600500300 . 400time, t (sec)

2001000.0 i,-----;;;;;;;;;;;;:::::::::;~~~~====::=;======::;::=====:::~-.....J

o

d:\nitlitp\cy-files\UOFC14.xLS 8/19196 4:57 PM

C-ll

Page 248: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC142015.18

Controlled Parameter:Initial Effective Stress (kPa):

Stress'200

Shear Stress vs. Shear Strain

20

10

20-10-20-40

-40

-50

Shear Strain, 1 (%)

d:\nit\itplcy-fiIes\UOFC14XLSC-12

8/19/96 4:57 PM

Page 249: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry·Density (kN/m3

)

UOFC152015.25

Controlled Parameter:Initial Effective Stress (kPa):

Stress'200

40,....------------------------------------,30

'iia. 20;... 10~

gJ of-------++-+-----,f--+---I'--+-+-I-+---+--I--+--i-I---+--\---i--+-++--\--+-~-_1

~ _100 125

~:t 1

time, t (sec)

755025 100 \) 125

-------~~-:----- Itime, t (sec)

25

20......e 15?-

C 10iii"-- 5en"-II:!ou 0.s::C/)

50.

-;0 I

12510075time, t (sec)5025

7000 ...------------------------------------.,

16000

w 5000cr§ 4000'0:> 3000"­ell

~ 2000CI~ 1000

Iii 0 L------..,..---~~~~:===:::=:~:::::=::::;::::==::::::=::::-=----.jo

3.0,-------------------------------------..,2.5

2.0 1-Ru -ElEliq I1.5

12510075time, t (sec)5025

::: t ,..._;;;;;;;;;;;;;;;;;;;;~;;;;;;;;;;;;~;~-:f::~~--J---J0.0o

d:\nit\itp\cLfiles\UOFC15XLSC-13

8/20/96 7:35 AM

Page 250: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC152015.25

Controlled Parameter:Initial Effective Stress (kPa):

Stress'200

Shear Stress vs. Shear Strain

r-------------3Q-:---------------------------,

20

10

l::s. -10..iiienEc;;...IIIs:;en

-5

-10

o 5 10 25

d:\nit\itplcLfiles\UOFC15.xLS

30

Shear Strain, r (%)

C-148/20/96 7:35 AM

Page 251: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC174516.18

Controlled Parameter:Initial Effective Stress (kPa):

Stress .203.4

50 -r---------------------------------------,40

iii'30a.::!. 20..iii 10~ 0+--------+--\---I---\--J+---+--+---\--f+----'\---I---\----+--------1t5 -100 80 100

!~l-----_-_---__-_1time, t (sec)

6-r-------------------------------------...,.., 4;f.~

:>0-

r: 2';;..;):a 0 +--------+'e:.-.~-+---'''''''__''--+-~---,f---'',,---fi---'<---i--+---+--------f

Q) 0 20 40 80 100

~ :t 1

time, t (sec)

4000 -r------------------------------::----------..,

1008060time, t (sec)4020ol----~~~~~::==---_I__---_I__--_J

o

~;; 3000~E::l"6 2000::-...Q)Q.

Eil 1000..CIlCW

1.2 -r-------------------------------------.1.0

0.8

0.6

0.4

0.2

1-Ru -ElEliq I

1008060time, t (sec)40200.0 L.----~~~~~:::::===-~----_;__---J

o

d:\nitlitp\cLfiles\UOFC17.xLSC-lS

8/20/96 7:40 AM

Page 252: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (Ufo):Dry Density (kN/m3

)

UOFC174516.18

Controlled Parameter:Initial Effective Stress (kPa):

Stress·203.4

Shear Stress vs. Shear Strain

5432

I

-2-3

Shear Strain, "( (%)

d:\nit\itp\cLfiles\UOFC17.xlS 8/20/967:40 AM

C-16

Page 253: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC184516.18

Controlled Parameter:Initial Effective Stress (kPa):

Stress'190

~ ~ ~ ~ ~ ~i0 50

~1150

"~ ~ J~ Jv~50 I

I ~ ~ ~

25

20

l 15:.. 10...iii 5gj 0

~~ a

! :~1 1

Page 254: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

UOFC184516.18

Controlled Parameter:Initial Effective Stress (kPa):

StresS190

Shear Stress vs. Shear Strain

r---------------:2S...,.---------------------,

Shear Strain, r (%)

2 3 4

d:\nit\itp\cy-fiIes\UOFC18XLS C-18 8/21/96 9:25 AM

Page 255: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density(%):

UOFC23Clean Sand45.3

Controlled Parameter:Initial Effective Stress (kPa):

Stress'200

75

______----.JI

120

100

Ii 8011-=.. 50..

40viIII 20ClI..- 0CI)..III -200ClI.c

:fCI)

time, t (sec)

4.,.----------------------------------------,

75

.-.~';: 2C~(;)..ZO+-----k----'l--+---..J,-----l/-----'t--...,/-----\--...,/----+--\--f----\--+-----jti 0

75

7550

50time, t (sec)

time, t (sec)

time, t (sec)

25

25

!- Ru -ElEliq I

-2

10000

1 8000w~

E 6000:l'0:>

4000..ClIc.>.Cl 2000..ClICW

00

1.2

1.0

0.8

0.6

0.4

0.2

0.0o.

d:lnitlitp\cLfiles\UOFC23.xLSC-19

8/19/96 4:37 PM

Page 256: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Relative Density (%):

UOFC23Clean Sand45.3

Controlled Parameter:Initial Effective Stress (kPa):

Stress·200

Shear Stress vs. Shear Strain

.---------------'120...,.----------------------.

-3 -2

-60

Shear Strain, r (%)

3 4

d:lnit\itP\cLfiles\UOFC23.XLSC-20

8/19/96 4:37 PM

Page 257: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

APPENDIXD

LABORATORY DATA ON SOIL SAMPLES FROM THE NORTHRIDGE SITE,PERFORMED AT THE UNIVERSITY OF CALIFORNIA, BERKELEY

D-l

Page 258: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

t:! I ""

Tab

leD

.I-

Sum

mar

yo

fthe

Cyc

lic

Tri

axia

lTes

tDat

aon

Nor

thri

dge

Sam

ples

Per

form

edat

Uni

vers

ity

ofC

alif

orni

a,B

erke

ley

No.

Te

st10

Sa

mp

leO

r(%)

Ellq

(J/m

3 )F

C(%

)'Y

d(k

N/m

3 )C

on

tro

l(J

e'(k

Pa)

Fre

q.(H

z)L

oa

dS

hape

1B

TC

2CY

1N

orth

ridge

San

d58

.359

305

14

.5S

tres

s10

01

Sin

usoi

dal2

-wav

2B

TC

2CY

2N

orth

rldae

San

d78

.42

24

75

15.5

Str

ess

100

1S

inus

oida

l2-w

av

3B

TC

3CY

1N

orth

rldae

San

d82

.351

465

15.7

Str

ess

100'

1S

inus

oida

l2-w

av

4B

TC

3CY

2N

orth

ridge

San

d89

.938

135

16.1

Str

ess

100

1S

inus

oida

l2-w

av

5B

TC

3CY

3N

orth

rldae

San

d97

.236

156

516

.5S

tres

s10

01

Sin

usoi

dal2

-wav

6B

TC

4CY

1N

orth

rldae

San

d93

.778

745

16.3

Str

ess

100

1S

inus

oida

l2-w

av

7B

TC

4CY

2N

orth

ridge

San

d10

0.0

6647

51

6.7

Str

ess

100

1S

inus

oida

l2-w

av

8B

TC

6CY

1N

orth

ridae

San

d35

.23

20

65

13.5

Str

ess

100

1S

inus

oida

l2-w

av

Tes

tR

esul

tsF

ollo

win

gth

eS

eque

nce

ofT

est

!D's

are

Atta

ched

.

Page 259: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC2CY1514.51

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

50,-------------------------------------....,

l 25=-..Ii"~ 0+-k------~----_t__rL-----~""'""----_t_~"'-----------__I

en 0 3

):1 1

time, t (sec)

/r '\\ 1 / l ~ I 3

J )I

time, t (sec)

30,----------------------------------------,20

,...~ 10:-

.5 O-l----------.",,---_t_--f-------+-----+---I------------1III

i -10 to.c -20(I)

-30

-40 -------------------------------------'

12000

110000war 8000E::::IC 6000:>...IV 4000Q.>.l:l 2000IVCW

00

2.0

(time, t (sec) 2

-

3

1.5

1.0

0.5

I-Ru-ElEfiq!

32time, t (sec)

0.0 ~._~ tI!!- -----------+_------------!o

d:\nit\itp\cy-files\BTC2CY1.xLSD-3

8/21/96 8:39 AM

Page 260: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC2CY1514.51

Controlled Parameter:Initial Effective Stress (kPa):

Stress·100

Shear Stress vs. Shear Strain

,.....----------------------3,~-----------__,

20

10

-30 -20

-30

Shear Strain, '1 (%)

20

d:\nit\itp\cy-files\BTC2CY1.xLSD-4

8/21/96 8:39 AM

Page 261: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

)

BTC2CY2515.5

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

1\ 1\ {\ 1\ 1\ 1\ f\

(1\ II Ii J\ )', A "

~ J ~ ~~ l ~ ~ ~ ~0 15 2

V vv V V

20l:.. 10...fA! 0- 5

i :t --=-~------Itime, t (sec)

30

r- r- n ~~

,......, ,..., ,-,

,--r-r"""""""" ),....., r-

,...., r-

r-,--,/I

n0 U lJ

U~ ~ l 10 15 20 2

'-' '-' u ~ J '-' ~ '-' '-' u '-''-' '-' w '-'

30

C 10E;;... 0Ie 5

~ ::1 ---J1

Page 262: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC2CY2515.5

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

Shear Stress vs. Shear Strain

r-------------2!5-;----------------------,

20

L..------------3,Q-l------------------------'Shear Strain,., (%)

d:\nitlitp\cLfiles\BTC2CY2.xLSD-6

8/15/9610:35 AM

Page 263: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC3CY1515.7

Controlle~ Parameter:Initial Effective Stress (kPa):

Stress100

6

6

5

5

f

43time, t (sec)

time, t (sec)

time, t (sec)

2

6

_____1

40

30ti"

20a.=-.. 10IIiCIl 0III

~ _10 0

J:15

--.0e.... 0

c~ -5(;)"-IIIQl

c7i -10

-15

_ 8000

":E~w 6000OJ·

E::lo 4000>"-OJCo>.2000Cl..IIIC rw 0

0

1.5

1.0

0.5

!-Ru-EJEliq!

6543time, t (sec)

20.0 -+-O,--.......i£---+-------i__-----t-------+-------;-------l

o

d:\nit\itp\cy_files\BTC3CY1.xLSD-7

8/15/9610:40 AM

Page 264: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC3CY1515.7

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

Shear Stress vs. Shear Strain

30

l:!5...oCIl

l!!en -12..~.c

f/)

4

~jI

Shear Strain, r (%)

d:\nit\itP\cLfiles\BTC3CV1.xLSD-8

8/15/9610:40 AM

Page 265: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC3CY2516.12

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

40.....---------------------------------------,30

ii'c. 20;.... 10en:g Ot'--+-r-+--H----1~_+__+_+/'--+__f__+---ff_+__+__\-ff_+_+-'r__+f__+-f__+__+t_-----t

~ _100 14

~~1 1

time, t (sec)

10 -r--------------------------------------,'""" 5e:-C Ot--r--r--'1--!f-f--I-_+-+i---t--t--t---l!-/--t--t--f--t+--t--f--+---H---j-+-_+-+1-----1

1::I 6_8 'I_ltime, t (sec)

1412108642O.;-......~--_----_I_----_I_----_;_---- __----_+-----I

o

_ 15000.....--------------------------------------,

!waj 10000E::r"S:>

time, t (sec)

4-r------------------------------------,3

2

I-Ru-ElEliql

1412108time, t (sec)

642

o ~.O"-iil-----t------t------;-----__-I----__;.------+-----!o

d:\nit\itp\cy-files\BTC3CY2XLSD-9

8/15/96 10:45 AM

Page 266: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC3CY2516.12

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

·30

Shear Stress vs. Shear Strain

Shear Strain,., (%)

6

d:\nitlitp\cy_fiIes\BTC3CY2.XLS

D-IO8/15/96 10:45 AM

Page 267: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

) ,

BTC3CY3516.55

Controlled Parameter:Initial Effective Stress (kPa):

Stress'100

, ~

(I ~ 111 II ~iI

~o ~ ~ ~ ~~ ~ ~,

0 10 40 5

~ ~ l

40

30

l 20:.... 10~

:fi 0..Ci) -10 0

! :i ~~---------'Itime, t (sec)

r. n n.r nr nnr ~ roUU~l

\'j

~ I ~ ~I'

10 30 40 5

U ~U ~~ ~ U

""' 5e,...c 0

i:::1 1

0

10

time, t (sec)

5040302010

_ 60000 -r-------------------------=or--,1war 40000E::J"0::>

~ 20000>.El

~ 0 l-~=:::::::::=----_l__----_+__----_+__---~o

time, t (sec)

2.0.,.-------------------------,

1.5 !-RU -ElEliq I

:: ~~~mWtMr1M~0 U,0.0

o 10 20 time, t (sec) 30 40 50

d:lnitlitp\cLfifes\8TC3CY3.XLSD-ll

8/15/96 10:48 AM

Page 268: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC3CY3516.55

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

1~..IiUl

~en -12...10

l!en

d:\nit\itp\cLfiles\BTC3CY3XLS

Shear Stress vs. Shear Strain

30

-10

~~-30

Shear Strain,"( (%)

D-12

8

8/15/9610:48 AM

Page 269: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC4CY1516.35

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

~ ~ ~ ,~ II

0

J

10 0 1 30

~ ~ V

40

30

"i 20:... 10iii~ 0"-

US -10 40

~:i ~~ 1time, t (sec)

10,..-----------------------------------.,

,... 5'#........~

r£ 0-f-<~--=''"""='""'<:7"'''<'7"'<::7"<:_7"'\"7"<"""irr"c,........,"'''''".,...,....~....,...,....,..,...1''''n'''l_lf'T_f':_++_f+_H_1_H_++_\_H:+t_+++_H1_H++----__1

1::1 1time, t (sec)

403020time, t (sec)

10

oL-~~::::::::::::::==___+_--___t_--_Jo

...ClJ

~ 5000ElClJcW

_.20000.,-----------------------------------..,

lw 15000ojE::J'0 10000:>

2.5 -r----------------------------------.......,2.0 1-Ru -ElEliq I1.5

1.0

10 20time, t (sec)

30 40

d:lnit\itp\cLfiles\BTC4CY1XLS 8/15/96 10:53 AM

D-13

Page 270: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC4CY1516.35

Controlled Parameter:Initial Effective Stress (kPa):

Stress·100

:.:!...iiiCIl

f!en -12..<aCIl.c(/)

Shear Stress vs. Shear Strain

Shear Strain, "{ (%)

6

d:\nit\itp\cy-fiJes\BTC4CY1.XLS

D-148/15/96 10:53 AM

Page 271: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test I.D.:Fines Content (%):Dry Density (kN/m3

)

BTC4CY2516.72

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

30

Iv

40...-----------------------------------.....i: I A A A ! I A! r ~ I A A A A

~ 1~ -f-l-IH--H-+--t-H---H--H-H--+-H-HH-++-H-f i--+-++++-++-+-+-+-\---J!--J-iI-1\ +++-+-+\-++-H--t-++--H--\~

!~I'~ ",",","~b , ,"" ~ J ~ ~ ,time, t (sec)

,...., ,-

r r r1nr"..,

~ rr r n ,r " "..., r

o U~U ~uv '--' '"" v v v J'"" v

'-'

10

,.... 5~'-';0-

rE 0

~ -51 30

1

j.lO

-15 ------------------------------------time, t (sec)

3020time, t (sec)10

35000 -r------------------------------------,~ 30000::!.II.!. 25000

CD

§ 20000o:>15000...

CD

~ 10000E'

~ 5aa:L~:::=~~==::= __;_----------_..,----------Jo

5-r------------------------------------,4

3

2

I-RU-EJEliq/

3020time, t (sec)10

o~~~~~~~~~o

d:\nit\itpl.cy-files\BTC4CY2XLSD-15

Sf15f9610:55 AM

Page 272: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC4CY2516.72

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

l:i!:-

t>

oCIl

Een -12...IIIGl.c(I)

Shear Stress vs. Shear Strain

30

Shear Strain, r (%)

6

d:lnit\itp\cy-files\BTC4CY2.xLS

D-168/15/96 10:55 AM

Page 273: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC6CY1513.51

Controlled Parameter:Initial Effective Stress (kPa):

Stress100

20,----------------------------------------,Iia. 10;...vi~ Ot'-~__i'--+__+__\"-t__t__+~r___+t__+__+-\___+___\___+-_\__+__+_fi'---+__+___+-7I?_-----__1

o 0 15

!:::1 ~------1time, t (sec)

3D ,-----------------------------------------,

20~ 10'"'":::- Oi-------------~-----------~----..,.__+_-----____j

:~15

1_0w

1time, t (sec)

1510time, t (sec)5O+----------~---------.._01!~~~~-----__1o

4DOO -r----------------------------------.,~Iii" 3000arE~2000:::-~

GlQ.

>- 1000E'GlCW

1.5,---------------------------------------,I-RU-ElEliql

1.0

0.5

0.0 /'-..o 5 time, t (sec) 10 15

d:\nit\itp\cy-files\BTC6CY1.xLS

D-178/15/9610:59 AM

Page 274: ENERGY-BASEDMETHOD FOR LIQUEFACTION POTENTIAL EVALUATION, PHASE I FEASIBILITY STUDY · 2009. 12. 3. · laboratory data. Even though the scope ofthe feasibility study did not permit

Test 1.0.:Fines Content (%):Dry Density (kN/m3

)

BTC6CY1513.51

Controlled Parameter:Initial Effective Stress (kPa):

Stress·100

Shear Stress vs. Shear Strain

10

5

-20 -10

-5

-10

-15

o 10 20 30

'"----------------------2()-'----------------JShear Strain, r (%)

d:\nit\itp\cUiles\BTC6CY1.xLSD-18

8/15196 10:59 AM