86
Óbuda University Power System Department The wind Dr. Péter Kádár Óbuda University, Power System Department, Hungary [email protected]

Energiagazdálkodás I. konz

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Óbuda University Power System Department

The wind

Dr. Péter Kádár

Óbuda University, Power System Department, Hungary

[email protected]

Óbuda University Power System Department

Wind basics - Patra, 2012

Draft

• Wind basics

• Drivers of the wind energy application

• The energy of the wind

• Dynamic simulation

• Wind forecast

2

Óbuda University Power System Department

The wind… … forms the surface

Wind basics - Patra, 2012 3

Óbuda University Power System Department

The wind… … blows our hair

Wind basics - Patra, 2012 4

Óbuda University Power System Department

The wind… … brakes the signes

Wind basics - Patra, 2012 5

Óbuda University Power System Department

The wind… … moves the sailboats

Wind basics - Patra, 2012 6

Óbuda University Power System Department

The wind… … destroys the forests

Wind basics - Patra, 2012 7

Óbuda University Power System Department

The wind… … forwards the snow

Wind basics - Patra, 2012 8

Óbuda University Power System Department

The wind… … blows the flag

Wind basics - Patra, 2012 9

Óbuda University Power System Department

The wind… … lifts our kite

Wind basics - Patra, 2012 10

Óbuda University Power System Department

The wind… … dries our cloths

Wind basics - Patra, 2012 11

Óbuda University Power System Department

And the wind… …bends the trees

Wind basics - Patra, 2012 12

Óbuda University Power System Department

And the wind… …turns our propeller

Wind basics - Patra, 2012 13

Óbuda University Power System Department

…but nobody can see it!

Wind basics - Patra, 2012 14

Óbuda University Power System Department

Wind basics - Patra, 2012

Windrose

15

Óbuda University Power System Department

Wind basics - Patra, 2012

Windrose

16

Óbuda University Power System Department

Wind basics - Patra, 2012 17

Wind turbine and measurement system

anemometer

1 nap szélirány-időtartamai

(perc)

0

100

200

300ÉSZAK

ÉÉK

ÉK

KÉK

KELET

KDK

DK

DDK

DÉL

DDNY

DNY

NYDNY

NYUGAT

NYÉNY

ÉNY

ÉÉNY

Eloszlás sűrűségfüggvény

0

2

4

6

8

10

12

14

16

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6

szélsebesség m/s

Méré

sek d

ara

bszám

a

Óbuda University Power System Department

Measurements

Wind basics - Patra, 2012 18

Óbuda University Power System Department

Simple windrose

Wind basics - Patra, 2012 19

1 nap szélirány-időtartamai

(perc)

0

100

200

300ÉSZAK

ÉÉK

ÉK

KÉK

KELET

KDK

DK

DDK

DÉL

DDNY

DNY

NYDNY

NYUGAT

NYÉNY

ÉNY

ÉÉNY

Óbuda University Power System Department

Speed-Weighted windrose

• Direction?

• Average speed?

• Energy?

Wind basics - Patra, 2012 20

0

50

100

150

200ÉSZAK

ÉÉK

ÉK

KÉK

KELET

KDK

DK

DDK

DÉL

DDNY

DNY

NYDNY

NYUGAT

NYÉNY

ÉNY

ÉÉNY

Átlagos szélsebesség súlyozva 2006.09.07.

Óbuda University Power System Department

Wind basics - Patra, 2012

Main winter directions

21

Óbuda University Power System Department

Wind basics - Patra, 2012

Main yearly directions

22

Óbuda University Power System Department

Wind basics - Patra, 2012 23

Wind (speed) map for 10 m heights

Óbuda University Power System Department

Wind basics - Patra, 2012

Wind (speed) map for 75 m height

24

Óbuda University Power System Department

Wind basics - Patra, 2012

Daily wind course in diff. heights

A szélsebesség átlagos napi menete különböző magasságokban

Szeged, SODAR

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

óra

m/s

30 m 45 m 60 m 75 m 90 m 105 m 120 m 135 m 150 m

25

Óbuda University Power System Department

Wind basics - Patra, 2012

Upscaling

• Measurements or calculations on different heights

• Upscaling – continuous formula to define the windspeed in

other heights

• e.g. Hellmann equation

26

Óbuda University Power System Department

Wind basics - Patra, 2012 27

Local wind profile

200

175

225

250

275

300

325

350

375

5 10 15 20

Távolság [km]

Ten

gersz

int

fele

tti

ma

gass

ág

[m

]

NY

Hegyhátsál

200

225

250

275

300

350

375

325

Ten

gersz

int

fele

tti

ma

ga

ssá

g [m

]

3 m s-1

3 m s-1

4 m s-1

4 m s-1

5 m s-1

5 m s-1

6 m s-1

6 m s-1

É

Hegyhátsál

Óbuda University Power System Department

Wind basics - Patra, 2012 28

Global windforecast services

Óbuda University Power System Department

www.met.hu

Wind basics - Patra, 2012 29

Óbuda University Power System Department

On-line: http://www.idokep.hu

Wind basics - Patra, 2012 30

Óbuda University Power System Department

Historical data (http://www.met.hu/megfigyelesek/index.php?v=Budapest)

Wind basics - Patra, 2012 31

Óbuda University Power System Department

Wind basics - Patra, 2012 32

Global models

• Supercomputing

• 27 km -> 2,5 km cubes

• Differential equations

system

But

• Different measurement points

• Different application points

Forecast

Application

measurement

Terrestrial forms

Óbuda University Power System Department

Wind basics - Patra, 2012 33

Professional services

• Numerical weather forecasts

• Horizontal and vertical interpolation

• Wind Atlas Analysis and Application Program + PARK

modell

• Statistical elements

• Meteorological models (e.g. ALADIN, MEANDER), other

sources (ECMWF, MM5, HIRLAM, stb.)

• Result presentation by heights or by isobar?

Óbuda University Power System Department

Wind basics - Patra, 2012

Statistical approach

34

Óbuda University Power System Department

Weibull distribution

Wind basics - Patra, 2012 35

Óbuda University Power System Department

Wind basics - Patra, 2012 36

Local direction changes

Óbuda University Power System Department

Wind basics - Patra, 2012 37

Local speed changes

Speed changes + direction changes = turbulence

Óbuda University Power System Department

Turbulencies

Wind basics - Patra, 2012 38

A szélirány és -nagyság percenkénti változása (turbulencia)

-3,00

-2,00

-1,00

0,00

1,00

2,00

3,00

4,00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

perc

m/s

és r

ad

Szélsebesség változás (m/s)

Szélirány változás (rad)

Óbuda University Power System Department

Local wind speed tower measurements in a wind

park, during 4 min, in the range 6-10 m/s (data from: Mov-R H1 Szélerőmű Kft., Hungary)

Wind basics - Patra, 2012 39

Óbuda University Power System Department

Local wind speed tower measurements in a wind

park, during 4 min, in the range 3-6 m/s (data from: Mov-R H1 Szélerőmű Kft., Hungary)

Wind basics - Patra, 2012 40

Óbuda University Power System Department

Local wind speed tower measurements in a wind

park, during 4 min, over 10 m/s (data from: Mov-R H1 Szélerőmű Kft., Hungary)

Wind basics - Patra, 2012 41

Óbuda University Power System Department

Spread over of the wind energy application

Wind basics - Patra, 2012 42

Óbuda University Power System Department

Wind basics - Patra, 2012

Fig.Global cumulative installed wind capacity 1996-2010 Global Wind Energy Council 2010 (GWEC)

MW 43

Óbuda University Power System Department

Wind basics - Patra, 2012

Windpower capacity in Europe, 2006, MW

Forrás: www.ewea.org

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

MW

44

Óbuda University Power System Department

Wind energy application in Europe

45

EWEA, 2010

Wind basics - Patra, 2012

Óbuda University Power System Department

Yearly built in wind capacities in Europe

46

EWEA, 2010

2009

9581MW

onshore

582MW

offshore

Wind basics - Patra, 2012

Óbuda University Power System Department

Repowering

47 Wind basics - Patra, 2012

Óbuda University Power System Department

Some drivers of the windenergy business

• Growing demand for electricity

• EU directives

• Subventions

• Sustainability

• Reduction of CO2 emisson

• Green investment boom (ROI 4-5 years)

• Employment, etc.

Wind basics - Patra, 2012 48

Óbuda University Power System Department

Catching the wind energy

Wind basics - Patra, 2012 49

Óbuda University Power System Department

Simple energy modells

Wind basics - Patra, 2012

1. Tube model

v - speed, V - volume do not changes

P – pressure, T – temperature decreeases

Reality: v, V, P, T - changes

50

2. Deccelerating mass

v - speed, V - volume decreases

P – pressure, T – temperature do not changes

Óbuda University Power System Department

Wind basics - Patra, 2012 51

Power of the wind (moving mass model)

P = 0,5 ρ A v3 η where

• P = mechanical (~electrical) power of the wind turbine,

• ρ = 1,29 kg/Nm3 – density of the air,

• A = r2 π = d2 π / 4 area swept by the rotor blades (r is the length of the blade, d = 2 r diameter of the rotor),

• v = wind speed,

• η = efficiency of the rotor (theoretical max. is 60 %, practically 10-30 % ).

Óbuda University Power System Department

Wind basics - Patra, 2012

Obstacle and the flowing air

• a - turbulent

• b - laminal

• c – turbulent

(stall)

52

Óbuda University Power System Department

Wind basics - Patra, 2012 53

The possible energy conversion

• Fix bladed rotor

• TipSpeedRatio:

v blade edge / v air

• 100 %? no

Óbuda University Power System Department

Wind basics - Patra, 2012

Different rotors and blades

• P vs wind speed

• Different rpm

54

Óbuda University Power System Department

Wind basics - Patra, 2012 55

Practical characteristics of

wind turbine with control

Electronic control of

• Rotor speed

• Pitch

Óbuda University Power System Department

Wind basics - Patra, 2012 56

Factory characteristics

Óbuda University Power System Department

Typical characteristics

Wind basics - Patra, 2012 57

Szélturbina karakterisztikák

-500

0

500

1 000

1 500

2 000

2 500

0 5 10 15 20 25 30

Szélsebesség (m/s)

Kim

en

ő t

eljesít

mén

y (

kW

)

V-90-2MW

MM82

G90

V-90-1.8MW

E-48

MD77

E-70

Óbuda University Power System Department

Wind basics - Patra, 2012 58

Performance measurements

Óbuda University Power System Department

Dynamic simulation

Wind basics - Patra, 2012 59

Óbuda University Power System Department

Simulation logic

• Basic questions: „What happened if…”

• No yearly averages but

• Real wind measurements +

• Defined wind park locations +

• Wind turbine characteristics

• Result: MW curve during a long period (a year)

Wind basics - Patra, 2012 60

Óbuda University Power System Department

Investigated places, parks

Wind basics - Patra, 2012 61

Óbuda University Power System Department

Frequency of the output changes

Wind basics - Patra, 2012 62

Szélfarmok összesített kimenő teljesítmény-változásának

gyakorisága (10 perces)

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

170

000

150

000

130

000

110

000

90 0

00

70 0

00

50 0

00

30 0

00

10 0

00 0

-20

000

-40

000

-60

000

-80

000

-100

000

-120

000

-140

000

-160

000

Teljesítmény változás 10 percenként

Gy

ak

ori

g

Óbuda University Power System Department

Average wind speed vs monthly production

Wind basics - Patra, 2012 63

Havi szélsebesség átlag, és havi megtermelt energia kapcsolata

0,00

5000,00

10000,00

15000,00

20000,00

25000,00

30000,00

1,50 2,50 3,50 4,50 5,50 6,50 7,50

m/s

MW

h

Agárd

Folyás

Győr

Moson

Túrkeve

Óbuda University Power System Department

Daily energy production vs built in capacity

Wind basics - Patra, 2012 64

A napi átlagteljesítmény gyakorisága a beépített teljesítményre

vonatkoztatva

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%84%

80%

76%

72%

68%

64%

60%

56%

52%

48%

44%

40%

36%

32%

28%

24%

20%

16%

12%

8%

4%

0%

Beépített teljesítmény %-a

Gyako

riság

Óbuda University Power System Department

Monthly energy production

Wind basics - Patra, 2012 65

Havonta megtermelt energia

0

20 000

40 000

60 000

80 000

100 000

120 000

Janu

ár

Febru

ár

Már

cius

Ápr

ilis

Május

Június

Júliu

s

Aug

usztus

Sze

ptember

Októbe

r

Nove

mbe

r

Dece

mbe

r

Hónap

MW

h

Óbuda University Power System Department

Small wind

Wind basics - Patra, 2012 66

Kimenő teljesítmény a minimális energiatermelésű napon - 2005.11.02

(és előtte/utána 1 nappal)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0:0

0:0

0

1:4

0:0

0

3:2

0:0

0

5:0

0:0

0

6:4

0:0

0

8:2

0:0

0

10:0

0:0

0

11:4

0:0

0

13:2

0:0

0

15:0

0:0

0

16:4

0:0

0

18:2

0:0

0

20:0

0:0

0

21:4

0:0

0

23:2

0:0

0

1:0

0:0

0

2:4

0:0

0

4:2

0:0

0

6:0

0:0

0

7:4

0:0

0

9:2

0:0

0

11:0

0:0

0

12:4

0:0

0

14:2

0:0

0

16:0

0:0

0

17:4

0:0

0

19:2

0:0

0

21:0

0:0

0

22:4

0:0

0

0:2

0:0

0

2:0

0:0

0

3:4

0:0

0

5:2

0:0

0

7:0

0:0

0

8:4

0:0

0

10:2

0:0

0

12:0

0:0

0

13:4

0:0

0

15:2

0:0

0

17:0

0:0

0

18:4

0:0

0

20:2

0:0

0

22:0

0:0

0

23:4

0:0

0

Idő

kW

Túrkeve

Moson

Győr

Folyás

Agárd

Óbuda University Power System Department

Large wind

Wind basics - Patra, 2012 67

Kimenő teljesítmény a maximális energiatermelésű (és átlagteljesítményű) napon - 2005.12.30

(és előtte/utána 1 nappal)

0

100000

200000

300000

400000

500000

600000

0:0

0:0

0

1:4

0:0

0

3:2

0:0

0

5:0

0:0

0

6:4

0:0

0

8:2

0:0

0

10:0

0:0

0

11:4

0:0

0

13:2

0:0

0

15:0

0:0

0

16:4

0:0

0

18:2

0:0

0

20:0

0:0

0

21:4

0:0

0

23:2

0:0

0

1:0

0:0

0

2:4

0:0

0

4:2

0:0

0

6:0

0:0

0

7:4

0:0

0

9:2

0:0

0

11:0

0:0

0

12:4

0:0

0

14:2

0:0

0

16:0

0:0

0

17:4

0:0

0

19:2

0:0

0

21:0

0:0

0

22:4

0:0

0

0:2

0:0

0

2:0

0:0

0

3:4

0:0

0

5:2

0:0

0

7:0

0:0

0

8:4

0:0

0

10:2

0:0

0

12:0

0:0

0

13:4

0:0

0

15:2

0:0

0

17:0

0:0

0

18:4

0:0

0

20:2

0:0

0

22:0

0:0

0

23:4

0:0

0

Idő

kW

Túrkeve

Moson

Győr

Folyás

Agárd

Óbuda University Power System Department

Meteorological front in and out

Wind basics - Patra, 2012 68

Kimenő teljesítmény a front megérkezésekor

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

20:00:0

0

20:30:0

0

21:00:0

0

21:30:0

0

22:00:0

0

22:30:0

0

23:00:0

0

23:30:0

0

0:00

:00

0:30

:00

1:00

:00

1:30

:00

2:00

:00

2:30

:00

3:00

:00

Idő

kW

Túrkeve

Moson

Győr

Folyás

Agárd

Kimenő teljesítmény a front elvonulásakor

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

19:00:0

0

19:30:0

0

20:00:0

0

20:30:0

0

21:00:0

0

21:30:0

0

22:00:0

0

22:30:0

0

23:00:0

0

23:30:0

0

0:00

:00

0:30

:00

1:00

:00

1:30

:00

2:00

:00

Idő

kW

Túrkeve

Moson

Győr

Folyás

Agárd

Óbuda University Power System Department

The „problematic” days

Wind basics - Patra, 2012 69

Kimenő teljesítmény egy átlagos energiatermelésű napon - 2005.05.17

(és előtte/utána 1 nappal)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0:0

0:0

0

1:4

0:0

0

3:2

0:0

0

5:0

0:0

0

6:4

0:0

0

8:2

0:0

0

10:0

0:0

0

11:4

0:0

0

13:2

0:0

0

15:0

0:0

0

16:4

0:0

0

18:2

0:0

0

20:0

0:0

0

21:4

0:0

0

23:2

0:0

0

1:0

0:0

0

2:4

0:0

0

4:2

0:0

0

6:0

0:0

0

7:4

0:0

0

9:2

0:0

0

11:0

0:0

0

12:4

0:0

0

14:2

0:0

0

16:0

0:0

0

17:4

0:0

0

19:2

0:0

0

21:0

0:0

0

22:4

0:0

0

0:2

0:0

0

2:0

0:0

0

3:4

0:0

0

5:2

0:0

0

7:0

0:0

0

8:4

0:0

0

10:2

0:0

0

12:0

0:0

0

13:4

0:0

0

15:2

0:0

0

17:0

0:0

0

18:4

0:0

0

20:2

0:0

0

22:0

0:0

0

23:4

0:0

0

Idő

kW

Túrkeve

Moson

Győr

Folyás

Agárd

Óbuda University Power System Department

Correlation analysis of wind measurements

Wind basics - Patra, 2012 70

Óbuda University Power System Department

Wind basics - Patra, 2012

The problem

• Wind production forecast =

wind forecast + turbine caharactereistics

• There is no exact wind forecast for the wind turbine sites

• The forecast is crucial for the integration large wind parks

into the network

• The question: Can we forecast the generated energy based

on remote wind forecast?

71

Óbuda University Power System Department

Wind basics - Patra, 2012 72

The real task

• Not in that place

• Not in that time

• Not correct wind forecast

Forecast

Application

measurement

Terrestrial forms

Óbuda University Power System Department

Wind basics - Patra, 2012

The factory characteristics

• In the project we investigate a V-27 turbine at

“Bükkaranyos” and wind measurement ant “Folyás”

meteorological station.

• The figure shows a typical characteristics of wind turbines

(V27). This curve is measured in stationary mode, it does

not contain the effect of local turbulences, direction

changes and wind speed differences between the upper and

lower part of the (spinning) rotor measurements.

73

Óbuda University Power System Department

Wind basics - Patra, 2012

Characteristics based on pure measurements

?

74

Óbuda University Power System Department

Wind basics - Patra, 2012

Correlation?

The causes of the lack of correlation are

• The distance between the wind turbine and wind measurement

• The local wind turbulences that create difference in the wind blow at the two measurement points.

75

Óbuda University Power System Department

Wind basics - Patra, 2012

Other causes: turbulence

• The local wind turbulences that create difference in the wind blow at the two measurement points.

• fast (1-6 sec), the medium (1-6 min) and the slow (1-6 hour) changes.

• The fast and medium wind speed and direction changes are not handled (followed) by the turbine, it causes deviances.

• Turbine dynamics and measurement errors, etc.

– Wind speed changes

– Wind direction changes

– Wind speed changes measurement on minute scale

76

Óbuda University Power System Department

Wind basics - Patra, 2012

Distributional reorganization: a functional transformation

An ideal wind speed and power output measurement at the same

tower should give the factory characteristics of the wind turbine,

the two measurements correlate on the factory curve. If we prepare

the cumulative distribution function of both measurements, the

previous correlation is still valid and we get the same curve.

77

Óbuda University Power System Department

Wind basics - Patra, 2012

Back to the measurements (Bükkaranyos – Folyás: 33km)

78

Óbuda University Power System Department

Wind basics - Patra, 2012

Characteristics matching

Based on the above mentioned, the locally differently running curve is substituted by a globally similarly cumulated distribution function. We investigate not the specific synchronized moments but the same period, so we integrate the power into generated energy. This is an energy based characteristics retrieval. Figure shows characteristics similar to the factory characteristics (marked by dots).

79

Óbuda University Power System Department

Wind basics - Patra, 2012

Meaurement distances

Name of wind measurement

place

Distance of the wind turbine

“Bükkaranyos”

Folyás 33 km

Agárd 187 km

Túrkeve 98 km

Mosonmagyaróvár 263 km

Győr 238 km

80

Óbuda University Power System Department

Wind basics - Patra, 2012

Wind power generation forecast

See WinDemo!

81

Óbuda University Power System Department

Wind power generation forecast

Rough:

• Windspeed

• Charactereistic

Fine

• + temperature

• + pressure

• + humidity

• + direction

CORRELATION FACTOR!

Wind basics - Patra, 2012 82

Óbuda University Power System Department

Wind basics - Patra, 2012

Upscaling

• The previously shown remote upscaling factor is defined

by the energy production of a time period. Applying the

Hellmann equation (1) for the same tower (height 33 m,

measurements height 10 m), the exponent is 0,445, that is a

good experimental result.

83

Óbuda University Power System Department

Wind basics - Patra, 2012

Remote scaling

84

Óbuda University Power System Department

Wind basics - Patra, 2012

Conclusion

• It is not possible to retrieve the vendor given stationary winds speed–generation characteristics of the wind turbine based on the real-time measurements.

• The calculations above show that for real-time generation forecast purposes only close measurement/estimation points could be used.

• The wind forecasts work on worldwide global models, these are theoretically not capable of forecasting local turbulences – which cause the 0,5 - 5 min deviations in the power output.

• In spite of this fact, based on further measurements quite good energy production estimations can be done. We used the cumulative distribution function to define the ratio between remote wind speed measurement and the possible local wind speed at the turbine. 85

Óbuda University Power System Department

Wind basics - Patra, 2012

Thanks for the attention!

86