21
Human Vision Model to Predict Observer Performance: Detection of Microcalcifications as a Function of Monitor Phosphor Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD Michael Engstrom, BS

Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

  • Upload
    lyris

  • View
    59

  • Download
    4

Embed Size (px)

DESCRIPTION

Human Vision Model to Predict Observer Performance: Detection of Microcalcifications as a Function of Monitor Phosphor. Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD Michael Engstrom, BS. Acknowledgments. - PowerPoint PPT Presentation

Citation preview

Page 1: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Human Vision Model to Predict Observer

Performance: Detection of Microcalcifications as a

Function of Monitor Phosphor

Elizabeth Krupinski, PhDJeffrey Johnson, PhDHans Roehrig, PhDJeffrey Lubin, PhD

Michael Engstrom, BS

Page 2: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Acknowledgments This work was supported by

a grant from the NIH R01 CA 87816-01. We would also like to thank Siemens for the loan of 1 of the monitors and MedOptics for 1 of the CCD cameras used in the study

Page 3: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Rationale• Digital mammography potential

– Improve breast cancer detection – CAD does not need digitization

• Display monitors should be optimized– Physical evaluation parameters– Psychophysical evaluation (JNDs)– Clinical evaluation radiologists

Page 4: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Rationale• Observer trials (ROC studies)– Require many images (power)– Require many observers (power)– Are time-consuming

• Predictive models may help– Simulate effects softcopy display

parameters on image quality– Predict effects on performance

Page 5: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

JNDmetrix Model• Computational method predicting

human performance in detection, discrimination & image-quality tasks

• Based on JND measurement principles & frequency-channel vision-modeling principles

• 2 input images & model returns accurate, robust estimates of visual discriminability

Page 6: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

JNDmetrix Model

sa mpling

proba bility

distance metric

optic s

Q norm

JN Dva lue

input images

frequency specificcontrastpyramid

oriented responses

transducerMasking - gain control

JNDMap

...

Page 7: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Display Monitors• 2 Siemens high-performance– 2048 x 2560 resolution– Dome MD-5 10-bit video

board– 71 Hz refresh rate– Monochrome– Calibrated to DICOM-14

standard• P45 vs P104 phosphor

Page 8: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Physical Evaluation• Luminance: 0.8 cd/m2 – 500

cd/m2)– Same on both

• NPS: P104 > P45• SNR: P45 > P104• Model input

– Each stimulus on CRT imaged with CCD camera

Page 9: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Phosphor Granularity

P45 Phosphor < P104 Phosphor

Page 10: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Monitor NPS

0.00 20.00 40.00 60.00Spatia l F requency (lp /m m )

10.00

100.00

1000.00

10000.00

NPS

P104: R atio 4

P45: R atio 4

N yquist F requency of the C R T under test (3 .5 lp /m m )

Raste r F requency6.9 lp /m m

N PS of tw o S iem ens M onitors for ADU 127, one w ith a P104 phosphor, and one w ith a P45 phosphor.The data were norm a- lized to a C CD exposure of 10,000 AD U . Three CC D to C R T p ixel ratios w ere used: 53:1, 8:1 and 4 :1.

P104:R atio 8

P 45:R atio 8

P104:R atio 53

P45: R a tio 53

Page 11: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Images• Mammograms USF Database • 512 x 512 sub-images extracted• 13 malignant & 12 benign Ca++

• Removed using median filter • Add Ca++ to 25 normals• 75%, 50% & 25% contrasts by

weighted superposition of signal-absent & present versions

• 250 total images • Decimated to 256 x 256

Page 12: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Edited Images

Original 75% Ca++ 50% Ca++

25% Ca++ 0% Ca++

Page 13: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Image Editing Quality

• 512 x 512 & 256 x 256 versions• 200 pairs of images– Original contrast only– Paired with edited version – Paired randomly with others

• 3 radiologists • 2AFC – chose which is edited

Page 14: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Editing Quality Results

Reader 512 x 512 256 x 256 1 47.5% 46% 2 57% 47.5% 3 39% 49.5% Average 47.83%

sd = 7.35 47.67% sd = 1.08

Page 15: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Observer Study• 250 images

– 256 x 256 @ 5 contrasts• 6 radiologists • No image processing • Ambient lights off• No time limits• 2 reading sessions ~ 1 month

apart• Counter-balanced presentation

Page 16: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Observer Study• Images presented individually• Is Ca++ present or absent•Rate confidence 6-point scale•Multi-Reader Multi-Case Receiver

Operating Characteristic*

* Dorfman, Berbaum & Metz 1992

Page 17: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Human Results

00.10.20.30.40.50.60.70.80.9

1

Mea

n Az

25%

50%

75%

100%

Over

all

P104P45

* * *

* P < 0.05

Page 18: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Model Results

02468

101214

JND

25% 50% 75% 100%

P104P45

* P < 0.05

**

* *

Page 19: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Correlation

R2 = 0.973

0.5

0.6

0.7

0.8

0.9

1.0

5 7 9 11 13 15

Model JND

Rad

iolo

gist

s' M

ean

Az

Page 20: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Summary• P104

– > light emission efficiency – > spatial noise due to granularity

• P45– > SNR

• Luminance – noise tradeoff• P45 > P104 detection performance• JNDmetrix model predicted well

Page 21: Elizabeth Krupinski, PhD Jeffrey Johnson, PhD Hans Roehrig, PhD Jeffrey Lubin, PhD

Model Additions•Eye-position will be recorded

as observers search images to determine if any attention parameters can be added to JNDmetrix model to improve accuracy of predictions