8
ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) Low-energy formic acid production from CO 2 using electrodeposited tin on GDE E.Irtem a , T. Andreu a,b, *, A. Parra a , M.D. Hernandez-Alonso c , S. García-Rodríguez c , J.M. Riesco-García c , G. Penelas-Pérez c , J.R. Morante a,b a. Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre, 1, 08930 Sant Adrià de Besòs, Catalonia, Spain. b. Universitat de Barcelona (UB), Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain. c. Repsol Technology Center, C/ Agustin de Betancourt s/n, 28935 Móstoles, Madrid, Spain. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI ...Cyclic voltammogram (20 mV s-1) on Sn-GDE in the filter-press cell in 0.5 M NaHCO 3 (50 mL min-1) increasing the amount of gas by CO 2

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • ELECTRONIC SUPPLEMENTARYINFORMATION (ESI)

    Low-energy formic acid production from CO2 using electrodeposited tin on GDE

    E.Irtema, T. Andreua,b,*, A. Parraa, M.D. Hernandez-Alonsoc, S. García-Rodríguezc, J.M.

    Riesco-Garcíac, G. Penelas-Pérezc, J.R. Morantea,b

    a. Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Jardins

    de les Dones de Negre, 1, 08930 Sant Adrià de Besòs, Catalonia, Spain.

    b. Universitat de Barcelona (UB), Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain.

    c. Repsol Technology Center, C/ Agustin de Betancourt s/n, 28935 Móstoles, Madrid, Spain.

    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2016

  • Table S1. Summary of the literature on Sn-GDE for CO2R in recent yearsDate,Author

    Electrodes Electrolytes j and time EWE or ECell Product (max efficiency)

    2016,This study

    Sn dep GDE, 10cm2, 3mg.cm-2,vs. DSA

    0.5M NaHCO3 at 25ºC /cath0,5M NaOH /anolyte10ml.min-1 CO2,

    7,7 – 10mA.cm-2, 4h – 7h

    -1,2 to 3Vcell 71% HCOOH & 22% CO at -1.05 VRHE

    2014,Wang, Qinian

    Sn on GDE, 7 cm2, 5mg.cm-2, 50wt%Nfvs. Pt sheet 1cm2

    0.5M KHCO3 at 25ml.min-1 /cath&anoly,30ml.min-1 CO2,

    18mA.cm-2, 0,5h

    -1,4 to -2,2VAgCl

    72,9% HCOOH at -1,8VAgCl

    2014,Alvarez

    Sn on GDE, 10cm2, 1,5mg.cm-2, 1:1%Nf volvs. DSA

    0.45M KHCO3 + 0.5M KCl /cath,1M KOH / anoly, 0,57 ml.min-1.cm-2

    40mA.cm-2, 1,5h

    -3.2 to -6.1Vcell, -1,54 to -2.55VAgCl

    70,5% HCOOH at -1,54VAgCl

    2014,Wu, Jingjie IV

    Sn spray on GDL, 4cm2, 0,67-6,55mg.cm-2, 20wt% Nfvs. Pt foil

    0.5M KHCO3 at 25ºC /cath&anoly,45ml.min-1 CO2,

    ˂ 30mA.cm-2, 0,5h

    -1,6VSCE 72% HCOOH at -1,6VSCE

    2013,Prakash& Olah

    Sn on GDE, 9cm2, 0.7 mg cm-1 over the GDL, 1:1% Nfvs. Pt wire

    0.5M NaHCO3 at 25ºC /cath&anoly,4ml.min-1 CO2,

    27mA.cm-2, 0,23h

    -1,6VNHE 70% NaHCOO at -1,6VSCE

    2013,Wu, Jingjie III

    Sn on GDE, 4cm2, 2mg.cm-2vs. Pt on GDE, 0,3mg.cm-2

    0.1M KHCO3 at 7ml.min-1 /cath&anoly,45ml.min-1 CO2,

    2,75mA.cm-2, 2h

    -1,2Vcell*

    *H2 in anode compartment (not H2O)

    64% HCOOH25% CO

    2011,Kanan & Chen

    Sn dep on Ti foil & Sn foil2cm2vs. Pt gauze,NOT FLOW CELL

    0.5M NaHCO3 ph 7.2 /cath0,5M NaOH /anolySELEMION /Anion exch. memb.,5ml.min-1 CO2,

    1,8mA.cm-2, 10h

    -0,7VRHE at ph 7,2(-1,3VAgCl)

    25% HCOOH -0,7VRHE ph7.260% CO>85% CO2 reduction

    2011,Lee & Machunda

    Sn dep GDE, 9cm2, vs. Pt plate

    n/a /cathH2 10 ml.min-1 + N2 90 ml.min-1 /anoly50ml.min-1 CO2,

    2mA.cm-2, 1h

    -1,6Vcell*

    *H2 in anode compartment (not H2O)

    12% HCOOH at -1.6V (cell)

    2007,Li & Oloman

    Sn dep on Cu wire mesh, big scale,

    0.45M KHCO3 /cath, 22mA.cm-2, -2.7 to -4.3Vcell

    91 to 63% HCOOH

    1987,Mahmood

    Sn on GDE, 3,2cm2, vs. Carbon rod

    50g/L Na2SO4 pH2,50-100ml.min-1 CO2

    66mA.cm-2, 1,05h

    -1,8VSCE 57% HCOOH at 1,8VSCE

  • Figura 12 Imágenes SEM de muestras de Toray Carbon Paper TGP-H-60, después de electrodeposición de Sn a la densidad

    de corriente indicada en la figura, con una densidad de carga de 6 C cm-2

    1 mA cm-2 3 mA cm-2

    6 mA cm-2 30 mA cm-2

    Figure S1. FE-SEM images of Sn catalyst electrodeposited at different current densities. Total charge: 4.5 C cm-2.

  • 30 40 50 60 70 80

    Reference code: 00-008-0415 Carbon Graphite

    Sn-GDE

    Inte

    nsity

    (a.u

    .)Reference code: 01-086-2265Tin metallic

    2 (degrees)

    (312

    )(411

    )(4

    20)

    (321

    )(4

    00)

    (112

    )(3

    01)(2

    11)

    (220

    )

    (101

    )(2

    00)

    Figure S2. XRD pattern of Sn-GDE obtained by electrodeposition on C-Toray ® paper. Reference patterns of β-Sn and graphite were also included.

  • (a) (b)

    -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0-25

    -20

    -15

    -10

    -5

    0

    610

    35

    j (mA.

    cm-2)

    E (V vs. RHE)

    Glassy C (Ar) GDE (Ar) GDE (CO2) Sn-GDE (Ar) Sn-GDE(CO2) cycle1 Sn-GDE(CO2) cycle3 Sn-GDE(CO2) cycle5 Sn-GDE(CO2) cycle6 Sn-GDE(CO2) cycle10

    Eº (C

    O2/H

    COO-

    ) = -0

    .2 V v

    s RHE

    1

    -0.8 0.0 0.8 1.6

    -5

    0

    5

    j (mA

    cm-2)

    E (V vs. RHE)

    Sn-GDE (Ar) Sn-GDE (CO2)

    (c)

    -2.0 -1.6 -1.2 -0.8 -0.4-15

    -10

    -5

    0Sn/carbon eld [2]

    nano-SnO2/graphene [1]

    nano-SnO2/carbon black [1]

    pH 6

    .8

    j (m

    A.cm

    -2)

    E (V vs. SCE)

    EoSCE (CO2/HCOO

    -)

    pH 7

    .4

    [this study]edp-Sn/carbon fiber (without iR)edp-Sn/carbon fiber (with iR)

    Figure S3. (a) Overlapping of redox couple potential of tin after correction versus reversible hydrogen electrode potential (b) Current vs potential scans of Sn-GDE electrode inside the EC flow cell showing the stabilization of the native oxide layer in 0.5 M NaHCO3 electrolyte. 1 is the first and 10 is the last scan – conducted at 20 mV s-1 (c) the current vs. potential polarization curves under N2 and CO2 bubbling for Sn-GDE vs nanostructured SnOx and Sn (5 nm) catalyst results taken from Ref.[1, 2]. The red line is in EC Flow cell operated at 10mL min-1 CO2 gas flow through Sn-GDE having 10 cm2 geometrical electrode areas. The black line is after ohmic drop (iR) correction, R = 1.24 Ohms. Usually ohmic resistances below 1-5 ohms might not be significant in laboratory scale however our system works up to 0.[3]1 A of electrode current. Therefore 1.24 ohms create a big difference after ohmic drop subtraction from the electrode voltage.

    [1].S. Zhang, P. Kang and T. J. Meyer, Journal of the American Chemical Society, 2014, 136, 1734-1737.

    [2]S. Y. Choi, S. K. Jeong, H. J. Kim, I.-H. Baek and K. T. Park, ACS Sustainable Chemistry & Engineering, 2015, DOI: 10.1021/acssuschemeng.5b01336.

  • 20 40 60 80 100

    1

    2

    3

    4

    5

    6

    7

    8

    -0.95 V -0.85 V

    -0.75 V

    -1.05 V -0.65 V

    -1.15 V

    Ratio

    of

    ( H2 /

    CO

    )

    Electrolysis time (min)

    -0.55 V

    Figure. S4. Conversion efficiency of CO2 and H2O into syngas (CO:H2) in 0.5 M NaHCO3 electrolyte solution and 10 mL min-1 CO2 and electrolyte flow rate. Once the catalytic stability is reached after 20 minutes, 1:1, 1:1.5 and 1:2 ratio of CO to H2 gases can be obtained between -0.85, -0,75 and -0.65 V vs. RHE, respectively. At -1.15V vs. RHE, there is still a significant amount of CO gas (7.2 ± 5.5 %) however most of the coulombs passed through the cell spent most likely for HCOO- together with H2 evolution, indicator of a favoured intermediate path. Another interesting feature can be seen by syngas ratio of the experiment conducted at -0.95 V, which is getting closer to 1:1 until a rapid change arise in the end of first hour shifting 1:2 CO/H2 ratio.

  • -1.2 -1.0 -0.8 -0.6

    -15

    -10

    -5

    0

    j (m

    A cm

    -2)

    E (VRHE)

    0% 4% 10% 20% 40% 60% 80% 100% (g/L = 1) 100% (g/L = 2) 100% (g/L = 4)

    Figure S5. Cyclic voltammogram (20 mV s-1) on Sn-GDE in the filter-press cell in 0.5 M NaHCO3 (50 mL min-1) increasing the amount of gas by CO2 percentage in Ar gas flow (total flow 50 mL min-1). For G/L 2 and 4, 100 and 200 mL min-1 of gas flow was used. in-1) on Sn-GDE electrode

  • (a)

    0 1 2 3 4 5 60.01

    0.1

    1

    10

    Tota

    l am

    ount

    of F

    orm

    ate

    (mm

    ol)

    time (h)

    100 %(b)

    (c) (d)

    Figure S6 (a) Long term catalytic activity of Sn-GDE conducted under different current densities: 10, 5 and 1 mA.cm-2 (b) EDX scan and FE-SEM; images of Sn-GDE before and after electroreduction of CO2 in EC flow cell at -1.1 VRHE in 0.5 M NaHCO3 electrolyte while both gas and liquid were flowing at 10 mL min-1. There were not any Sulphur traces coming from Nafion additives that usually poison the catalytic sites which is well-known from PEMFC. Also we haven’t observed any significant exfoliation of the catalyst from the backbone of the gas diffusion electrode during the simultaneous flow of gas and liquid after the full cell test. The highest catalyst material loss was calculated to be less than 6.2% which is for the test conducted at 50 and 10 mL min-1 gas and liquid flow, respectively.

    [1] S. Zhang, P. Kang, T.J. Meyer, Journal of the American Chemical Society 136 (2014) 1734-1737.[2] S.Y. Choi, S.K. Jeong, H.J. Kim, I.-H. Baek, K.T. Park, ACS Sustainable Chemistry & Engineering

    (2015).[3] H. Li, C. Oloman, J. Appl. Electrochem. 35 (2005) 955-965.