27
Electron transfer optimisation in Electron transfer optimisation in organic solar cells organic solar cells James Durrant Centre for Electronic Materials and Devices Departments of Chemistry Imperial College London • Introductory remarks • Charge recombination vs. charge separation and transport • Interface engineering • Inhomogeneity

Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Electron transfer optimisation in Electron transfer optimisation in organic solar cellsorganic solar cells

James DurrantCentre for Electronic Materials and Devices

Departments of ChemistryImperial College London

• Introductory remarks• Charge recombination vs. charge separation and transport• Interface engineering• Inhomogeneity

Page 2: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Why organic PV now?• Political: global warming• Commercial: perception that Si based PV

may not have the potential for mass PV production

• Scientific: building up recent advances in– Organic electronics – LED’s and FET’s– Molecular electronics: supermolecular

photochemistry– Materials control and measurement on the

nanometer scale

Page 3: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Organic photovoltaic technologiesGlass substrate

ITOMixed Layer

Glass substrateITO

Mixed Layer

h+e-

Dense TiO2 (~ 40 nm)(Hole blocking layer)

Porous TiO2 (~100 nm)

Polymer (~50nm)

Device structure

ITO substrate

+ -

LightTiO2 nanoparticles

PEDOT

Au electrode

Silver paint

Dense TiO2 (~ 40 nm)(Hole blocking layer)Dense TiO2 (~ 40 nm)(Hole blocking layer)

Porous TiO2 (~100 nm)Porous TiO2 (~100 nm)

Polymer (~50nm)Polymer (~50nm)

Device structure

ITO substrate

+ -

LightTiO2 nanoparticles

PEDOT

Au electrode

Silver paint

Device structure

ITO substrateITO substrate

+ -+ -

LightLightTiO2 nanoparticlesTiO2 nanoparticles

PEDOTPEDOT

Au electrodeAu electrode

Silver paint Silver paint

dye sensitisedphotoelectrochemical Molecular thin film

Polymer/C60 blend

Organic/inorganic hybrid

Page 4: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Challenges• Stability

– liquid versus solid state, O2, water….

• Processibility– low temp processing on flexible substrates

• Efficiency– Improved red spectral response– Improved voltage and FF whilst maintaining high IQE– Efficiency versus processibility / stability issues

Haque et al. Chem Comm 2003

Page 5: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Molecular donor/acceptor dyads

0.1 1.0 10.0 100.0 1000.00.0

1.0

2.0

3.0

4.0

0.0 20.0 40.0 60.0 80.00.0

1.0

2.0

3.0

4.0

m∆

OD

Time (µs)

m∆

OD

Time (µs)

SS

SS

OC12H25

C12H25ON

C8H17

τ50% = 20 µs

SS

S SOC6H13

C6H13O

SS

NC8H17

τ50% = 0.8 µs

Page 6: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Kinetics in organic solar cellsPolymer

e-

Charge separation

Charge recombination

h+

C60

AlITO

electron collection

holecollection

e-

h+

transport

e- transport

Page 7: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Light driven charge separation

Time / ps-5 0 5 10 15 20 25

Elec

tron

inje

ctio

n yi

eld

0.0

0.5

1.0

10-6 10-5 10-4 10-3 10-2 10-1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

m∆O

D

Log10time / seconds

Ultrafastinjection Millisecond

recombination

Tachibana et al. J. Phys Chem 1996

TiO2

e-

Electroninjection

Charge recombination

Page 8: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Model of Reaction dynamics

CB

Transport S / S+

Injection

Trapping

S* / S+

Charge recombination

TiO2 Dye

Charge recombination dynamics controlled upon electron transport and interfacial electron transfer kinetics depending

upon metal oxide and sensitiser dye employed.

Page 9: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Molecular Control of Recombination

k ∝ exp(-βr) where β = 0.95 ± 0.2 Å-1

Ti

Ti

RuN

N

C

C

O

OO

O

r

Clifford et al JACS 2004

Page 10: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Signatures of transport in recombination dynamics

2.2%50

−∝ ntn = A t-0.25

1

10

100

1000

0.001 1 1000 1000000

t50% / nse

per D

ye+

Ethanol triflate

Non-linear dependence on electron density:

t50% ∝ n-1/α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

T ime (ns)

Rel

ativ

e de

nsity

of e

xcite

d dy

es S

(t)/S

0

0 mV

100mV

200mV

300mV 400mV

Dispersive (Stretched exponential) decaysStrong dependence on TiO2 EF

Haque et al. J Phys Chem B 1998, 2000, Nelson et al. Phys Rev B 1999, 2001

Page 11: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Recombination in MDMO-PPV/PCBM blends

polymer PCBM

π

Charge separation

Charge recombination

π∗

• Recombination kinetics dominated by slow, thermally activated power law decay resulting from

10-6 10-5 10-4 10-3 10-2 10-1

10-7

10-6

10-5

positive polaron trapping in polymer

Montanari et al. APL 2002 Nogueira et al. J Phys Chem B 2003

T = 220 K T = 298 K

∆O

D

time (s)

Page 12: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Recombination versus Transport in polymer / C60 devices

g(E)

10-8 10-7 10-6 10-5 10-4 10-3 10-210-7

10-6

10-5

10-4

10-3

∆ A

bsor

banc

e

75µJ data 4µJ data 0.22µJ data

0.25µJ

4µJ

75µJ

Time (s)

10-6 10-5 10-4 10-3

10-7

10-6

10-5

10-4

10-3

30V

60V

Cur

rent

Den

sity

/ ar

b. u

nits

Time / s

TAS studies of recombination TOF studies of transport

• Smooth lines from trapping/detrapping model with same dos• Same microscopic model explains both recombination and

transport• Open question of benefit of traps

Page 13: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Recombination versus transport in dye sensitised solar cells

Transport dynamics

Recombination to redox couple

Recombination to dye cations

TiO2 200µs 10ms 600µs

SnO2 300ns 9µs ~ 600ns

Cur

rent

Den

sity

/ A

cm-2

0.0 0.2 0.4 0.6 0.8-0.002

0.000

0.002

0.004

0.006

J sc

VocVoltage/V

TiO2

SnO2

SnO2/MgO

Cur

rent

Den

sity

/ A

cm-2

0.0 0.2 0.4 0.6 0.8-0.002

0.000

0.002

0.004

0.006

J sc

VocVoltage/V

TiO2

SnO2

SnO2/MgO

CB

Transport S / S+

Injection

Trapping

S* / S+

Recombination

TiO2 Dye

I-/I3-

Regeneration

Page 14: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Charge separation versus recombination

102 104 106 108 1010 10120.0

0.2

0.4

0.6

0.8

Mon

ochr

omat

ic E

ffic

ienc

yCharge separation rate / s-1

Two level system numerical model of organic solar cellBased on assumption that electronic coupling for charge separation and recombination scale proportionally.

J.Nelson et al.Phys.Rev.B 2004, Appl.Phys.A 2004

J

J

V/2 Jav

Jav

Jca

V/2

Page 15: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Charge separation in dye sensitised solar cells

100 101 102 103 104 105

0.0

0.5

1.0

(ii)

(i)

(ii)

(i)

Inje

ctio

n Yi

eld

time / picoseconds

Dye sensitised film

Solar cell

Haque et al. JACS 2004

Page 16: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Dynamics versus Device function

Electrolyte Jsc/mAcm-2 Voc /Volts η / % τ50%(inj) τinit(rec)+Li+ 16.8 0.51 5.5 ~10 ps 20 ms+Li+/tBP 16.3 0.63 7.25 ~150 ps 100 ms+tBP 7 0.73 3.75 ~ 1 ns 400 ms

Optimised device:• Injection just sufficient to compete with excited state decay to ground• Allows minimisation of recombination losses

Page 17: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

CB /

trap

states

2

1

TiO2 Dye

I- / I3-

hv

3

D*/D+

D/D+

2

1

TiO2 Dye

I- / I3-

hv

3

D*/D+

D/D+

Influence of electrolyte composition upon density of conduction band / trap states in TiO2

Electrolyte B: No Li+

• Slow Electron Injection (1)

• Slow Charge Recombinationrates (2) & (3)

Electrolyte A: Both Li+ and 4-tert-butyl pyridine

• IntermediateElectron Injection rate (1)

• Intermediate Charge Recombination rates (2) & (3)

E

D/D

2

1

TiO2

CB /

trap

states

Dye

hv

3

I- / I3-

D*/D+

D/D++

Electrolyte C: No 4-tert-butyl pyridine

• Fast Electron Injection rate (1)

• Fast Charge Recombination rates (2) & (3)

Electrolyte control of interfacial dynamics

Optimum device performance: injection half-time ~ 150 ps

Electrolyte B+ tert-butyl pyridine

Electrolyte A+ tert-butyl pyridine and Li+

Electrolyte C+ Li+

Page 18: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Materials approaches to control of interfacial electron transfer dynamics

10-6 10-5 10-4 10-3 10-2 10-1

0.00

0.05

0.10

0.15

0.20

0.25

m∆O

.D.

Time / Seconds

N NN N

N NN N

CH3

CH3

H3C

H3C

N NH3CO

SO3Na

HOA

B

a b

c d

a b

c d

Al2O3coated

Uncoated

10-6 10-5 10-4 10-3 10-2

0

1

2

3

m∆O

D

Time / Seconds

TiO 2 MFHTM

DFHTM

Dye

TiO 2 MFHTM

Li + - DFHTM

Dye

+ Li+- Li+

10-6 10-5 10-4 10-3 10-2

0

1

2

3

m∆O

D

Time / Seconds

TiO 2 MFHTM

DFHTM

DyeTiO 2 MFHTM

DFHTM

Dye

TiO 2 MFHTM

Li + - DFHTM

Dye

+ Li+- Li+ N N

OCH3 OCH3

n

O

OO

O

O

OO

O

Li+ Li+

Li+- DFHTM

Haque et al.Adv Mat 2004

Haque et al. Adv Func Mat2004

Palomares et al. JACS 2003

Page 19: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

HeterosupramolecularPhotochemistry

TiO2

picoseconds

nanoseconds Supramolecularcontrol of recombination dynamics

~ 1 s

Page 20: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Distance control: supersensitiserfunction

1E-6 1E-5 1E-4 1E-3 0.01 0.1 10

1

N719 Pump:550nm, Probe:800nm N845 Pump:516nm, Probe:850nm

∆O.D

. (no

rmal

ized

)

Time [s]

N

N

N

NRu

NN

CSC

S

HOOC

HOOC

COOH

COOH

NN

N

NRu

NN

CSC

S

HOOC

HOOC

O

N

OCH3

OCH3

HOMO calcs:Increase in distance ~ 4 Å

e-

Hirata et al.Chem. Eur. J.2004

Page 21: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Influence of inhomogeneityWide bandgapsemiconductor

Adsorbed Sensitiser Dye

Electrolyte

S0 / S +

S* / S +

e-

Charge recombination

Electron injection

I-

e-

Dye re-reduction

/ I 3-

Inhomogeneous energetics result in non-exponential dynamics and make device optimisation much harder

∆inhomo

Page 22: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

1D* / D+

E

g(E)

<di>=0

d1

d2

g1g0g2

TiO2 Dye

Modelling electron injection energetics

Monte Carlo Simulation as detailed in:Tachibana et al. (2002) J. Photochem Photobiol A: ChemistryOnly fit parameters k(0) and ratio ∆/E0

100 101 102 103 104 105

0.0

0.5

1.0

(ii)

(i)

(ii)

(i)

Inje

ctio

n Yi

eld

time / picoseconds

( ) ( ) ( )( ) ( ) ⎟⎟

⎞⎜⎜⎝

⎛==

02

2 2exp00

0Edk

VdV

kdk iii Inhomogeneous broadening

∆inhomo ~ 0.15 eV film∆inhomo ~ 0.3 eV DSSC

g(E)∝ exp(E/E0)

Excited state decay

to ground

Page 23: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Hole transfer in solid state DSSC’s:

Valence Band

Conduction Band

S0 / S+

S* / S+

e-

Wide bandgap semiconductor

Adsorbed Sensitiser Dye

HTM/HTM+

e-

Hole transporting material

Dye re-reduction

Hole transfer ~ 300 ps(Another example of kinetic redundency!)Hole transfer controlled by thermodynamics not kinetics

N N

OCH3

H3CO

OCH3

OCH3

NN

OCH3

OCH3

OCH3

H3CO

Page 24: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Hole transfer yield as function of mean reaction free energy

-0.4 -0.2 0.0 0.2 0.40

20

40

60

80

100

Yie

ld o

f hol

e tra

nsfe

r / %

∆G(Dye-HTM) / eV

Homogeneous Model

Inhomogeneous Model

Distribution of D/D+ states

Vacuum Level

IP

+Em(HTM/HTM+)

Em(D/D+)

∆G(Dye-HTM) = Em(HTM+/ HTM) – Em(D+/ D)

Experimental data Inhomogeneous Model

N N

R2

R3

R1

R4

Haque et al . Chem Phys Chem (2003)

Page 25: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Minimisation of energetic inhomogeneity

-0.4 -0.2 0.0 0.2 0.40

20

40

60

80

100

Dye

rege

nera

tion

effic

ienc

y / %

∆G(dye-HTM)

ITO

/ eV

TiO2 Dye HTM / Li+

TiO2 Dye HTM

Li+

Li+

Li+Li+

Li+

Li+

Li+ Li+

Li+

Li+

ITO

- Li+

+ Li+

-0.4 -0.2 0.0 0.2 0.40

20

40

60

80

100

Dye

rege

nera

tion

effic

ienc

y / %

∆G(dye-HTM)

ITO

/ eV

TiO2 Dye HTM / Li+

TiO2 Dye HTM

Li+

Li+

Li+Li+

Li+

Li+

Li+ Li+

Li+

Li+

ITO

- Li+

+ Li+

ITO

/ eV

TiO2 Dye HTM / Li+TiO2 Dye HTM / Li+

TiO2 Dye HTM

Li+Li+

Li+Li+

Li+Li+Li+Li+

Li+Li+

Li+Li+

Li+Li+ Li+Li+

Li+Li+

Li+Li+

ITO

- Li+

+ Li+

Ionic screening by Li+ ions reduces inhomogeneity of hole transfer energetics

N N

O

OO

OO

OO

O

R2

R3

R1

R4Li+ Li+

2[(CF3SO2)2]-

N N

R2

R3

R1

R4

Page 26: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

Conclusions

• Exciting times for organic PV• Optimisation of electron transfer dynamics

in organic PV requires consideration of:– Recombination versus transport, and the role of

traps – Charge separation versus recombination and the

potential for interface engineering– Energetic inhomogeneities

Page 27: Electron transfer optimisation in organic solar cellsgcep.stanford.edu › pdfs › solar_workshop_10_04 › SolarDurrant... · 2005-05-31 · Electron transfer optimisation in organic

AcknowledgementsColleagues at Imperial College:Colleagues at Imperial College:Jenny Nelson, Jenny Nelson, DonalDonal Bradley, David Bradley, David KlugKlugSteffan Cook, Ana Flavia Nogueira, Ivan Montanari, Samantha HandaEmilio Palomares, Saif Haque, Narukuni Hirata, Alex Green, Hari Upadahyaya, John Clifford

Collaborations:Michael Gratzel (EPFL), Jan Kroon (ECN)Andrew Holmes (Cambridge / ICL), Serdar Sariciftci (Linz)Christoph Brabec (Siemens/Konarka), Nazario Martin (Madrid), Kees Hummelen (Groningen), Merck Chemicals, Dow Chemicals, Covion GmbH, Johnson Matthey Ltd.

FundingFunding::EPSRC, DTI, EU, BP