35
7/17/2019 Stock Optimisation http://slidepdf.com/reader/full/stock-optimisation 1/35 EMSE 388 – Quantitative Methods in Cost Engineering Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 194 Source: Financial Models Using Simulation and Optimization by Wayne Winston CHAPTER 16: PORTFOLIO OPTIMIZATION USING SOLVER PROBLEM DEFINITION: Given a set of investments (for example stocks) how do we find a portfolio that has the lowest risk (i.e. lowest volatility or lowest variance) and yields an acceptable expected return?  Harry Markowitz solved the above problem in 1950’s. For this work and other investment topics he received the Nobel Prize in Economics in 1991.  Ideas discussed in this session are the basis for most methods of asset allocation used by Wall Street firms.

Stock Optimisation

Embed Size (px)

DESCRIPTION

Stock Optimisation

Citation preview

Page 1: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 1/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 194Source: Financial Models Using Simulation and Optimization by Wayne Winston

CHAPTER 16:

PORTFOLIO OPTIMIZATION USING SOLVER

PROBLEM DEFINITION:

Given a set of investments (for example stocks) how do we find a portfolio thathas the lowest risk (i.e. lowest volatility or lowest variance) and yields an

acceptable expected return? 

•  Harry Markowitz solved the above problem in 1950’s. For this work and

other investment topics he received the Nobel Prize in Economics in 1991.

•  Ideas discussed in this session are the basis for most methods of asset

allocation used by Wall Street firms.

Page 2: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 2/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 195Source: Financial Models Using Simulation and Optimization by Wayne Winston

WEIGTHED SUM OF RANDOM VARIABLES

•  A fixed number of N investments (or Stocks) are available.

•  iS  : Random return during a calendar year on a dollar invested in investment

I, where i=1, …, N.

Examples:

•  0.10i s   = , dollar invested at the beginning of the years is worth $1.10 at the

end of the year

•  0.20i s   = − , dollar invested at the beginning of the years is worth $0.80 at the

end of the year

Definition:

•  i x : the fraction of one dollar that is invested in investment i. Note that:

Page 3: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 3/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 196Source: Financial Models Using Simulation and Optimization by Wayne Winston

,11 =∑=

 N 

ii x   N i xi   ,,1,0   =≥  

•   R : be the random annual return on our investments. Then

∑=

∗=n

i

ii   S  x R1

 

Note that:

•  Because the returns on our investments   iS  are random the annual return  R  

on our portfolio of investments, defined by ( ) N S S    ,,1 and the specified

weights ( ) N  x x   ,,1 is random as well. 

Page 4: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 4/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 197Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  The expected (or average) annual return for R can be calculated as: 

][][1

∑=

∗=n

i

ii   S  E  x R E  

WHY?

•  We know that if X is a random variable, a and b are constants and Y=a*X+bthat:

E[Y]=E[a*X+b]= a*E[X]+b

•  We know that if X and Y are random variables and Z=X+Y that: 

E[Z]=E[X+Y]=E[X]+E[Y]

Page 5: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 5/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 198Source: Financial Models Using Simulation and Optimization by Wayne Winston

WHAT ABOUT THE UNCERTAINTY IN OUR ANNUAL RETURN R?

(or What about the variance of our Annual Return R?)

•  We know that if  the returns on the investments iS  are independent random

variables that

][)(][

1

2∑=

∗=n

i

ii   S VAR x RVAR 

WHY?

• 

•  We know that if X is a random variable, a and b are constants and Y=a*X+b

that:

VAR[Y]=VAR[a*X+b]= a2*VAR[X]

Page 6: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 6/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 199Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  We know that if X and Y are independent random variables and Z=X+Y that: 

VAR[Z]=VAR[X+Y]=VAR[X]+VAR[Y]

BUT?

Can we reasonably say that the annual return iS   

are independent random variables?

Answer: NO! 

•  We know that if the market (e.g. Dow Jones Index) is in an upward trend,

that all stocks have a better chance of doing well.

•  We know that if the market (e.g. Dow Jones Index) is in a downward trend,

that all stocks have a higher chance of doing worse.

Page 7: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 7/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 200Source: Financial Models Using Simulation and Optimization by Wayne Winston

SO WHAT IS THE CORRECT FORMULA FOR THE VARIANCE OF THE

 ANNUAL RETURN R WHEN THE INVESTMENTS ARE DEPENDENT?

INTERMEZZO: COVARIANCE

Let X, Y be two random variables.

•  If X and Y are independent there is no relationship between X and Y, and:

VAR(X+Y)=VAR(X) +VAR(Y)

Page 8: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 8/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 201Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  If X and Y are positively dependent large values of X tend to be associated

with large values of Y

•  If X and Y are positively dependent small values of X tend to be associated

with small values of Y

•  If X and Y are negatively dependent large values of X tend to be associated

with small values of Y

•  If X and Y are negatively dependent small values of X tend to be associated

with large values of Y.

WHAT IS THE SIMPLEST RELATIONSHIP

THAT YOU THINK OF BETWEEN X AND Y? ANSWER: A Linear Relationship! 

Page 9: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 9/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 202Source: Financial Models Using Simulation and Optimization by Wayne Winston

Let X,Y be two random variables such that: Y=a*X+b

Y=a*X+b, a>0

X

Y

Large Values of X tend to be

associated with Large Values of Y

Small Values of X tend to be

associated with Small Values of Y

POSITIVE DEPENDENCE

Y=a*X+b, a<0

X

Y

Large Values of X tend to be

associated with Small Values of Y

Small Values of X tend to be

associated with Small Values of Y

NEGATIVE DEPENDENCE

Page 10: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 10/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 203Source: Financial Models Using Simulation and Optimization by Wayne Winston

CAN WE THINK OF A MEASURE IN THE SAME LINE OF THINKING AS E[X] 

 AND VAR[X] THAT “MEASURES” POSITIVE DEPENDENCE OR NEGATIVE

DEPENDENCE? WHAT ABOUT : COV(X,Y) = E[(Y-E[Y])(X-E[X])] 

E[X]

E[Y]

E[(Y-E[Y])(x-E[X])]

(-,-)= +

(+,+)= +

(+,-)= -

(-,+)= -

Page 11: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 11/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 204Source: Financial Models Using Simulation and Optimization by Wayne Winston

CONCLUSION :

•  Covariance is positive when there are more (+,+) points and (-,-) points then

(+,-) points and (-,+) points.

•  Covariance is negative when there are more (+,-) points and (-,+) points then

(+,+) points and (-,-) points.

THEREFORE:

Covariance is a measure of positive dependence or negative dependence.

If Y=a*X+b, what is the relationship between COV(X,Y)and the slope of the line a?

Page 12: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 12/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 205Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  E[Y]=a*E[X]+b

•  Y-E[Y]= a*X+b- a*E[X]-b=a*(X-E[X)

•  Cov(X,Y)=E[(Y-E[Y])(X-E[X])] =

E[a*(X-E[X])(X-E[X])] = a

a*E[(X-E[X])(X-E[X])] = a*Var[X]

or

( , )

( )

COV X Y a

VAR X =

 

Page 13: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 13/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 206Source: Financial Models Using Simulation and Optimization by Wayne Winston

Y=a*X+b, a>0

X

Y

Y=a*X+b, a>0

X

Y

^ ^

a =COV(X,Y)

VAR(X)

a =COV(X,Y)

VAR(X)

=

^^

^

∑=

−−−

n

i

ii   x x x xn   1

))((1

1

∑=

−−−

n

i

ii   x x y yn   1

))((1

1

PERFECT LINEAR RELATIONSHIP IMPERFECT LINEAR RELATIONSHIP

Best FitThrough

Linear

Regression

Page 14: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 14/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 207Source: Financial Models Using Simulation and Optimization by Wayne Winston

CONCLUSION:

•  If you have a set of points ),( ii   y x , i=1,…,n you can estimate positive

dependence or negative dependence by calculating COV(X,Y).

•  If you have a set of points ),( ii   y x , i=1,…,n you can estimate the slope of the

“linear relationship” by calculating a .

HOW CAN WE DISTINGUISH BETWEEN A PERFECT LINEAR

RELATIONSHIP AND AN IMPERFECT LINEAR RELATIONSHIP

GIVEN THE SET OF POINTS ),( ii   y x  i=1,…,n?

Page 15: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 15/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 208Source: Financial Models Using Simulation and Optimization by Wayne Winston

Let X,Y be two random variables such that

Y=a*X+b,

•  Cov(X,Y)= a*Var[X]

•  Var[Y]= a2*Var[X]

CORRELATION BETWEEN

TWO RANDOM VARIABLES

1)(**)(

)(*)(*)(

),(),(2

±=== X Var a X Var 

 X Var aY Var  X Var 

Y  X CovY  X Cor  

Page 16: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 16/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 209Source: Financial Models Using Simulation and Optimization by Wayne Winston

Y=a*X+b, a>0

X

Y

Y=a*X+b, a>0

X

Y

^ ^

a =COV(X,Y)

VAR(X)

a =COV(X,Y)

VAR(X)

^^

^

PERFECT LINEAR RELATIONSHIP IMPERFECT LINEAR RELATIONSHIP

Best FitThrough

Linear

Regression

COR(X,Y) = 1

,VAR(Y)>^,VAR(Y)>^ a2 VAR(X)^

a2 VAR(X)^

COR(X,Y) = < 1^ COV(X,Y)

VAR(X)

^

^*VAR(Y)

^

Page 17: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 17/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 210Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  If X and Y are dependent random variables

VAR(X+Y) = VAR(X) + VAR(Y) + 2*COV(X,Y)

CONCLUSION :

•  If X,Y are positive dependent variables the level of variation of X+Y is

amplified by the dependency.

•  If X,Y are negative dependent variables the level of variation of X+Y is

reduced by the dependency (the random variables tend to “cancel each

other out”).

BACK TO OUR ORIGINAL PROBLEM

Page 18: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 18/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 211Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  iS  : Random returns during a calendar year on a dollar invested in

investment I, where i=1, …, N.

•  Random returns iS  are dependent random variables

•  i x : the fraction of one dollar that is invested in investment i. Note that:

•   R  be the random annual return on our investments. Then

∑= ∗=

n

iii   S  x R 1  

1

1, N 

i

i

 x=

=∑   0, 1, ,i x i N ≥ =  

Page 19: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 19/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 212Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  The expected (or average) annual return for R can be calculated as: 

][][1

∑=

∗=n

i

ii   S  E  x R E  

•  The variance of the annual return for R can be calculated as: 

∑ ∑∑= ≠==

+∗=n

i

n

i j j

 ji ji

n

i

ii   S S Cov x xS Var  x RVar 

1 ,11

2),(][][

 

or

2

1 1 1,

[ ] [ ] ( , ) [ ] [ ]n n n

i i i j i j i j

i i j j i

Var R x Var S x x Cor S S Var S Var S  

= = = ≠

= ∗ +∑ ∑ ∑ 

EQUATIONS LOOK COMPLICATED!

Page 20: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 20/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 213Source: Financial Models Using Simulation and Optimization by Wayne Winston

INTERMEZZO: MATRIX - VECTOR MULTIPLICATION 

M N matrix:

 

 

 

 

=

nm N  M  M 

 N  M 

 N 

aaa

a

aa

aaa

 A

,1,1,

,1

2,21,2

,12,11,1

 M rows, N Columns

N-Vector (or N 1 matrix) :

 

 

 

 

=

 N  x

 x

 x   1

 

Page 21: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 21/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 214Source: Financial Models Using Simulation and Optimization by Wayne Winston

Matrix-Vector Product:

 

 

 

 

=

 

 

 

 

 

 

 

 

=

=

=

=

 j

 N 

 j

 j M 

 j

 N 

 j

 j

 j

 N 

 j

 j

 N 

nm N  M  M 

 N  M 

 N 

 xa

 xa

 xa

 x

 x

aaa

a

aa

aaa

 x A

1

,

1

,2

1

,1

1

,1,1,

,1

2,21,2

,12,11,1

 

(M N-Matrix)*(N-vector) =M-Vector

(M N-Matrix)*(N 1-Matrix) =M 1-Matrix

Page 22: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 22/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 215Source: Financial Models Using Simulation and Optimization by Wayne Winston

EXAMPLE :

 

  

 =

 

  

 

++

++=

 

 

 

 

 

  

 

36

20

4*53*42*2

4*33*22*1

4

3

2

542

321

 

VECTOR - MATRIX MULTIPLICATION

M N matrix:

 

 

 

 

=

nm N  M  M 

 N  M 

 N 

aaa

a

aa

aaa

 A

,1,1,

,1

2,21,2

,12,11,1

 M rows, N Columns

Page 23: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 23/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 216Source: Financial Models Using Simulation and Optimization by Wayne Winston

TRANSPOSED M-Vector (or M 

1 matrix) :

( ) M 

T  x x x   1=  

Vector - Matrix Product:

( )   =

 

 

 

 

=

nm N  M  M 

 N  M 

 N 

 M 

aaa

a

aa

aaa

 x x A x

,1,1,

,1

2,21,2

,12,11,1

1

 

 

  

 =   ∑∑∑

=== N  j

 N 

 j

 j

 N 

 j

 j j

 N 

 j

 j j   a xa xa x ,

11

2,

1

1,    

(Transposed M –Vector)*(M N-Matrix) =N-Vector

(1 M-Matrix)*(M N-Matrix) =1 N-Matrix

Page 24: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 24/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 217Source: Financial Models Using Simulation and Optimization by Wayne Winston

EXAMPLE :

( )   = 

 

 

 

542

321

54  

( ) =+++   5*53*44*52*42*51*4  

( )372814

Page 25: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 25/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 218Source: Financial Models Using Simulation and Optimization by Wayne Winston

MATRIX – MATRIX MULTIPLICATION: (M 

N-Matrix)*(N 

P-Matrix) =M 

P-Matrix

1,1 1,2 1, 1,1 1,2 1,

2,1 2,2 2,1 2,2

1, 1,

,1 , 1 , ,1 , 1 ,

 N P 

 N N P 

 M M N M N N N P N P 

a a a b b b

a a b b AB

a b

a a a b b b

− −

− −

=

 

1, ,1 1, ,2 1, ,

1 1 1

2, ,1 2, ,2

1 1

1, ,

1

, ,1 , , 1 , ,

1 1 1

 N N N 

 j j j j j j P 

 j j j

 N N 

 j j j j

 j j

 N 

 j j P 

 j N N N 

 j j M j j P M j j P 

 j j j

a b a b a b

a b a b

a b

a b a b a b

= = =

= =

=

−= = =

=

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

 

Page 26: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 26/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 219Source: Financial Models Using Simulation and Optimization by Wayne Winston

EXAMPLE:

=

 

 

 

 

 

 

 

 

65

43

21

542

321

 

 

 

 

 =

 

 

 

 

++++

++++

5039

2822

6*54*42*25*53*41*2

6*34*22*15*33*21*1

 

NOTE THAT:

(M N-Matrix)*(N P-Matrix) =M P-Matrix

EMSE 388 Q tit ti M th d i C t E i i

Page 27: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 27/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 220Source: Financial Models Using Simulation and Optimization by Wayne Winston

BACK TO OUR ORIGINAL PROBLEM:

2

1 1 1,

[ ] [ ] ( , ) [ ] [ ]n n n

i i i j i j i j

i i j j i

Var R x Var S x x Cor S S Var S Var S  = = = ≠

= ∗ +∑ ∑ ∑ 

HOWEVER INTRODUCING WEIGHT VECTOR:

 

 

 

 

=

 N  x

 x

 x  

1

 

 AND TRANSPOSE OF WEIGHT VECTOR;

( )n

 N 

T  x x

 x

 x

 x     1

1

=

 

 

 

 =

 

EMSE 388 Quantitative Methods in Cost Engineering

Page 28: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 28/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 221Source: Financial Models Using Simulation and Optimization by Wayne Winston

 AND VARIANCE – COVARIANCE MATRIX:

 

 

 

 

=

),(),(),(

),(

),(),(

),(),(),(

11

1

2212

12111

 N  N  N  N  N 

 N  N 

 N 

S S CovS S CovS S Cov

S S Cov

S S CovS S Cov

S S CovS S CovS S Cov

 

 AND REALIZING THAT: COV(Si,Si)=VAR(Si)

HOMEWORK: SHOW THAT ABOVE ASSERTION IS CORRECT!

2

1

[ ] [ ]n

i i

i

Var R x Var S  =

= ∗ +∑

1 1,

( , ) [ ] [ ]n n

i j i j i ji j j i

 x x Cor S S Var S Var S x x= = ≠

+ =

∑ ∑ ∑

EMSE 388 Quantitative Methods in Cost Engineering

Page 29: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 29/35

EMSE 388 – Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 222Source: Financial Models Using Simulation and Optimization by Wayne Winston

PROBLEM DEFINITION:

Given a set of investments (for example stocks) how do we find a portfolio that

has the lowest risk (i.e. lowest volatility or lowest variance) and yields an

acceptable expected return? 

•  iS  : Random return during a calendar year on a dollar invested in investment

I, where i=1, …, N.

•  i x : the fraction of one dollar that is invested in investment i. Note that:

1

1, N 

i

i

 x=

=∑   0, 1, ,i x i N ≥ =  

EMSE 388 – Quantitative Methods in Cost Engineering

Page 30: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 30/35

EMSE 388 Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 223Source: Financial Models Using Simulation and Optimization by Wayne Winston

•  The expected (or average) annual return for R can be calculated as: 

)(][][1

 x g S  E  x R E n

i

ii   =∗= ∑=

 

•  The variance of the annual return for R can be calculated as: 

)(][   x f   x x RVar   T 

==   ∑  

OPTIMIZATION PROBLEM:

Minimize : )( x f    

Subject to: %)(   r  x g   ≥

 

0, 1, ,i x i N ≥ =   1

1 N 

i

i

 x=

=∑

EMSE 388 – Quantitative Methods in Cost Engineering

Page 31: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 31/35

EMSE 388 Quantitative Methods in Cost Engineering 

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 224Source: Financial Models Using Simulation and Optimization by Wayne Winston

WHAT TYPE OF OPTIMIZATION PROBLEM IS THIS?

•  Variance – Covariance Matrix ∑ is known to be positive definite.

•  Objective function is a multidimensional quadratic function. Hessian Matrix of

∑ x xT 

 is: ∑  

•  Conclusion: Objective Function is Convex

•  Constraint function %)(   r  x g    −  linear function (and thus convex)

•  Constraint function 11

=∑=

 N 

i

i x  can be rewritten as:

1,1

11

≤≥   ∑∑==

 N 

i

i

 N 

i

i   x x

 

both of which are linear function ( and thus convex).

EMSE 388 – Quantitative Methods in Cost Engineering 

Page 32: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 32/35

g g

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 225Source: Financial Models Using Simulation and Optimization by Wayne Winston

CONCLUSION: OPTIMIZATION PROBLEM IS CONVEX OPTIMIZATION

PROBLEM AND HAS A UNIQUE GLOBAL OPTIMUM.

EXAMPLE:

EMSE 388 – Quantitative Methods in Cost Engineering 

Page 33: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 33/35

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 226Source: Financial Models Using Simulation and Optimization by Wayne Winston

AFTER OPTIMIZATION

EMSE 388 – Quantitative Methods in Cost Engineering 

Page 34: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 34/35

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 227Source: Financial Models Using Simulation and Optimization by Wayne Winston

SUPPOSE WE INCREASE THE REQUIRED EXPECTED RETURN, WHAT

HAPPENS TO THE STANDARD DEVIATION OF THE PORTFOLIO?

Required Return Stock 1 Stock 2 Stock 3 Port stdev Exp return

0.100 0 0 1 0.0800 0.100

0.105 1/8 0 7/8 0.0832 0.105

0.110 1/4 0 3/4 0.0922 0.110

0.115 3/8 0 5/8 0.1055 0.1150.120 1/2 0 1/2 0.1217 0.120

0.125 5/8 0 3/8 0.1397 0.125

0.130 3/4 0 1/4 0.1591 0.130

0.135 7/8 0 1/8 0.1792 0.135

0.140 1 0 0 0.2000 0.140

EMSE 388 – Quantitative Methods in Cost Engineering 

Page 35: Stock Optimisation

7/17/2019 Stock Optimisation

http://slidepdf.com/reader/full/stock-optimisation 35/35

Lecture Notes by Instructor: Dr. J. Rene van Dorp Chapter 16 - Page 228Source: Financial Models Using Simulation and Optimization by Wayne Winston

THE EFFICIENT FRONTIER

Efficient Frontier (Risk Versus Expected Return)

0.0500

0.1000

0.1500

0.2000

0.050 0.100 0.150 0.200

Expected Return

   S   t  a  n   d

  a  r   d

   D  e  v   i  a   t   i  o

  n