69
Electron Laser interaction System consists of Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron beam with either magnetic field, laser beam or both References: Classical Electrodynamics, Jackson, Ch. 9, 12, 14, Free Electron Lasers, C. H. Brau, Ch.1, 2 High energy free electron laser accelerator,E. D. Courant, C. Pellegrini, W. Zakowicz, Phys. Rev A 32(1985) 2813 Triveni Rao, USPAS 2013, Durham

Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Electron Laser interaction

System consists of

Relativistic electron beam

Magnetic field

Laser beam

Following section describes interaction of the

electron beam with either magnetic field,

laser beam or both

References:

Classical Electrodynamics, Jackson, Ch. 9, 12, 14,

Free Electron Lasers, C. H. Brau, Ch.1, 2

High energy free electron laser accelerator,E. D. Courant, C. Pellegrini, W.

Zakowicz, Phys. Rev A 32(1985) 2813 Triveni Rao, USPAS 2013,

Durham

Page 2: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 3: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

reacwll FBBc

vEe

dt

vdm

)(

Let us consider a system where relativistic electrons are

moving along a magnetic wiggler in the filed of a laser. Let

us further assume that the Poynting vector of the laser,

the electron propagation direction, and the wiggler axis

are parallel. The Lorentz equation of motion of the

electron, including the force of radiation reaction, ,can

be written as reacF

lE

12 )1( cv /

Is the electric field of the laser,

lB

wB

& are the magnetic field associated with the laser and the wiggler

respectively,

and Triveni Rao, USPAS 2013,

Durham

Page 4: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

For a transverse EM wave such as the laser beam,

lll EzEkB

reacwlzl FBEzEedt

vdm

ˆ1

)(

Triveni Rao, USPAS 2013,

Durham

Page 5: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

For

the laser field is not extremely strong

the radiation loss (due to ) is small compared to the

electron energy

Conservation of canonical transverse momentum

dictates

1 zT

constAAevmp wlTT )(Triveni Rao, USPAS 2013,

Durham

Page 6: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

226

2

)(3

2

c

e

dt

dP

The longitudinal component describes the change in the energy of

the electron and can be written as

dt

dPEve

dt

dmc rad

lT 2

Triveni Rao, USPAS 2013,

Durham

Energy exchange between the electron and laser beam

Electron to laser : FEL

Laser to electron: IFEL

Page 7: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Assume rate of change of radiative loss is zero: 0dt

dPrad

Assume a helical wiggler and a circularly polarized laser or planar

wiggler with linearly polarized laser. One can calculate the

transverse velocity vT of the electron in the magnetic field and the

scalar product of vT and El

lT Evedt

dmc

2

Courtesy:

E. D. Courant, C. Pellegrini and W. Zakowicz, Phys Rev A 32 (1985) 2813

R. B. Palmer J. Appl. Phys. 43, (1972) 3014

dt

d

cdz

d 1

Triveni Rao, USPAS 2013,

Durham

Page 8: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

iiz

eEdz

d cos

11

112

0

where E0 is the amplitude of the laser field, ά is the angle between

the particle and the z axis, Λ is the wiggler period, λ is the

wavelength of the laser and Φ is the relative phase of the particle

in the helix to the electric field of the laser.

If the wiggler is designed such that

cos

11

11then,

cos0E

dz

d

Triveni Rao, USPAS 2013,

Durham

Page 9: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Particles at

A: Max acceleration, but unstable

B: Medium acceleration, stable-slow ones speed up, fast ones slow down-IFEL condition- bunching, coherence

C: No acceleration

E: Medium deceleration, FEL condition Triveni Rao, USPAS 2013,

Durham

Page 10: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 11: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Snap shot of electron trajectory and electric field of laser for FEL

as they progress along one period of the wiggler

Courtesy: http://reu.physics.ucla.edu/common/papers/2007/affolter_matthew.pdf

Triveni Rao, USPAS 2013,

Durham

Page 12: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 13: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Spontaneous radiation in a wiggler

w

l

ct

wwNvt lwN

Triveni Rao, USPAS 2013,

Durham

Page 14: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

EM field can be assumed to be negligible and the radiated

intensity per unit solid angle per unit frequency can be

expressed as

d d

2

2

222

4dtenn

c

e

dd

Id c

rnti

22

w

l

2

221

2 mc

eB wwwl

Triveni Rao, USPAS 2013,

Durham

Page 15: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

2/

0

)(()(

cN

tilw

l dteI

Intensity Spectrum is given by

Line width is 1

wN

Triveni Rao, USPAS 2013,

Durham

Page 16: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

P. Emma, R. Akre et al. Nature Photonics 4, 641 - 647 (2010)

Example: LCLS X-Ray FEL

Page 17: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Table 1 | Design and typical measured parameters for both hard (8.3 keV) and soft (0.8–2.0 keV) X-rays. The ‘design’ and ‘hard’ values are shown only at 8.3 keV. Stability levels are measured over a few minutes.

Parameter Design Hard Soft Unit

Electrons Charge per bunch 1 0.25 0.25 nC Single bunch repetition rate 120 30 30 Hz

Final linac e2

energy 13.6 13.6 3.5–6.7 GeV

Slice† emittance (injected) 1.2 0.4 0.4 mm Final projected† emittance 1.5 0.5–1.2 0.5–1.6 mm

Final peak current 3.4 2.5–3.5 0.5–3.5 kA

Timing stability (r.m.s.) 120 50 50 fs Peak current stability (r.m.s.) 12 8–12 5–10 %

X-rays FEL gain length 4.4 3.5 "'1.5 m

Radiation wavelength 1.5 1.5 6–22 Å Photons per pulse 2.0 1.0–2.3 10–20 1012

Energy in X-ray pulse 1.5 1.5–3.0 1–2.5 mJ

Peak X-ray power 10 15–40 3–35 GW

Pulse length (FWHM) 200 70–100 70–500 fs

Bandwidth (FWHM) 0.1 0.2–0.5 0.2–1.0 %

Peak brightness (estimated) 8 20 0.3 1032 *

Wavelength stability (r.m.s.) 0.2 0.1 0.2 %

Power stability (r.m.s.) 20 5–12 3–10 %

*Brightness is photons per phase space volume, or photons s21 mm22 mrad22 per 0.1% spectral bandwidth. †‘Slice’ refers to femtosecond-scale time slices and ‘projected’ to the full time-projected (that is, integrated) emittance of the bunch.

Page 18: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 19: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 20: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: A. van Steenbergen et al. Phys Rev. Lett. 77 (1996), 2690

Triveni Rao, USPAS 2013,

Durham

Example of IFEL

Page 21: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

CO2 laser

EH11 mode stabilized

with in Rayleigh length

from entrance

2.8 mm ID, 0.6 m long

sapphire circular

waveguide

Triveni Rao, USPAS 2013,

Durham

Page 22: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Evidence of Acceleration

Triveni Rao, USPAS 2013,

Durham

Page 23: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Acceleration Linear in electric field of laser Triveni Rao, USPAS 2013,

Durham

Page 24: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: P. Musumeci et al., Proc. Of 2005 PAC P. 500 Triveni Rao, USPAS 2013,

Durham

Page 25: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

20 MeV (150%) energy gain

>70Mv/m gradient

>5% of particles trapped for

acceleration

Triveni Rao, USPAS 2013,

Durham

Page 26: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

E beam

Acceleration and Deceleration Electron bunching needed Triveni Rao, USPAS 2013,

Durham

Page 27: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Microbunching Triveni Rao, USPAS 2013,

Durham

Page 28: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Energy modulation in wiggler

http://www-scf.usc.edu/~kallos/Files/AAC04%20Presentation%20-

%20IFEL%20Buncher%20-%20Themos%20Kallos.pdf Triveni Rao, USPAS 2013,

Durham

Page 29: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Charge distribution after

transit- left hand side

faster e catch up with

right hand side slower e

Triveni Rao, USPAS 2013,

Durham

Page 30: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Further transport

Optimal

positioning of

next stage

Triveni Rao, USPAS 2013,

Durham

Page 31: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=APCPCS000737000001

000342000001&idtype=cvips&prog=normal: C. Sears et al. Proc PAC 07 WEXKI02 p. 1894

Triveni Rao, USPAS 2013,

Durham

Page 32: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Applications of Micro-bunching

Seeder for staged acceleration

Staged IFEL, ICA, LW

Seeder for FEL

Normal FEL at fundamental wavelength

High harmonic generation

Source of short bunch length electrons

Attosecond e beam generation

Source of coherent radiation

CTR, THZ (300 μm)

Triveni Rao, USPAS 2013,

Durham

Page 33: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: Y. Liu et al Phys Rev. Lett. 80, (1998) 4418 Triveni Rao, USPAS 2013,

Durham

Page 34: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Coherent transition radiation signal Triveni Rao, USPAS 2013,

Durham

Page 35: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: W. Kimura et al. Proc. Of 2003 PAC, 1909

Seeder for staged acceleration

Triveni Rao, USPAS 2013,

Durham

Page 36: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 37: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 38: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: C. Sung et al. Proc. Of 2005 PAC, P. 2812

Micro bunches 340 μm apart seed for THZ FEL

FEL SEEDER

Triveni Rao, USPAS 2013,

Durham

Page 39: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: L. H. YU et al. Science 289, (2000) 932

High Gain Harmonic Generator

Triveni Rao, USPAS 2013,

Durham

Page 40: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

A: Comparison of HGHG and

SASE

Spectral width of HGHG 15

nm,<< SASE (90 nm)

Amplitude of HGHG is >106

of SASE

B: Spectral distribution of

HGHG signal

Technique used to

generate VUV, X ray FEL

beams: BESSY, SDL @

BNL, LBL, UCB

Triveni Rao, USPAS 2013,

Durham

Page 41: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Source of radiation and use of radiation for

electron diagnostics

Courtesy: E. Saldin et al. Proc. Of PAC 07, P. 965

Use standard optical technique to measure beam parameters

Slice emittance, longitudinal distribution of short (100 fs) electron

bunch can not be measured by standard techniques generate

optical replica of the electron beam

Triveni Rao, USPAS 2013,

Durham

Page 42: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Attosecond electron beam generation

Triveni Rao, USPAS 2013,

Durham

Page 43: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: C. Sears et al. Phys. Rev. Spl. Topics AB, 11, (2008), 061301 Triveni Rao, USPAS 2013,

Durham

Page 44: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Opens up possibility of accelerating with high intensity Ti:Sa laser Triveni Rao, USPAS 2013,

Durham

Page 45: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Linear Thomson scattering: Laser counter

propagating to e beam

Assume the system to be the electrons moving in the EM field

of the laser. The transverse field of the laser is equivalent to

the wiggler with wiggler period equal to the periodicity of the

laser (is the length of the one period of the wiggler). Since the

laser and the electron beam are counter propagating, the

wavelength of the scattered radiation in the forward direction

(direction of motion of the electron) is now modified to

24

laser

l

Triveni Rao, USPAS 2013,

Durham

Page 46: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

The power radiated by a single electron interacting

with the laser beam is

0

2

0

2

03.21 Pr

rP e

s

0A

0 is the initial energy of the electron in units of its rest mass

er is the classical electron radius = 2.82*10-9 μm

0r is the spot size of the laser beam

2

000 5.21

l

raGWP

2

0

00

cm

Aea is the normalized peak amplitude of the vector potential

and is analogous to the wiggler strength parameter 0A

Courtesy: P. Sprangle, A. Ting, E. Esarey, and A. Fisher, J. Appl. Phys. 72, 5032 (1992). Triveni Rao, USPAS 2013,

Durham

Page 47: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

The total radiated power in practical unit can be given as

GWPMeVEAImZ

LWP bbl

R

T 0

2021011.2)(

0L

RZ

bI

bE

0P

is the laser pulse length,

is the Rayleigh length of the incident laser,

is the electron beam current in Amperes,

is the electron energy in MeV

is the laser power in GW

Triveni Rao, USPAS 2013,

Durham

Page 48: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

This radiation is emitted in a cone angle

0

1

The total width can be written as

2/1

2

2

4

4

24

1

E

E

rN bwT

The contribution to the spectral width of the radiation

comes from three sources: the finite number of wiggler

period , emittance of the electron beam

and the energy spread of the electron beam . lw LN /0 b

E

Triveni Rao, USPAS 2013,

Durham

Page 49: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: Triveni Rao, USPAS 2013,

Durham

Page 50: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 51: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: I. Pogorelsky et al PHYSICAL REVIEW SPECIAL TOPICS – AB, VOLUME

3, 090702 (2000)

e-:

60 MeV, 0.5 nC, 140 A, 3.5 ps,

2 mm mrad, 32 μm spot

Laser:

10.6 μm, 600 MW, 180 ps, lin.

Pol., 32 μm annular spot

Triveni Rao, USPAS 2013,

Durham

Page 52: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

λ = 1.8 Å

t =3.5 ps

n/pulse =2.8*107

npk =8*1018

Triveni Rao, USPAS 2013,

Durham

Page 53: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy:

http://pbpl.physics.ucla.edu/Research/Experiments/Beam_Radiation_Interaction/Thoms

on_Scattering/

Triveni Rao, USPAS 2013,

Durham

Page 54: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 55: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Nonlinear Thomson Scattering

When the strength of the laser field is large, nonlinear effects can

be seen.

Laser strength parameter a0 is defined as

a0 = eA0/mec2

= 0.85*10-9*λ(μm)*√I0(W/cm2)

a0 << 1:Linear Thomson scattering: radiation at

fundamental frequency

a0≈1, Nonlinear Thomson scattering: radiation at

harmonic frequencies Triveni Rao, USPAS 2013,

Durham

Page 56: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: M. Babzein et al. Phys . Rev. Lett. 96, 54802 (2006)

Triveni Rao, USPAS 2013,

Durham

Page 57: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 58: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 59: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-8057.pdf

Linear Thomson Scattering: Laser propagating

transverse to e- Beam

Similar to counter propagating, but

Wavelength of the emitted radiation is ½

Number of interacting electrons and photons is low

• Low signal- may be as low as 10-3 per interaction

•Need very high power laser

•Need large electron density

•Highly optimized laser transport

Triveni Rao, USPAS 2013,

Durham

Page 60: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

2

0

)()(

0,)(

),,()(

2

2

)(2

2

l

yyxx

llzz

eIzyxI lzz

l

lzz

l

Il,0 is a constant and the waist ω0 is at xl ,yl ,zl

Total laser intensity is given by

0,20, ltotl II

Laser Beam intensity:

Let the laser beam with Gaussian profile propagate along z. The

intensity at (x, y, z) is

Triveni Rao, USPAS 2013,

Durham

Page 61: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Electron Beam Intensity

2

2

2

2

2

2 )()()(

0,),,(z

b

y

b

x

b zzyyxx

be eIzyxI

In the same coordinate system, the intensity of electron beam with

a Gaussian dsitribution can be written as

Ib,0 is a constant, (xb, yb, zb) is the center of the electron beam and

σx, σy, and σz its size along x,y,and z respectively

Total electron beam intensity is

0,2/3

, bzyxtotb II

Courtesy: Triveni Rao, USPAS 2013,

Durham

Page 62: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

dze

zz

zze

zz

zze

zz

IIN

z

b

yl

bl

xl

bl

zz

ly

lyzz

yy

lx

lxzz

xx

l

bltot

2

2

22

2

22

2

)(

22

22)(

)(

22

22)(

)(2

0

0,0,

)(

)(

)(

)(

)(

Beams Overlap

Triveni Rao, USPAS 2013,

Durham

Page 63: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

2222

)()(

)()(

200,0,

2/3

)()(

2222

22

ylbxlb

zzzz

yyxx

zyxbltot

zzzz

e

IIN

ylbxlb

blbl

Triveni Rao, USPAS 2013,

Durham

Page 64: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Laser Requirements:

Wavelength: Significantly smaller than the e spot size

Minimum laser spot size set by diffraction limit

Power: Tens of MW

Efficiency ~10-3

Laser transport: Spot size diffraction limit

Rayleigh length > other transverse dimension

Damage threshold

Triveni Rao, USPAS 2013,

Durham

Page 65: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Typical Issue

Courtesy Triveni Rao, USPAS 2013,

Durham

Page 66: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Triveni Rao, USPAS 2013,

Durham

Page 67: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Laser Wire for e beam diagnostics

Courtesy: http://www.hep.ph.rhul.ac.uk/~kamps/lbbd/welcome.html#ScientificCase

Triveni Rao, USPAS 2013,

Durham

Page 68: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Courtesy: P. Tenenbaum, T. Shintake, SLAC Pub 8057

Triveni Rao, USPAS 2013,

Durham

Page 69: Electron Laser interactionuspas.fnal.gov/materials/13Duke/Session5_FEL.pdf · Relativistic electron beam Magnetic field Laser beam Following section describes interaction of the electron

Signal from Laser wire. λ= 350 nm, spot size 1μm, power10 MW

Triveni Rao, USPAS 2013,

Durham