Electrodynamic Certificate t7

Embed Size (px)

Citation preview

  • 8/2/2019 Electrodynamic Certificate t7

    1/17

    BIJU PATNAIK UNIVERSITY OF TECHNOLOGY

    ROURKELA

    ORISSA

    A Seminar Report on

    NANO GENERATOR

    Submitted by

    TAPAS RANJAN PRADHAN

    Regd. No.-0921294013

    Under the Guidance of

    Prof. D.K SAHOO

    DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

    RAAJDHANI ENGINEERING COLLEGE

    BHUBANESWAR-751017

    ORISSA

    2011

  • 8/2/2019 Electrodynamic Certificate t7

    2/17

    BIJU PATNAIK UNIVERSITY OF TECHNOLOGY

    ROURKELA

    ORISSA

    RAAJDHANI ENGINEERING COLLEGE

    BHUBANESWAR-751017

    ORISSA.

    CERTIFICATECertified that the seminar report entitled Nano Generatoris a bonafied work carried out

    by Tapas Ranjan Pradhan, Reg.No-0921294013,in partial fulfillment for the award ofBachelor

    in Technology in Electrical & Electronics Engineering prescribed by Biju Patnaik

    University of Technology, Rourkela during 2011-12. It is also certified that all the

    corrections/suggestions indicated for the seminar have been incorporated in the report. This

    seminar report has been approved as it satisfies the academic requirements in respect of the

    Seminar prescribed for the 7th Semester ofBachelor in Technology.

    Seminar Guide Seminar In-Charge H.O.D(Prof.D. K. Sahoo ) (Prof. J. R. Nayak) (Prof.D. K. Sahoo)

    Head, Department of E.E.E Department of E.E.E . Head, Department of E.E.E

    REC, Bhubaneswar. REC, Bhubaneswar. REC, Bhubaneswar.

  • 8/2/2019 Electrodynamic Certificate t7

    3/17

    ACKNOWLEDGEMENT

    The acts of few specific people are influence of many. Determination andinspiration in many minds are the reflection of these people.

    I am greatly thankful to our respected and beloved Principal Prof(Dr.)

    Bimal Sarangi and our Head of the Department Prof. D.K.Sahoo who are the

    backbone for the success of this seminar.

    My sincere thanks to the Seminar Guide Prof. D.K Sahoo for his

    guidance and suggestions which helped in overcoming the hurdles in the

    completion of this seminar report.

    My sincere thanks to all the staff members of our department for their

    immense support during the seminar work.

    I also thank the non-teaching staff members of Electrical and

    Electronics Engineering Department for their kind support and help in carrying out

    the seminar work.

    And last but not the least, I also thank my parents and friends for their

    co-operation and encouragement in successfully completing the seminar work.

    Signature of the student

  • 8/2/2019 Electrodynamic Certificate t7

    4/17

    SYNOPSIS

  • 8/2/2019 Electrodynamic Certificate t7

    5/17

    CONTENTS

    1:Introduction 2:Geometrical Configuration

    o 2.1: Vertical nanowire Integrated Nanogenerator(VING)

    o 2.2: Lateral nanowire Integrated Nanogenerator(LING)

    o 2.3: Nanocomposite Electrical Generators (NEG)o 2.4: Other type

    3: Materials 4: Applications

    o 4.1: Self-powered nano/micro deviceso 4.2: Smart Wearable Systemso 4.3: Transparent and Flexible Deviceso 4.4: Implantable Telemetric Energy Receiver

    http://en.wikipedia.org/wiki/Nanogenerator#Lateral_nanowire_Integrated_Nanogenerator_.28LING.29http://en.wikipedia.org/wiki/Nanogenerator#Lateral_nanowire_Integrated_Nanogenerator_.28LING.29http://en.wikipedia.org/wiki/Nanogenerator#Lateral_nanowire_Integrated_Nanogenerator_.28LING.29http://en.wikipedia.org/wiki/Nanogenerator#Lateral_nanowire_Integrated_Nanogenerator_.28LING.29http://en.wikipedia.org/wiki/Nanogenerator#Nanocomposite_Electrical_Generators_.28NEG.29http://en.wikipedia.org/wiki/Nanogenerator#Nanocomposite_Electrical_Generators_.28NEG.29http://en.wikipedia.org/wiki/Nanogenerator#Other_typehttp://en.wikipedia.org/wiki/Nanogenerator#Other_typehttp://en.wikipedia.org/wiki/Nanogenerator#Materialshttp://en.wikipedia.org/wiki/Nanogenerator#Materialshttp://en.wikipedia.org/wiki/Nanogenerator#Applicationshttp://en.wikipedia.org/wiki/Nanogenerator#Applicationshttp://en.wikipedia.org/wiki/Nanogenerator#Self-powered_nano.2Fmicro_deviceshttp://en.wikipedia.org/wiki/Nanogenerator#Self-powered_nano.2Fmicro_deviceshttp://en.wikipedia.org/wiki/Nanogenerator#Smart_Wearable_Systemshttp://en.wikipedia.org/wiki/Nanogenerator#Smart_Wearable_Systemshttp://en.wikipedia.org/wiki/Nanogenerator#Transparent_and_Flexible_Deviceshttp://en.wikipedia.org/wiki/Nanogenerator#Transparent_and_Flexible_Deviceshttp://en.wikipedia.org/wiki/Nanogenerator#Implantable_Telemetric_Energy_Receiverhttp://en.wikipedia.org/wiki/Nanogenerator#Implantable_Telemetric_Energy_Receiverhttp://en.wikipedia.org/wiki/Nanogenerator#Implantable_Telemetric_Energy_Receiverhttp://en.wikipedia.org/wiki/Nanogenerator#Transparent_and_Flexible_Deviceshttp://en.wikipedia.org/wiki/Nanogenerator#Smart_Wearable_Systemshttp://en.wikipedia.org/wiki/Nanogenerator#Self-powered_nano.2Fmicro_deviceshttp://en.wikipedia.org/wiki/Nanogenerator#Applicationshttp://en.wikipedia.org/wiki/Nanogenerator#Materialshttp://en.wikipedia.org/wiki/Nanogenerator#Other_typehttp://en.wikipedia.org/wiki/Nanogenerator#Nanocomposite_Electrical_Generators_.28NEG.29http://en.wikipedia.org/wiki/Nanogenerator#Lateral_nanowire_Integrated_Nanogenerator_.28LING.29http://en.wikipedia.org/wiki/Nanogenerator#Lateral_nanowire_Integrated_Nanogenerator_.28LING.29
  • 8/2/2019 Electrodynamic Certificate t7

    6/17

    Introduction:-

    Working principle of nanogenerator where an individual nanowire is

    subjected to the force exerted perpendicular to the growing direction

    of nanowire. (a) An AFT tip is swept through the tip of the nanowire.

    Only negatively charged portion will allow the current to flow

    through the interface. (b) The nanowire is integrated with the counter

    electrode with AFT tip-like grating. As of (a), the electrons are

    transported from the compressed portion of nanowire to the counter

    electrode because of Schottky contact.

    http://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.pnghttp://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.pnghttp://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.pnghttp://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_2.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.pnghttp://en.wikipedia.org/wiki/File:NG_Working_1.png
  • 8/2/2019 Electrodynamic Certificate t7

    7/17

    Working principle of nanogenerator where an individual nanowire issubjected to the force exerted parallel to the growing direction of

    nanowire

    The working principle of nanogenerator will be explained for 2different cases: the force exerted perpendicular and parallel to the axisof the nanowire.

    The working principle for the first case is explained by a verticallygrownnanowiresubjected to the laterally moving tip. When a

    piezoelectricstructure is subjected to the external force by the moving

    tip, the deformation occurs throughout the structure. Thepiezoelectric

    effectwill create theelectrical fieldinside thenanostructure; the

    stretched part with the positive strain will exhibit the positive

    electrical potential, whereas the compressed part with the negativestrain will show the negative electrical potential. This is due to the

    relative displacement ofcationswith respect toanionsin its

    crystalline structure. As a result, the tip of the nanowire will have an

    electrical potential distribution on its surface, while the bottom of the

    nanowire is neutralized since it is grounded. The maximum voltage

    generated in the nanowire can be calculated by the following

    equation[2]

    :

    , where 0is the permittivity in vacuum, is the dielectric constant,

    e33, e15 and e31are the piezoelectric coefficients, is the Poisson ratio,

    a is the radius of the nanowire, l is the length of the nanowire and max

    is the maximum deflection of the nanowire's tip.

    The electrical contact plays an important role to pump out charges inthe surface of the tip. Theschottky contactmust be formed between

    the counter electrode and the tip of the nanowire since the ohmic

    contact will neutralize the electrical field generated at the tip. In orderto form an effectiveschottky contact, theelectron affinity(Ea) must be

    smaller than thework function() of the metal composing the counter

    electrode. For the case ofZnOnanowirewith theelectron affinityof

    4.5 eV,Pt(=6.1eV) is a suitable metal to construct theschottky

    contact. By constructing theschottky contact, the electrons will pass

    http://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Electrical_fieldhttp://en.wikipedia.org/wiki/Electrical_fieldhttp://en.wikipedia.org/wiki/Electrical_fieldhttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Cationshttp://en.wikipedia.org/wiki/Cationshttp://en.wikipedia.org/wiki/Cationshttp://en.wikipedia.org/wiki/Anionshttp://en.wikipedia.org/wiki/Anionshttp://en.wikipedia.org/wiki/Anionshttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-1http://en.wikipedia.org/wiki/Nanogenerator#cite_note-1http://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Work_functionhttp://en.wikipedia.org/wiki/Work_functionhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Pthttp://en.wikipedia.org/wiki/Pthttp://en.wikipedia.org/wiki/Pthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Pthttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Work_functionhttp://en.wikipedia.org/wiki/Electron_affinityhttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-1http://en.wikipedia.org/wiki/Anionshttp://en.wikipedia.org/wiki/Cationshttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Electrical_fieldhttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowire
  • 8/2/2019 Electrodynamic Certificate t7

    8/17

    to the counter electrode from the surface of the tip when the counter

    electrode is in contact with the regions of the negative potential,

    whereas no current will be generated when it is in contact with the

    regions of the positive potential, in the case ofn-type semiconductive

    nanostructure(p-type semiconductivestructure will exhibit thereversed phenomenon since the hole is mobile in this case). The

    formation of theschottky contactalso contributes to the generation of

    direct current output signal consequently.

    For the second case, a model with a vertically grown nanowirestacked between theohmic contactat its bottom and theschottky

    contactat its top is considered. When the force is applied toward the

    tip of the nanowire, the uniaxial compressive is generated in the

    nanowire. Due to thepiezoelectric effect, the tip of thenanowirewillhave a negativepiezoelectricpotential, increasing theFermi levelat

    the tip. Since the electrons will then flow from the tip to the bottom

    through the external circuit as a result, the positive electrical potential

    will be generated at the tip. Theschottky contactwill barricade the

    electrons being transported through the interface, therefore

    maintaining the potential at the tip. As the force is removed, the

    piezoelectric effectdiminishes, and the electrons will be flowing back

    to the top in order to neutralize the positive potential at the tip. The

    second case will generate alternating current output signal.

    http://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/w/index.php?title=P-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=P-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Ohmic_contacthttp://en.wikipedia.org/wiki/Ohmic_contacthttp://en.wikipedia.org/wiki/Ohmic_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Fermi_levelhttp://en.wikipedia.org/wiki/Fermi_levelhttp://en.wikipedia.org/wiki/Fermi_levelhttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Fermi_levelhttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectric_effecthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Ohmic_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/w/index.php?title=P-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1
  • 8/2/2019 Electrodynamic Certificate t7

    9/17

    Geometrical Configuration:-

    Depending on the configuration ofpiezoelectricnanostructure, the most

    of the nanogenerator can be categorized into 3 types: VING, LING and

    "NEG". Still, there is a configuration that do not fall into the

    aforementioned categories, as stated in other type.

    Vertical nanowire Integrated Nanogenerator (VING)

    Schematic view of typical Vertical nanowire Integrated Nanogenerator,

    (a) with full contact, and (b) with partial contact. Note that the grating

    on the counter electrode is important in the latter case.

    VING is a 3-dimensional configuration consisting of a stack of 3 layers

    in general, which are the base electrode, the vertically grownpiezoelectricnanostructureand the counter electrode. Thepiezoelectric

    nanostructureis usually grown from the base electrode by various

    synthesizing techniques, which are then integrated with the counter

    electrode in full or partial mechanical contact with its tip.

    http://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/File:NG_VING.pnghttp://en.wikipedia.org/wiki/File:NG_VING.pnghttp://en.wikipedia.org/wiki/File:NG_VING.pnghttp://en.wikipedia.org/wiki/File:NG_VING.pnghttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectric
  • 8/2/2019 Electrodynamic Certificate t7

    10/17

    After Professor Zhong Lin Wang of the Georgia Institute of Technology

    has introduced a basic configuration of VING in 2006 where he used a

    tip of atomic force microscope (AFM) to induce the deformation of a

    single verticalZnOnanowire, the first development of VING is followed

    in 2007.[3]The first VING utilizes the counter electrode with theperiodic surface grating resembling the arrays of AFM tip as a moving

    electrode. Since the counter electrode is not in full contact with the tips

    of thepiezoelectricnanowire, its motion in-plane or out-of-plane

    occurred by the external vibration induces the deformation of the

    piezoelectricnanostructure, leading to the generation of the electrical

    potential distribution inside each individualnanowire. It should be noted

    that the counter electrode is coated with the metal forming theschottky

    contactwith the tip of thenanowire, where only the compressed portionofpiezoelectricnanowirewould allow the accumulated electrons pass

    through the barrier between its tip and the counter electrode, in case of

    n-typenanowire. The switch-on andoff characteristic of this

    configuration shows its capability of generating direct current generation

    without any requirement for the externalrectifier.

    In VING with partial contact, the geometry of the counter electrode

    plays an important role. The flat counter electrode would not induce the

    sufficient deformation of thepiezoelectricnanostructures, especiallywhen the counter electrode moves by in-plane mode. After the basic

    geometry resembling the array ofAFMtips, a few other approaches

    have been followed for facile development of the counter electrode.

    Professor Zhong Lin Wangs group have generated counter electrode

    composed of ZnO nanorods utilizing the similar technique used for

    synthesizing ZnOnanowirearray. Professor Sang-Woo Kim's group of

    Sungkyunkwan University(SKKU) and Dr. Jae-Young Choi's group of

    Samsung Advanced Institute of Technology(SAIT) in South Koreaintroduced bowl-shaped transparent counter electrode by combining

    anodized aluminumand theelectroplatingtechnology.[4]

    They also have

    developed the other type of the counter electrode by using networked

    single-walled carbon-nanotube (SWNT) on the flexible substrate, which

    is not only effective for energy conversion but also transparent.[5]

    http://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-2http://en.wikipedia.org/wiki/Nanogenerator#cite_note-2http://en.wikipedia.org/wiki/Nanogenerator#cite_note-2http://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Rectifierhttp://en.wikipedia.org/wiki/Rectifierhttp://en.wikipedia.org/wiki/Rectifierhttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Atomic_force_microscopyhttp://en.wikipedia.org/wiki/Atomic_force_microscopyhttp://en.wikipedia.org/wiki/Atomic_force_microscopyhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Sungkyunkwan_Universityhttp://en.wikipedia.org/wiki/Sungkyunkwan_Universityhttp://en.wikipedia.org/wiki/Samsung_Advanced_Institute_of_Technologyhttp://en.wikipedia.org/wiki/Samsung_Advanced_Institute_of_Technologyhttp://en.wikipedia.org/wiki/Anodized_aluminumhttp://en.wikipedia.org/wiki/Anodized_aluminumhttp://en.wikipedia.org/wiki/Electroplatinghttp://en.wikipedia.org/wiki/Electroplatinghttp://en.wikipedia.org/wiki/Electroplatinghttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-3http://en.wikipedia.org/wiki/Nanogenerator#cite_note-3http://en.wikipedia.org/wiki/Nanogenerator#cite_note-3http://en.wikipedia.org/wiki/SWNThttp://en.wikipedia.org/wiki/SWNThttp://en.wikipedia.org/wiki/SWNThttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-4http://en.wikipedia.org/wiki/Nanogenerator#cite_note-4http://en.wikipedia.org/wiki/Nanogenerator#cite_note-4http://en.wikipedia.org/wiki/Nanogenerator#cite_note-4http://en.wikipedia.org/wiki/SWNThttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-3http://en.wikipedia.org/wiki/Electroplatinghttp://en.wikipedia.org/wiki/Anodized_aluminumhttp://en.wikipedia.org/wiki/Samsung_Advanced_Institute_of_Technologyhttp://en.wikipedia.org/wiki/Sungkyunkwan_Universityhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Atomic_force_microscopyhttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Rectifierhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Schottky_contacthttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-2http://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/ZnO
  • 8/2/2019 Electrodynamic Certificate t7

    11/17

    The other type of VING has been also suggested. While it shares the

    identical geometric configuration with the aforementioned, such a VING

    has full mechanical contact between the tips of thenanowiresand the

    counter electrode.[6]

    This configuration is effective for application where

    the force is exerted in the vertical direction (toward the c axis of thepiezoelectricnanowire), and it generates alternating current (AC) unlike

    VINGs with partial contact.

    Lateral nanowire Integrated Nanogenerator (LING)

    Schematic view of typical Lateral nanowire Integrated Nanogenerator

    LING is a 2-dimensional configuration consisting of three parts: the

    base electrode, the laterally grownpiezoelectricnanostructureand the

    metal electrode for schottky contact. In most of cases, the thickness of

    the substrate film is much thicker than the diameter of thepiezoelectric

    nanostructure, so the individualnanostructureis subjected to the pure

    tensile strain.

    LING is an expansion of single wire generator (SWG), where a laterally

    alignednanowireis integrated on the flexible substrate. SWG is rather a

    scientific configuration used for verifying the capability of electrical

    energy generation of apiezoelectricmaterial and is widely adopted in

    the early stage of the development.

    http://en.wikipedia.org/wiki/Nanogenerator#cite_note-4http://en.wikipedia.org/wiki/Nanogenerator#cite_note-4http://en.wikipedia.org/wiki/Nanogenerator#cite_note-4http://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-5http://en.wikipedia.org/wiki/Nanogenerator#cite_note-5http://en.wikipedia.org/wiki/Nanogenerator#cite_note-5http://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/File:NG_LING.pnghttp://en.wikipedia.org/wiki/File:NG_LING.pnghttp://en.wikipedia.org/wiki/File:NG_LING.pnghttp://en.wikipedia.org/wiki/File:NG_LING.pnghttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-5http://en.wikipedia.org/wiki/Nanowire
  • 8/2/2019 Electrodynamic Certificate t7

    12/17

    As of VINGs with full mechanical contact, LING generates AC

    electrical signal. The output voltage can be amplified by constructing an

    array of LING connected in series on the single substrate, leading the

    constructive addition of the output voltage. Such a configuration may

    lead to the practical application of LING for scavenging large-scalepower, for example, wind or ocean waves.

    Nanocomposite Electrical Generators (NEG)

    Schematic view of typical Nanocomposite Electrical Generator

    "NEG" is a 3-dimensional configuration consisting three main parts: the

    metal plate electrodes, the vertically grownpiezoelectricnanostructure

    and the polymer matrix which fills in between in thepiezoelectric

    nanostructure.

    NEG was introduced by Momeni et al.[7]

    It was shown that NEG has a

    higher efficiency compared to original nanogenerator configuration

    which a ZnO nanowire will be bended by an AFM tip. It is also shown

    that it provides an energy source with higher sustainability.

    http://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-6http://en.wikipedia.org/wiki/Nanogenerator#cite_note-6http://en.wikipedia.org/wiki/Nanogenerator#cite_note-6http://en.wikipedia.org/wiki/File:NEG.pnghttp://en.wikipedia.org/wiki/File:NEG.pnghttp://en.wikipedia.org/wiki/File:NEG.pnghttp://en.wikipedia.org/wiki/File:NEG.pnghttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-6http://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectric
  • 8/2/2019 Electrodynamic Certificate t7

    13/17

    Other type

    The fabric-like geometrical configuration has been suggested by

    Professor Zhong Lin Wang in 2008. Thepiezoelectricnanowireis

    grown vertically on the two microfibers in its radial direction, and theyare twined to form a nanogenerator.

    [8]One of the microfibers is coated

    with the metal to form a schottky contact, serving as the counter

    electrode of VINGs. As the movable microfiber is stretched, the

    deformation of thenanostructureoccurs on the stationary microfiber,

    resulting in the voltage generation. Its working principle is identical to

    VINGs with partial mechanical contact, thus generating DC electrical

    signal.

    http://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-7http://en.wikipedia.org/wiki/Nanogenerator#cite_note-7http://en.wikipedia.org/wiki/Nanogenerator#cite_note-7http://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-7http://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectric
  • 8/2/2019 Electrodynamic Certificate t7

    14/17

    Materials:-

    Among variouspiezoelectricmaterials studied for the nanogenerator,

    many of the researches have been focused on the materials withwurtzite

    structuresuch asZnO,CdS[9]andGaN.[10]The greatest advantage of

    theses material arises from the facile and cost-effective fabrication

    technique,hydrothermal synthesis. Since thehydrothermal synthesiscan

    be conducted in a low temperature environment under 100C in addition

    to vertical and crystalline growth , these materials can be integrated in

    various substrates with reduced concern for its physical characteristics

    such as a melting temperature.

    Endeavors for enhancing thepiezoelectricityof the individualnanowirealso led to the development of otherpiezoelectricmaterials based on

    Wurtzite structure. Professor Zhong Lin Wang of Georgia Institute of

    Technology introduced p-type ZnOnanowire.[11]

    Unlike then-type

    semiconductivenanostructure, the mobile particle in p-type is a hole,

    thus the schottky behavior is reversed from that of n-type case; the

    electrical signal is generated from the portion of thenanostructurewhere

    the holes are accumulated. It is experimentally proved that p-type ZnO

    nanowirecan generate the output signal near 10 times that of n-type

    ZnOnanowire.

    From the idea that the material withperovskite structureis known to

    have more effectivepiezoelectriccharacteristic compared to that with

    wurtzite structure,Barium titanate(BaTiO3)nanowirehas been also

    studied by Professor Min-Feng Yu ofUniversity of Illinois at Urbana

    Champaign.[12]

    The output signal is found to be more than 16 time that

    from a similarZnOnanowire.

    Professor Liwei Lin ofUniversity of California at Berkeleyhas

    suggested thatPVDFcan be also applied to form a nanogenerator.[13]

    Being a polymer, PVDF utilizes a near-field electrospinning for its

    fabrication, which is rather a different technique compared to other

    materials. The nanofiber can be directly written on the substrate

    http://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/CdShttp://en.wikipedia.org/wiki/CdShttp://en.wikipedia.org/wiki/CdShttp://en.wikipedia.org/wiki/CdShttp://en.wikipedia.org/wiki/GaNhttp://en.wikipedia.org/wiki/GaNhttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-9http://en.wikipedia.org/wiki/Nanogenerator#cite_note-9http://en.wikipedia.org/wiki/Nanogenerator#cite_note-9http://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Piezoelectricityhttp://en.wikipedia.org/wiki/Piezoelectricityhttp://en.wikipedia.org/wiki/Piezoelectricityhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-10http://en.wikipedia.org/wiki/Nanogenerator#cite_note-10http://en.wikipedia.org/wiki/Nanogenerator#cite_note-10http://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Perovskite_structurehttp://en.wikipedia.org/wiki/Perovskite_structurehttp://en.wikipedia.org/wiki/Perovskite_structurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Barium_titanatehttp://en.wikipedia.org/wiki/Barium_titanatehttp://en.wikipedia.org/wiki/Barium_titanatehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana_Champaignhttp://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana_Champaignhttp://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana_Champaignhttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-11http://en.wikipedia.org/wiki/Nanogenerator#cite_note-11http://en.wikipedia.org/wiki/Nanogenerator#cite_note-11http://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/University_of_California_at_Berkeleyhttp://en.wikipedia.org/wiki/University_of_California_at_Berkeleyhttp://en.wikipedia.org/wiki/University_of_California_at_Berkeleyhttp://en.wikipedia.org/wiki/PVDFhttp://en.wikipedia.org/wiki/PVDFhttp://en.wikipedia.org/wiki/PVDFhttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-12http://en.wikipedia.org/wiki/Nanogenerator#cite_note-12http://en.wikipedia.org/wiki/Nanogenerator#cite_note-12http://en.wikipedia.org/wiki/Nanogenerator#cite_note-12http://en.wikipedia.org/wiki/PVDFhttp://en.wikipedia.org/wiki/University_of_California_at_Berkeleyhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-11http://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana_Champaignhttp://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana_Champaignhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Barium_titanatehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Perovskite_structurehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=N-type_semiconductive&action=edit&redlink=1http://en.wikipedia.org/wiki/Nanogenerator#cite_note-10http://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Piezoelectricityhttp://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Hydrothermal_synthesishttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-9http://en.wikipedia.org/wiki/GaNhttp://en.wikipedia.org/wiki/CdShttp://en.wikipedia.org/wiki/CdShttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Wurtzite_structurehttp://en.wikipedia.org/wiki/Piezoelectric
  • 8/2/2019 Electrodynamic Certificate t7

    15/17

    controlling the process, and this technique is expected to be applied for

    forming self-powered textile based onnanofiber.

    Comparison of the reported materials by 2010 is given in the following

    table.

    Material Type GeometryOutput

    voltage

    Output

    powerSynthesis

    Researched

    at

    ZnO(n-

    type)Wurtzite

    D: ~100 nm,

    L:

    200~500 nm

    VP=~9 mV @

    R=500M

    ~0.5 pW

    per cycle

    (estimated)

    CVD,

    hydrothermal

    process

    Georgia

    Tech.

    ZnO(p-type)

    Wurtzite D: ~50 nm,L: ~600 nm

    VP=50~90 mV@ R=500M

    5~16.2 pW

    per cycle

    (calculated)

    CVD GeorgiaTech.

    ZnO-ZnSWurtzite

    (Heterostructure)Not stated

    VP=~6 mV @

    R=500M

    ~0.1 pW

    per cycle

    (calculated)

    Thermal

    evaporation

    and etching

    Georgia

    Tech.

    GaN Wurtzite

    D:

    25~70 nm,

    L: 10~20 m

    Vavg=~20

    mV,Vmax=~0.35

    V@ R=500M

    ~0.8 pW

    per cycle

    (average,calculated)

    CVDGeorgia

    Tech.

    CdS WurtziteD: ~100 nm,

    L: 1 mVP=~3 mV Not stated

    PVD,

    Hydrothermal

    Process

    Georgia

    Tech.

    BaTiO3 PervoskiteD: ~280 nm,

    L: ~15 m

    VP=~25 mV @

    R=100M

    ~0.3 aJ per

    cycle

    (stated)

    High

    temperature

    chemical

    reaction

    UIUC

    PVDF Polymer

    D: 0.5~6.5

    m, L:

    0.1~0.6 mm

    VP=5~30 mV

    2.5 pW~90

    pW per

    cycle

    (calculated)

    Electro

    spinningUC Berkely

    http://en.wikipedia.org/wiki/Nanofiberhttp://en.wikipedia.org/wiki/Nanofiberhttp://en.wikipedia.org/wiki/Nanofiberhttp://en.wikipedia.org/wiki/Nanofiber
  • 8/2/2019 Electrodynamic Certificate t7

    16/17

    Applications:-

    Nanogenerator is expected to be applied for various applications where

    the periodic kinetic energy exists, such as wind and ocean waves in a

    large scale to the muscle movement by the beat of a heart or inhalation

    of lung in a small scale. The further feasible applications are as follows.

    Self-powered nano/micro devices

    One of the feasible applications of nanogenerator is an independent or a

    supplementary energy source to nano/micro devices consuming

    relatively low amount of energy in a condition where the kinetic energy

    is supplied continuously. One of example has been introduced byProfessor Zhong Lin Wangs group in 2010 by the self-powered pH or

    UV sensor integrated VING with an output voltage of 20~40 mV onto

    the sensor.

    Still, the converted electrical energy is relatively small for operating

    nano/micro devices; therefore the range of its application is still bounded

    as a supplementary energy source to the battery. The breakthrough is

    being sought by combining the nanogenerator with the other types of

    energy harvesting devices, such assolar cellor biochemical energyharvester.

    [14][15]This approach is expected to contribute to the

    development of the energy source suitable for the application where the

    independent operation is crucial, such asSmartdust.

    Smart Wearable Systems

    The outfit integrated or made of the textiles with thepiezoelectricfiber

    is one of the feasible applications of the nanogenerator. The kineticenergy from the human body is converted to the electrical energy

    through thepiezoelectricfibers, and it can be possibly applied to supply

    the portable electronic devices such as health-monitoring system

    attached with theSmart Wearable Systems. The nanogenerator such as

    http://en.wikipedia.org/wiki/Solar_cellhttp://en.wikipedia.org/wiki/Solar_cellhttp://en.wikipedia.org/wiki/Solar_cellhttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-13http://en.wikipedia.org/wiki/Nanogenerator#cite_note-13http://en.wikipedia.org/wiki/Nanogenerator#cite_note-13http://en.wikipedia.org/wiki/Smartdusthttp://en.wikipedia.org/wiki/Smartdusthttp://en.wikipedia.org/wiki/Smartdusthttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Smart_Wearable_Systemshttp://en.wikipedia.org/wiki/Smart_Wearable_Systemshttp://en.wikipedia.org/wiki/Smart_Wearable_Systemshttp://en.wikipedia.org/wiki/Smart_Wearable_Systemshttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Smartdusthttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-13http://en.wikipedia.org/wiki/Nanogenerator#cite_note-13http://en.wikipedia.org/wiki/Solar_cell
  • 8/2/2019 Electrodynamic Certificate t7

    17/17

    VING can be also easily integrated in the shoe employing the walking

    motion of human body.

    Another similar application is a power-generating artificial skin.

    Professor Zhong Lin Wangs group has shown the possibility bygenerating AC voltage of up to 100 mV from the flexible SWG attached

    to the running hamster.[16]

    Transparent and Flexible Devices

    Some of thepiezoelectricnanostructurecan be formed in various kinds

    of substrates, such as flexible and transparent organic substrate. The

    research groups in SKKU (Professor Sang-Woo Kims group) and SAIT

    (Dr. Jae-Young Chois group) have developed the transparent andflexible nanogenerator which can be possibly used for self-powered

    tactile sensor and anticipated that the development may be extended to

    the energy-efficient touch screen devices. Their research focus is being

    extended to enhance the transparency of the device and the cost-

    effectiveness by substituting Indium-Tin-Oxide (ITO) electrode with a

    graphenelayer.[17]

    Implantable Telemetric Energy Receiver

    The nanogenerator based on ZnOnanowirecan be applied for

    implantable devices sinceZnOnot only is bio-compatible but also can

    be synthesized upon the organic substrate, rendering the nanogenerator

    bio-compatible in overall. The implantable device integrated with the

    nanogenerator can be operated by receiving the external ultrasonic

    vibration outside the human body, which is converted to the electrical

    energy by thepiezoelectricnanostructure.

    http://en.wikipedia.org/wiki/Nanogenerator#cite_note-15http://en.wikipedia.org/wiki/Nanogenerator#cite_note-15http://en.wikipedia.org/wiki/Nanogenerator#cite_note-15http://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/ITOhttp://en.wikipedia.org/wiki/ITOhttp://en.wikipedia.org/wiki/Graphenehttp://en.wikipedia.org/wiki/Graphenehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-16http://en.wikipedia.org/wiki/Nanogenerator#cite_note-16http://en.wikipedia.org/wiki/Nanogenerator#cite_note-16http://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/ZnOhttp://en.wikipedia.org/wiki/Nanowirehttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-16http://en.wikipedia.org/wiki/Graphenehttp://en.wikipedia.org/wiki/ITOhttp://en.wikipedia.org/wiki/Nanostructurehttp://en.wikipedia.org/wiki/Piezoelectrichttp://en.wikipedia.org/wiki/Nanogenerator#cite_note-15