40
Electrochemistry Prof. Dr. Sabine Prys http://www.iccb.org/student/mod/science/mod_chem1/mod1/p1.html @designed by ps

Electrochemistry

  • Upload
    kanoa

  • View
    38

  • Download
    0

Embed Size (px)

DESCRIPTION

Electrochemistry. Prof. Dr. Sabine Prys. http://www.iccb.org/student/mod/science/mod_chem1/mod1/p1.html. @designed by ps. 3.3 Normal & Standard Conditions. normal conditions: normal pressure p = 1 atm = 101,325 kPa = 1013,25 mbar normal temperature T = 0°C = 273.15 K - PowerPoint PPT Presentation

Citation preview

Page 1: Electrochemistry

ElectrochemistryProf. Dr. Sabine Prys

http://www.iccb.org/student/mod/science/mod_chem1/mod1/p1.html

@designed by ps

Page 2: Electrochemistry

3.3 Normal & Standard Conditions

normal conditions:normal pressure p = 1 atm = 101,325 kPa = 1013,25 mbarnormal temperature T = 0°C = 273.15 K

 standard conditions:standard pressure p = 1 atm = 101,325 kPa = 1013,25 mbarstandard temperature T = 25°C = 298.15 K

Such definitions can vary according to different sources: IUPAC, NIST, …

Page 3: Electrochemistry

3.4 Enthalpy

• Enthalpy is a measure of the total energy of a thermodynamic system including – the internal energy (energy required to create a system), – the amount of energy required to make room for it by displacing its

environment and establishing its volume and pressure.• Enthalpy is a thermodynamic potential, a state function and an extensive

quantity (i.e. depending on amount material).

VpUH

H enthalpy Uinternal energy

P pressure Vvolume

http://goldbook.iupac.org

Page 4: Electrochemistry

3.8 GIBBS’ Free Energy G

Useful energy, or energy available to do work G

G = free energyH = GIBBS’ energy

(enthalpy)U = internal energy

T = Kelvin temperatureS = entropy

p= pressureV = volume

TDS is the energy not available for doing work

STVpUSTHG

Page 5: Electrochemistry

3.9 Spontaneity of Redox Reactions

DH DSSpontaneity

Exothermic DH < 0 Increase DS > 0 +DG < 0

Exothermic DH < 0 Decrease DS < 0 + if|TDS| < |DH|

Endothermic DH > 0 Increase DS > 0 + ifTDS > DH

Endothermic DH > 0 Decrease DS < 0 -DG > 0

STHG

Page 6: Electrochemistry

3.10 Thermodynamical Equilibrium

• Reversible processes ultimately reach a point where the rates in both directions are identical, so that the system gives the appearance of having a static composition at which the Gibbs energy G is a minimum

DG = 0

• At equilibrium the sum of the chemical potentials of the reactants equals that of the products, so that:

DG = DG298 + RT . lnK = 0 DG298 = - RT . lnK

• The equilibrium constant K is given by the mass-law effect.

http://goldbook.iupac.org

Page 7: Electrochemistry

3.12 Maximum Work

Wmax = maximum workG = Gibbs free energyR = gas constantT = Kelvin temperatureK = equilibrium constantz = ion chargen = molesF = Faraday‘s constantE = galvanic cell potentialU = voltageI = currantt = time

tIUEFnzKRTGW D lnmax

Page 8: Electrochemistry

4.0 Chemical Solutions

• Suspension (particle diameters 10-4 - 10-5 cm )

solid particles in homogeneous fluid• Colloid (particle diameters 10-

5 - 10-7 cm ) microscopically

dispersed particles in another substance• Solution (particle diameters 10-

7 - 10-8 cm )

Homogeneous phase with at least 2 components:

solvent and solute» gas in liquid e.g. O2 in H2O» gas in solid e.g. H2

in palladium» liquid in liquid e.g. petroleum» solid in liquid e.g. NaCl in

H2O» electrolytes in water

Page 9: Electrochemistry

4.6 Ion activity

High ion concentrations in aqueous solutions ð ion – ion interactions:

pH measured < pH calculated

(1m, 0.1 m solution of acids)

ion activity:

a = activity, f = activity coefficient, c = concentrationf (HCl, 25°C): 0.001m/0.965 0.01m/0.905 0.1m/0.794 1m/0.809

cfa

Page 10: Electrochemistry

4.7 Colloidal Solutions

• Larger particles in solvent, e.g. macromolecules / polymers• Properties depend on solute size and not on solute concentration !• Coagulation: growth of larger particles by smaller particles

consumption• Hydrophobe colloids: large surface, large adsorption properties• Hydrophile colloids

Page 11: Electrochemistry

4.9 Electrolytes

Electrolyte: solution which conducts electrical current

Hydrated H3O+

Hydrated OH-

472

4923

32

33

3

3

OHOHOH

OHOHOH

OHOHH

COOCHHCOOHCH

ClHHCl

aqaqaq

aqaqaq

Page 12: Electrochemistry

4.9.1 Electrical Conductivity in Solutions

Electrolytes• solutions which support ion transport• salts in aqueous solutions, e.g. KCl,

ZnSO4, CuCl2, etc.• molten salts

Conductivity L (resistance R)

bad electrolyte: distilled water:

0.0548 µS/cm at 25 °C. cathodecat ions

anodeanions

_ +

-

++

++++

-----

H2O

11 R

L

Page 13: Electrochemistry

4.9.2 Specific Conductivity

KCl concentration [mol / l]

[1 / .m]

0°C 18°C 25°C 0 << 0,001 << 0,001 << 0,001 1 6,543 9,820 11,173

0,1 0,7154 1,1192 1,2886 0,01 0,07751 0,12227 0,14114

absolute electrolyte conductivityR = solution resistance

specific electrolyte conductivityA = electrode surface, l = electrode distance

mRAl

RL

11

11

Page 14: Electrochemistry

4.9.3 Example: Proton Migration

Grotthuss Diffusion

structural defect migrationmesomeric structures between H9O4

+ and H5O2+,

Page 15: Electrochemistry

5.0 Electrochemical Cells

Cl2H2

+ -Cl2H2

+ -

electrolytic cell

galvanic cell2 HCl (aq) ð H2 (g) + Cl2 (g)

H2 (g) + Cl2 (g) ð 2 HCl (aq)

electrical energy chemical energychemical energy electrical energy

Page 16: Electrochemistry

5.1 Electrolysis

electrolysis: decomposing materials by electric currentH2SO4 + 2H2O ð 2H3O+ + SO4

2-

water electrolysiscathodic reduction4H3O+ + 4e- ð 2 H2 ñ + 2 H2Oanodic oxidation4 OH- ð 2 H2O + O2 ñ + 4 e-

total2 H2O (l) ð 2 H2 (g) + O2 (g)

H20 + H2SO4

1:10

electrods

batteryca. 15 V

Page 17: Electrochemistry

5.1.1 Electrochemical Equivalent

eNF

EFz

M

FnQ

L

c

Q = electric charge in C

n = yield in mol

F = Faraday‘s constant

= 96485,309 As / mol

Ec = electrochemical equivalent

M = ion weight

z = ion charge

NL = Lohschmidt‘s number

e = elementary charge

Page 18: Electrochemistry

5.1.2 Faraday‘s Laws

ma ,mb = mass yield in g for material a / b

Ma,Mb = molecular weight for material a / b

za, zb = chemical valency for material a / b

m = Ec . Q = Ec .I. t

m = mass yield in gEc = electrochemical

equivalent Q = electric charges

in CoulombI = current strengtht = electrolysis time

mm

Mz

zM

a

b

a

a

b

b

Page 19: Electrochemistry

5.2 Galvanic Elements

Daniell Element:2 galvanic half cells + bridge

Zn / ZnSO4 // CuSO4 / Cu

electrode reactionsZn (cathode) ð Zn2+ + 2e-

Cu2+ + 2e- ð Cu (anode)

Zn metal in ionic solutionCu ions in Cu metal

electrical current results from different oxidation affinities

voltmeter ca 1,1 V

Zn Cu1 m

ZnSO4

1 mCuSO4

diaphragma(pottery)

bridge containingKCl solution

Page 20: Electrochemistry

5.4 Standard Hydrogen Electrode

standard hydrogen electrode (SHE)= reference potential = E0 = 0 V

H2 ñ ð 2H+ + 2e-

p = 1,01325 barT = 25°ca(H+) = 1 mol / lc(H+) = 1,235 mol / l (HCl)

Pt electrode

H2 gas

Page 21: Electrochemistry

Pt electrodeH2 gas

68

5.5 Metal Standard Potentials

standard hydrogen electrode= reference potential

E0 = 0 V

metal electrode / metal salt solutionat standard conditions= standard metal potential

M ð Mz+ + ze-

p = 1,01325 barT = 25°cc(Mz+ ) = 1 mol / l

pH < 6 precipitation prevention

Page 22: Electrochemistry

5.5.1 Metal Standard Potential Tables

Red Ox z E0 [Volt] K K+ +1 - 2,93

Na Na+ +1 - 2,71 Zn Zn2+ +2 - 0,76 Fe Fe2+ +2 - 0,44 Pb Pb2+ +2 - 0,13 H2 2 H+ +2 0,00 Cu Cu2+ +2 + 0,34 Ag Ag+ +1 + 0,80 Au Au3+ +3 + 1,50

pH-dependant

Page 23: Electrochemistry

Galvanic Corrosion Potential Chart K, Na, Mg, Al, Zn, Fe, Pb, Cu, Ag, Au

passivation of Al, Mg, Mn, Cralternative corrosion potential charts for industrial materials

5.5.2 Calvanic Corrosion Potential Chart

cathodeleast noble

corroded metalsstrong oxidation affinity

negative oxidation potential

anodemost nobleprotected metalsweak oxidation affinitypositive oxidation potential

Page 24: Electrochemistry

5.6.3 Exercise: Gibbs Free Energy

What happens if ΔG = 0

Page 25: Electrochemistry

5.7 NERNST‘s Equation 1

electrode potential dependency on temperature and concentration

E = measured cell potentialE0 = standard reaction potentialR = gas constant ( 8,3145 J . mol-1 . K-1)T = Kelvin temperaturez = chargesF = Faraday’s constant[ ] = concentration of oxidant / reductant in mol / l

][][ln0 red

oxFzTREE

Page 26: Electrochemistry

5.7.1 NERNST’s Equation 2

1. type electrode ( = metal electrode in metal salt solution)

[red] = const

E = measured cell potentialE0 = standard reaction potentialR = gas constant ( 8,3145 J . mol-1 . K-1)T = Kelvin temperaturez = chargesF = Faraday’s constant[ox] = concentrationen of oxidant in mol / l

][ln05916,0:25][ln 00 oxz

EECoxFzTREE

Page 27: Electrochemistry

5.7.2 Exercise: Maximum Electrical Voltage

1. Calculate the maximum electrical voltage for the Daniell element when standard conditions !

Daniell Element: Cu/Cu++//Zn++/Zn Cu/Cu++/ +0,34 V Zn++/Zn/ +0,76 V S = + 1,1 V

2. Calculate the maximum electrical voltage for a galvanic cell with Ni/Ni++//Zn++/Zn when standard conditions !

Ni/Ni++// -0,23 V Zn++/Zn/ +0,76 V S = + 0,53 V

Page 28: Electrochemistry

5.7.3 Exercise: Nernst Equation

What is the electrode potential for a silver electrode at 0°C when the Ag+ concentration is 1 mol ?

][824,0024,08,0

]1[ln105,961

15,273314,88,0

:0

3

VE

E

C

][

][

][][

][ln

:

0

VsA

JV

sAKmolmolKJVV

oxFzTREE

RT

Page 29: Electrochemistry

5.8 Ag / AgCl Electrode

2. type electrode = metal electrode in saturated metal salt solution= electrode with constant potential (no concentration changes)

T = 25 °C:1 m KCl E0 = + 0,220 Vsat. KCl E0 = + 0,1958 V

constAg

constLl

molClAgL

][

107,1][][ 2

210

Ag

AgClsat

K+

Ag+

Cl-

Page 30: Electrochemistry

5.8.1 Concentration Cells

• Cu(s) | Cu2+ (0.05 M) || Cu2+ (2.0 M) | Cu(s)

• half cell reactions : oxidation: Cu(s) → Cu2+ (0.05 M) + 2

e– reduction: Cu2+ (2.0 M) + 2 e– → Cu(s) overall reaction: Cu2+ (2.0 M) → Cu2+ (0.05 M)

• cell's emf :

• E = E°- (0.05916\2) log [0,05/2] = 0.0474 V

• E° = 0 , (electrodes and ions are the same in both half-cells)

Page 31: Electrochemistry

5.15 Dry Cells

Leclanché's cell – anode is a zinc container surrounded by a thin layer of MnO2 – Cathode a carbon bar inserted on the cell's electrolyte– moist electrolyte paste NH4Cl + ZnCl2 mixed with starch

Anode: Zn(s) → Zn2+(aq) + 2 e–

Cathode: 2 NH4+(aq) + 2 MnO2(s) + 2 e– → Mn2O3(s) + 2 NH3(aq) +

H2O(l) Overall reaction:

Zn(s) + 2 NH4+(aq) + 2 MnO2(s) → Zn2+

(aq) + Mn2O3(s) + 2 NH3(aq) + H2O(l)

E = ~ 1.5 V

moist electrolyte paste

Page 32: Electrochemistry

5.16 Zn Battery

Graphics: http://en.wikipedia.org/wiki/File:Zincbattery.png

Page 33: Electrochemistry

5.17 Mercury Battery

amalgamated anode of mercury and zinc surrounded by a stronger alkaline electrolyte and a paste of ZnO and HgO

Mercury battery half reactions are shown below:

Anode: Zn(Hg) + 2 OH–(aq) → ZnO(s) +

H2O(l) + 2 e–

Cathode: HgO(s) + H2O(l) + 2 e– → Hg(l) + 2 OH–

(aq)

Overall reaction: Zn(Hg) + HgO(s) → ZnO(s) + Hg(l)

no changes in the electrolyte's composition when working1.35 V of direct currentNot rechargeableGraphics: http://en.wikipedia.org/wiki/File:Mercurybattery.png

Page 34: Electrochemistry

5.18 Lead-Acid battery

six identical cells assembled in series (6 x 2V ) = 12 Vlead anode lead dioxide cathode Electrolyte sulfuric acid

Anode: Pb(s) + SO42–

(aq) → PbSO4(s) + 2 e–

Cathode: PbO2(s) + 4 H+(aq) + SO4

2–(aq) + 2 e– → PbSO4(s)

+ 2 H2O(l)Overall reaction: Pb(s) + PbO2(s) + 4 H+

(aq) + 2 SO42–

(aq) → 2 PbSO4(s) + 2 H2O(l)

Rechargeable (external voltage electrolysis of the products)

http://en.wikipedia.org/wiki/Lithium-ion_battery

Page 35: Electrochemistry

5.19 Lithium rechargeable battery (1)

Positive electrodesElectrode material Average potential difference Specific capacity Specific energyLiCoO2 3.7 V 140 mA·h/g 0.518 kW·h/kgLiMn2O4 4.0 V 100 mA·h/g 0.400 kW·h/kgLiNiO2 3.5 V 180 mA·h/g 0.630 kW·h/kgLiFePO4 3.3 V 150 mA·h/g 0.495 kW·h/kg Li2FePO4F 3.6 V 115 mA·h/g 0.414 kW·h/kgLiCo1/3Ni1/3Mn1/3O2 3.6 V 160 mA·h/g 0.576 kW·h/kgLi(LiaNixMnyCoz)O2 4.2 V 220 mA·h/g 0.920 kW·h/kgNegative electrodesGraphite (LiC6) 0.1-0.2 V 372 mA·h/g 0.0372-0.0744

kW·h/kgHard Carbon (LiC6) Titanate (Li4Ti5O12) 1-2 V 160 mA·h/g 0.16-0.32 kW·h/kgSi (Li4.4Si)[27] 0.5-1 V 4212 mA·h/g 2.106-4.212 kW·h/kgGe (Li4.4Ge)[28] 0.7-1.2 V 1624 mA·h/g 1.137-1.949 kW·h/kg

Page 36: Electrochemistry

Lithium rechargeable battery (2)

22

22

6

212

6

CoOLiLiCoO

CoOOLiLiCoOLi

CLiCxexLi

xexLiCoOLiLiCoO

x

x

The following equations are in units of moles, making it possible to use the coefficient x.

Overdischarge supersaturates lithium cobalt oxide, leading to the production of lithium oxide

Overcharge up to 5.2 Volts leads to the synthesis of cobalt(IV) oxide

In a lithium-ion battery the lithium ions are transported to and from the cathode or anode, with the transition metal, cobalt (Co), in LixCoO2 being oxidized from Co3+ to Co4+ during charging, and reduced from Co4+ to Co3+ during discharge.

http://en.wikipedia.org/wiki/Lithium-ion_battery

Page 37: Electrochemistry

Exercises 1

1. What is the internal energy of 1 mole Ar at 0°C ?2. What is the volume of 1 mole hydrogen gas at 25 °C ?3. What is the entropy change in 1 mole hydrogen gas at standard

conditions when increasing the volume to DV = 1 m3 ?4. The equilibrium constant for acetic acid in water at 25°C is 4,76.

What is Gibbs Free Energy at that temperature ?5. Calculate the maximum electrical voltage for the DANIELL element

when normal pressure and 10 °C !6. Calculate the maximum electrical voltage for a galvanic cell with

Ni/Ni++//Zn++/Zn when normal pressure and 10 °C !7. Explain the difference between a galvanic and an electrolytic cell !8. What is the standard hydrogen potential ?

Page 38: Electrochemistry

Exercises 2

9. What is the standard metal potential ?10. How can you decide whether an ion will precipitated at a given electrode ?11. What is the electrode potential for a silver electrode at 10°C when the Ag+

concentration is 1 mol ?12. How can you calculate the amount of elementary metal to be formed on an

electrode ?13. How can you calculate the maximum energy which can be obtained from a

battery14. Explain the chemical potential !16. Explain the lead/acid battery !17. Explain the mercury battery !

Page 39: Electrochemistry

Web Links

• http://en.wikipedia.org/wiki/Electrochemistry#Principles• http://www.jesuitnola.org/upload/clark/TeachResource.htm • http://goldbook.iupac.org/

Page 40: Electrochemistry

References

• A. Burrows, A. Parsons , G. Price, J. Holman , G. Pilling; Chemistry: Introducing inorganic, organic and physical chemistry ; Oxford University Press 2009

• J. Hoinkins; E. Lindner; Chemie für Ingenieure; Verlag: Wiley-VCH Verlag GmbH & Co. KGaA, 2007

• P.W. Attkins; L. Jobnes; Chemie – einfach alles; Verlag: Wiley-VCH Verlag GmbH & Co. KGaA, 2006

• Römpp‘s Chemie Lexikon• DTV-Atlas zur Chemie