52
Electrochemical Energy Storage beyond Li Technology Challenges and Perspectives Maximilian Fichtner , Helen Maria-Joseph, Mario Ruben, Ping Gao, Zhirong Zhao-Karger DPG Tagung, Bad Honnef, 2017

Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

Electrochemical Energy Storage beyond Li

Technology – Challenges and Perspectives

Maximilian Fichtner, Helen Maria-Joseph, Mario Ruben, Ping Gao, Zhirong Zhao-Karger

DPG Tagung, Bad Honnef, 2017

Page 2: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

2DPG Tagung | 6. April 2017

Content

Introduction HIU

Motivation for the topic

New storage concept for Li ions

Post-Li Systems

Secondary Mg sulfur cells

Organic cathodes

Outlook

Page 3: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

3DPG Tagung | 6. April 2017

HIU was founded on Jan 17, 2011 as a future

National Center of Excellence for Battery Research

Its mission is application-oriented basic research on new materials and

concepts for electrochemical energy storage.

Selected expertise is combined of all four partners, integrating research activities in

the areas:

Electrochemistry – Materials – Theory – Methods – Systems

research is integrated in the application-oriented programmatic research of the

Helmholtz Association (Research Area ENERGY).

The Helmholtz Institute Ulm and its mission

2016: 130 publications on Li (92) and post-Li (38) topics;

work was presented on 12 covers of international journals

Page 4: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

4DPG Tagung | 6. April 2017

Scientific roadblocks / grand challenges are adressed

Systematic, rational approach leading to knowledge base and model development

(courtesy of A. Latz)

Enhancing the ionic mobility

in solids and liquids

Controlling the electronic

and ionic transfer across

interfaces

Enhancing the reversibility

on the microscale in the

solid state

Controlling the behavior

of systems beyond

thermodynamic stability

„Grand Challenges“ in Battery Research

Page 5: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

5DPG Tagung | 6. April 2017

Research Topics at HIU

Electrochemistry

Methods

Systems

Theory

Materials

Metal

Deposition &

Interfaces

Insertion

Materials for Li

Li based

conversion

materials and

alloys

Post-Li

systems

Page 6: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

6DPG Tagung | 6. April 2017

HIU New Building

http://www.hiu-batteries.de/de/

Location: Campus Ulm University

Labs & offices: 2.500 m2

Staff: about 110 employees(69 FTE)including 21 PIs

Inauguration: 31. Oktober 2014Total cost: 13 Mill €

Page 7: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

7DPG Tagung | 6. April 2017

• New Storage Concepts

• New Materials

• Modelling

• Systems

Battery research at Ulm

ca. 300 employees at Ulm

• Fundamental electrochemistry

• Surfaces/Interfaces

• theoret. modelling

• System modelling

• Biggest experimental

cell manufacturing line

• Materials upscale

• Safety

e-Lab Ulm

Ulm in 2016:

205 publications on batteries, including 116 on Li ion and 40 on post-Li systems

Page 8: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

8DPG Tagung | 6. April 2017

Evolutionary versus revolutionary materials

Gravimetric energy density (Wh/kg)

Li-ion

Ca/CoF3

Chlorides

Mg/CuCl2

Ca/CuCl2

Li/CuCl2

Fluorides

La/CoF3

Ca/CoF3

Li/FeF3

Li/CuF2

Selected battery

concepts

Lithium ion

batteries

Metal sulphur

batteries

Metal oxygen

batteries

Novel battery

chemistries

Liquid metal

batteries

LiC6 / NMC

Volu

metr

icene

rgy

density

(Wh/l)

Mg

batteries

Metal

Sulphur

Li/S

Mg/S

Metal-

Air

Li/O2

Mg/O2

Zn/O2Na/O2

Energy Transition and Energy Storage

Page 9: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

9DPG Tagung | 6. April 2017

Weltweite Erzeugung von nicht-erneuerbaren Energieträgern

EWG, Fossil and Nuclear Fuels – the Supply Outlook (March 2013)

2017Million Tonnen Ölequivalent (Mtoe)

(including shale gas)

Why an energy transition?

Page 10: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

10DPG Tagung | 6. April 2017

On a historical timescale…

The age of fossil (and nuclear fission) energy

Page 11: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

11DPG Tagung | 6. April 2017

Why storage and which type?

short-term storage grid stabilization (fly wheels, capacitors)

hourly storage distriution of peaks over the day (pump storage, Batteries)

daily-/weekly storage seasonal storage (H2 in caverns, „power-to-gas“)

Solar

daily electricity

consumption

Wind

Page 12: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

12DPG Tagung | 6. April 2017

TenneT Netz:40% of installed wind

energy in Germany

Number (2015): 26.772 turbines1)

Power: 45 GW1)

(> 27% of conventionalpower plant

capacity)

Electricity production 2015: 86 TWh2)

(13,3% of annual consumption)

1) Bundesverb. Windenergie, 2016

2) Strom-Report.de, 2016

Wind energy and the electric grid

Page 13: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

13DPG Tagung | 6. April 2017

8,000 MWh

corresponds to ca. 4 Mio.battery cars on grid with 2 kWh buffer each

Pumped hydro

0

2000

4000

6000

8000

(MW)

Buffer for some minutes to hours

Pump storage Goldisthal,

Thüringen

= the largest hydropower

plant in Germany

Oct 1 Oct 3 Oct 5 Oct 7 Oct 9 Oct 11 Oct 13

40 Mio

PKW

Page 14: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

14DPG Tagung | 6. April 2017

Energy content of cavern filled with hydrogen gas (2 Mio. m3

Volume):

600,000 MWh(= 3.6 Mio. tank fillings)

Only H2 allows efficient storage with supply over weeks.

H storage in salt caverns / power-to-gas

0

2000

4000

6000

8000

(MW)

Source: KBB Underground

Oct 1 Oct 3 Oct 5 Oct 7 Oct 9 Oct 11 Oct 13

H2

H2 Speicher

H2 + air (O2) + water

Page 15: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

15DPG Tagung | 6. April 2017

Evolutionary versus revolutionary materials

Gravimetric energy density (Wh/kg)

Li-ion

Ca/CoF3

Chlorides

Mg/CuCl2

Ca/CuCl2

Li/CuCl2

Fluorides

La/CoF3

Ca/CoF3

Li/FeF3

Li/CuF2

Selected battery

concepts

Lithium ion

batteries

Metal sulphur

batteries

Metal oxygen

batteries

Novel battery

chemistries

Liquid metal

batteries

LiC6 / NMC

Volu

metr

icene

rgy

density

(Wh/l)

Mg

batteries

Metal

Sulphur

Li/S

Mg/S

Metal-

Air

Li/O2

Mg/O2

Zn/O2Na/O2

General situation in battery development

Page 16: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

16DPG Tagung | 6. April 2017

Speicherung Erneuerbarer Energie mit Batterien

stationär

portabel

mobil

Page 17: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

17DPG Tagung | 6. April 2017

Motivation for building “better” batteries

Sustainability

• elemental abundance

• recyclability

• ecological footprint

• toxicity

Better Batteries

• cost

• energy density

• power

• safety

Page 18: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

18DPG Tagung | 6. April 2017

Theoretical and practical energy density

0

100

200

300

400

500

600

700

Gra

vim

etr

ic e

nerg

y d

en

sit

y

(Wh

kg

-1)

NMC lab

cell

NMC

cell levelNMC

battery

level

Materials

challenge Engineering

challenge

Fac

tor

4

NMC

theor.

value

NMC: Li(Ni,Mn,Co)O2

Theoretical

Practical

Values for NMC from: http://msdssearch.dow.com

Page 19: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

19DPG Tagung | 6. April 2017

Gravimetric energy density (Wh/kg)

Li-ion

Ca/CoF3

Chlorides

Mg/CuCl2

Ca/CuCl2

Li/CuCl2

Fluorides

La/CoF3

Ca/CoF3

Li/FeF3

Li/CuF2

LiC6 / NMC

Volu

metr

icenerg

ydensity

(Wh/l)

Mg

batteries

Metal

Sulphur

Li/S

Mg/S

Metal-

Air

Li/O2

Mg/O2

Na/O2

Zn/O2

Na-ion

Hard-C /

NaNMC

Li Rich FCC materials

Li2VO2F

Li2CrO2F

Evolutionary versus revolutionary materials

Theoretical numbers of electrochemical couples

Page 20: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

20DPG Tagung | 6. April 2017

Evolutionary versus revolutionary materials

Gravimetric energy density (Wh/kg)

Li-ion

Ca/CoF3

Chlorides

Mg/CuCl2

Ca/CuCl2

Li/CuCl2

Fluorides

La/CoF3

Ca/CoF3

Li/FeF3

Li/CuF2

Selected battery

concepts

Lithium ion

batteries

Metal sulphur

batteries

Metal oxygen

batteries

Novel battery

chemistries

Liquid metal

batteries

LiC6 / NMC

Volu

metr

icene

rgy

density

(Wh/l)

Mg

batteries

Metal

Sulphur

Li/S

Mg/S

Metal-

Air

Li/O2

Mg/O2

Zn/O2Na/O2

A new way for storing lithium ions

Page 21: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

21DPG Tagung | 6. April 2017

Storage on site rather than interstitial storage

Not by classical intercalation, and not by conversion, but by

storage on lattice sites of a cubic cation disordered material.

Paradigm change in storing Li

LiFePO4

Ref. J. Molenda (2011)

„Li rich fcc materials“

R. Chen, M. Fichtner et al., Adv. Energy Mater. (2015)

Page 22: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

22DPG Tagung | 6. April 2017

Neutron diffraction pattern (FRM-II, Garching)

Li sensitive

Structure of Li2VO2F

Li2VO2F

66% of cation sites occupied by Li

When Li+ ions are extracted from the lattice, a Li-vacancy reordering may occur to relieve

the electrostatic repulsion, and to minimize the delithiation-induced lattice strain and

volume change.

Page 23: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

23DPG Tagung | 6. April 2017

Ionic conductivity of Li2VO2F

Arrhenius plot of bulk ac

electrical conductivity of a

Li2VO2F pellet at various

temperatures.

Ea at 25 °C

Li2VO2F: 185 meV

LiFePO4: 600 meV

Page 24: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

24DPG Tagung | 6. April 2017

The Energy Loss Near Edge Structure Upon Charging

ELNES of V L 2,3 and O K-edges of pristine Li2VO2 F and

sample charged to 4.1 V.

Well separated V L3 (518 eV) and

L2 -edges (524.2 eV) owing to the

V 2p–3d dipole transition.

Upon charging to 4.1 V:

V L-edges shift by about 1 eV to

higher energy loss (with a

maximum of 519 eV for the V L3 -

edge, typical for V5+.

(ref.: J. G. Chen et al., Surf. Sci. 1994 , 321 ,

145)

V3+ V5+

Page 25: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

25DPG Tagung | 6. April 2017

Cycling of full cell

Stable slope; no voltage fading

1 M LiPF6 in EC/DMC (1:1) electrolyte

based on cathode weight

R. Chen et al., Adv. Energy Mater. (2015)

Page 26: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

26DPG Tagung | 6. April 2017

Evolutionary versus revolutionary materials

Gravimetric energy density (Wh/kg)

Li-ion

Ca/CoF3

Chlorides

Mg/CuCl2

Ca/CuCl2

Li/CuCl2

Fluorides

La/CoF3

Ca/CoF3

Li/FeF3

Li/CuF2

Selected battery

concepts

Lithium ion

batteries

Metal sulphur

batteries

Metal oxygen

batteries

Novel battery

chemistries

Liquid metal

batteries

LiC6 / NMC

Volu

metr

icene

rgy

density

(Wh/l)

Mg

batteries

Metal

Sulphur

Li/S

Mg/S

Metal-

Air

Li/O2

Mg/O2

Zn/O2Na/O2

Post Li ion and post-Li systems

Page 27: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

27DPG Tagung | 6. April 2017

Motivation / Energy Density, Abundance

No dendritesDendrite formation

LiC6

Page 28: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

28DPG Tagung | 6. April 2017

(ref. Avicenne Energy Studies, 2016)

Cathode (currently NMC: NixMnyCozO2)

Cobalt • expensive

• co-mined with Ni

• children labour

• Co resources+reserves last for 85 Mio. battery cars

Active materials in cathodes, worldwide market

Strong increase in LIB production expected

Reality overhauls predictions

Motivation / Element supply

Anode:

Cell needs 100 – 160 g Li / kWh

Germany: 40 Mio cars running on LIB will consume 15 x the current worldwide Li

production. On the long run: will there be a cost-effective recycling?

Page 29: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

29DPG Tagung | 6. April 2017

Evolutionary versus revolutionary materials

Gravimetric energy density (Wh/kg)

Li-ion

Ca/CoF3

Chlorides

Mg/CuCl2

Ca/CuCl2

Li/CuCl2

Fluorides

La/CoF3

Ca/CoF3

Li/FeF3

Li/CuF2

Selected battery

concepts

Lithium ion

batteries

Metal sulphur

batteries

Metal oxygen

batteries

Novel battery

chemistries

Liquid metal

batteries

LiC6 / NMC

Volu

metr

icene

rgy

density

(Wh/l)

Mg

batteries

Metal

Sulphur

Li/S

Mg/S

Metal-

Air

Li/O2

Mg/O2

Zn/O2Na/O2

Replace cathode and anode:

Mg sulfur batteries

Page 30: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

30DPG Tagung | 6. April 2017

Chloride Ion Batteries

VOCl as cathode

P. Gao, M. Fichtner et al., Angew. Chemie Int. Ed. 53 (2016) 4285

0 30 60 90 120 150 180

1,2

1,6

2,0

2,4

2,8

1st10th

Volta

ge / V

Capacity (mAh/g)

@ 0.5 C rate

0 10 20 30 40 50

30

60

90

120

150

180

2 C0.5 C1 C

1 C0.5 C

Ca

pa

city (

mA

h/g

)

Cycle number

The theoretical capacity is 261 mAh g-1 based on 1 mol e-

transfer;

< 0.7 e- should be kept in practice to avoid structural

collapse

Rate performance

0.5 mol PP14Cl in PC as electrolyte

Mixed intercalation and conversion mechanism

stable in air

Page 31: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

31DPG Tagung | 6. April 2017

Mg2+

e-

e-

Anode Cathode

discharge

charge

Mg

Mg offers good handling and operational safety.

No dendrite formation with Mg metal as anode major safety issue with Li metal batteries.

Mg is naturally 1000x more abundant on earth than Li.

Mg/S offers theoretical 3200 Wh/L compared to theoretical 2800 Wh/L for Li/S

But: Sulfur cathode needs non-nucleophilic electrolyte for Mg!

Properties of Magnesium and Lithium

Li Mg

Atomic weight 6.9 24.3

Ionic radius 90 pm 86 pm

Ionic charge + 1 + 2

Reduction potential - 3.04 V - 2.37 V

Density 0.53 g/cm3 1.74 g/cm3

Gravimetric capacity3861 mAh/g (Li)

372 mAh/g (LiC6)2205 mAh/g

Volumetric capacity 2061 mAh/cm3 3832 mAh/cm3

Page 32: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

32DPG Tagung | 6. April 2017

First

Electrolytes,

Grignard-based

Electrolytes:

Lewis acid-base complexes

Mg2Cl3+ [A]-

nucleophilic !

Electrolytes:

Lewis acid-base complexes

Mg2Cl3+ [A]-

non-nucleophilic !

Electrolytes:

Mg-salts with big anions

Mg2+ [A]-

non-nucleophilic

Cl-free

Gregory, 1988

2000

2011

2016

Electrolyte development is key

Sulfur can be easily reduced

and needs non-nucleophilic

electrolyte

Page 33: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

33DPG Tagung | 6. April 2017

M. Fichtner et al., EP 2824751A1 (2013)

Zh. Zhao-Karger et al., RSC Advances 3 (2013)

Zh. Zhao-Karger et al., RSC Advances 4 (2014)

Zh. Zhao-Karger et al., Adv. Energy Mater. 5

(2015) 1401155

B.P. Vinayan et al., Nanoscale 8 (2016) 3295

New non-nucleophilic and powerful

electrolyte.

Simple to make from standard materials in

various solvents.

Stable up to 3.9 V

First reversible Mg-S cells

Adv. Energy Mater. (2015)

Page 34: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

34DPG Tagung | 6. April 2017

Single crystal XRD

½ [Mg2Cl3][(HMDS)AlCl3] + 3/2 (HMDS)AlCl2

(HMDS)2Mg + 2AlCl3

ORTEP plot of

[Mg2(µ-Cl)3·6THF] [HMDS·AlCl3]·THF

(H atoms are omitted for clarity)

Mg2(μ-Cl)3·6THF]+·THF [HMDS AlCl3]-

Mg dichloro-complex

glymes, THF, IL, DME,….

Features

• non-nucleophilic

• versatility w. solvents

• up to 2 M Mg2+ solutions

• 99% electrolyte efficiency

• stability up to 3.9 V

• used in-situ

Zh. Zhao-Karger, M. Fichtner, et al. RSC Adv. (2013)

Zh. Zhao-Karger, M. Fichtner, et al., Adv. Energy Mater. (2015)

Page 35: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

35DPG Tagung | 6. April 2017

A. Manthiram et al., ACS Energy Lett. (2016)

Zh. Zhao-Karger, M. Fichtner, et al.,

Adv. Energy Mater. (2015)

Mg2(μ-Cl)3·6THF]+·THF [HMDS AlCl3]-

Improvement by engineering, e.g. of separator

Page 36: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

36DPG Tagung | 6. April 2017

A novel Cl-free electrolyte

Mg[L] / DEG-TEG

• Mg [L] with big boron-based anion, easy to synthesize

• Cl-free salt

• soluble in ethers

• non-nucleophilic

• 3.8 V stability limit

• > 98% efficiency

Zh. Zhao-Karger, E.G. Bardaji M. Fichtner, J. Mater. Chem. A (2017) online

uncoated separator

Page 37: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

37DPG Tagung | 6. April 2017

• Improved strategy for calculating redox potentials

Study association energies of Mg-ions with candidate anions in solvents

screening for anion-solvent interactions (avoid stronger interaction reduced kinetics)

Screening of Electrolytes for Mg-Ion Batteries (J. E. Mueller)

+

Z. Zhao-Karger, J. E. Mueller, X. Zhao, O. Fuhr, T. Jacob, M. Fichtner, RSC Adv., 2014, 4, 26924

Page 38: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

38DPG Tagung | 6. April 2017

Major issues to be solved

• Kinetic barriers / overpotentials are still too high

• Role of surface layers on Mg?

• Reversibility

• Fate of the sulfur in the system

Page 39: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

39DPG Tagung | 6. April 2017

Evolutionary versus revolutionary materials

Gravimetric energy density (Wh/kg)

Li-ion

Ca/CoF3

Chlorides

Mg/CuCl2

Ca/CuCl2

Li/CuCl2

Fluorides

La/CoF3

Ca/CoF3

Li/FeF3

Li/CuF2

Selected battery

concepts

Lithium ion

batteries

Metal sulphur

batteries

Metal oxygen

batteries

Novel battery

chemistries

Liquid metal

batteries

LiC6 / NMC

Volu

metr

icene

rgy

density

(Wh/l)

Mg

batteries

Metal

Sulphur

Li/S

Mg/S

Metal-

Air

Li/O2

Mg/O2

Zn/O2Na/O2

Organic electrodes

Page 40: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

40DPG Tagung | 6. April 2017

Organic electrodes

Good theoretical capacity

Structural diversity and flexibility

Tunable properties

Good safety

Low cost

Easy processing

Sustainability and environmental

friendliness

Broad field of applications:

o Li, Na and Mg based batteries

o supercapacitors

o redox flow batteries

o all-organic batteries

Z. Song & H. Zhou, Energy Environ. Sci., 2013, 6, 2280.

Page 41: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

41DPG Tagung | 6. April 2017

A new class of highly conjugated porphyrin complex enabling high performance of rechargeable batteries

Porphyrins

N

N N

N

N

NH N

HN

SiSi

N

NH N

HN

BrBr

Si

5%mol Pd(PPh3)4, 5%mol CuI

THF/Et3N

2

yield 52%

yield 80%

THF/CH2Cl2

N

N N

N

SiSi

Cu(OAc)2.2H2O

THF/Et3N

TBAFCuCu

yield 95%

3

1 4

Hemocyanin-derived

(Molluscs, Arthropoda)

4 electron transfer from 16 to 20 𝜋 electrons; OCV vs. Li: 3.0 V

RR

Page 42: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

42DPG Tagung | 6. April 2017

Structure: self-assembly of porphyrin

Single crystal data

cation-π-stacking (staircase structure)

P.Gao, M. Fichtner et al., submitted (2017)

3.2 Å interlayer distance

Page 43: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

43DPG Tagung | 6. April 2017

CuDEPP, electronic structure

[5,15-Bis(ethynyl)-10,20-diphenylporphinato]copper(II)

18 π aromatic compound

CuDEPP

Small HOMO-LUMO gap allows facile electrons exchange

DFT-B3LYP by

J. Muller, Ch. Jung

CuDEPPCuDEPP2- dimer

Page 44: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

44DPG Tagung | 6. April 2017

Working principle

Rechargeable batteries based on porphyrin

CuDEPP

Theoret. capacity: 187 mA h g-1 (four electrons)

Porphyrin works as both electron donor and acceptor

Cu2+ center does not participate

Page 45: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

45DPG Tagung | 6. April 2017

100 200 300 400 5000

20

40

60

80

100

Temperature/ (oC)

TG

Heat flowWe

igh

t lo

ss/ (%

)

0

25

50

75

100

125

150

175

He

at flo

w/

(mW

)

TGA-DSC in air

2.0 2.5 3.0 3.5 4.0 4.5-0.02

0.00

0.02

0.04

Cu

rre

nt/

mA

Voltage/ V

1st

2nd

3rd

4th

5th

Thermal stability, electrochemistry

CV of the first 5 cycles

0.1 mV/s

2 reversible features

CuDEPP2+ CuDEPP CuDEPP2-

Page 46: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

46DPG Tagung | 6. April 2017

Irreversible feature in 1st cycle

as-prepared electrode after initial cycle

P.Gao, M. Fichtner et al., submitted (2017)

Bedioui, F. et al., Acc. Chem. Res. (1995)

Electropolymerization

IR data

Page 47: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

47DPG Tagung | 6. April 2017

Rate performance and cycling

Cell: Li / LiPF6 / CuDEPP

Page 48: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

48DPG Tagung | 6. April 2017

Ragone Plot

Power density

measured up to 30

kW/kg

Cell 1: Li/LiPF6/CuDEPP (as cathode)

Cell 2: CuDEPP/PP14TFSI/Graphite (as anode)

P. Gao, Z. Zhao-Karger, M. Fichtner et al.,

WO Application and paper submitted (2017)

Page 49: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

49DPG Tagung | 6. April 2017

Physicists ?

■ theoretical modeling on all levels:

- atomistic level: prediction of materials structure, thermodynamics and kinetics

- interfaces under electrochemical working conditions

- transport combined with reaction kinetics on a mesoscale up to micron range

■ Structure-property relationships of new materials

■ Processes at interfaces (very crucial…)

■ Elucidating mechanistic and structural details while the material is operating.

■ ….

Yes, the development of new storage materials is governed by synthetic and

physical chemists

but phycisists can be experts for …

Page 50: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

50DPG Tagung | 6. April 2017

The „Sea of Battery Research“

future

Big sea of

paradigmatic

research

Creators of new

paradigms and of

follow-up research

Few frontrunners

unknow

ing

kn

ow

ing

Paradigms in:

- Storage principle

- Materials classes

- Analytics

- Modelling

- …

Page 51: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

51DPG Tagung | 6. April 2017

Christian Baur

Bhaghavathi Parambath Vinayan

Christian Bonatto Minella

Tobias Braun

Musa Ali Cambaz

Johann Chable

Christina Danetzki

Ping Gao

Franziska Klein

Xiu-Mei Lin

Helen Maria Joseph

Anji Reddy Munnangi

Maxim Pfeifer

Sebastian Wenzel

Zijian Zhao

Zhirong Zhao-Karger

Maximilian Fichtner

The Group

from KIT:modelling:

J. Mueller

M. Ruben Z. Chen

Page 52: Electrochemical Energy Storage beyond Li Technology … · 2017-04-27 · Electrochemical Energy Storage beyond Li Technology –Challenges and Perspectives Maximilian Fichtner, Helen

52DPG Tagung | 6. April 2017

Thank you !

http://www.hiu-batteries.de/de/