91
Linear transformations on plane Eigen values Markov Matrices Eigenvalues, eigenvectors and applications Dr. D. Sukumar Department of Mathematics Indian Institute of Technology Hyderabad Recent Trends in Applied Sciences with Engineering Applications June 27-29, 2013 Department of Applied Science Government Engineering College,Kozhikode, Kerala Dr. D. Sukumar (IITH) Eigenvalues

Eigenvalues, eigenvectors and applicationssuku/kozhikode.pdfMarkov Matrices Eigen value and eigen vector Problem Big Problem Getting a common opinion from individual opinion From individual

Embed Size (px)

Citation preview

Linear transformations on planeEigen values

Markov Matrices

Eigenvalues, eigenvectors and applications

Dr. D. Sukumar

Department of MathematicsIndian Institute of Technology Hyderabad

Recent Trends in Applied Sciences with Engineering ApplicationsJune 27-29, 2013

Department of Applied ScienceGovernment Engineering College,Kozhikode, Kerala

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Maps which preserve

Origin

lines passing through origin

parallelograms with one corner as origin

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Outline

1 Linear transformations on planeTypical ExamplesProperties

2 Eigen valuesEigen value and eigen vector

3 Markov MatricesFormationInterpretationProperties

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Rotation

(0 −11 0

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Rotation

(0 −11 0

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Reflection

(1 00 −1

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Reflection

(1 00 −1

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Expansion

(2 00 2

)Compression

(1/2 0

0 1/2

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Expansion

(2 00 2

)Compression

(1/2 0

0 1/2

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Expansion

(2 00 2

)Compression

(1/2 0

0 1/2

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Multi-scaling or Stretching

(2 00 3

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Multi-scaling or Stretching

(2 00 3

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Projection

(1 00 0

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Projection

(1 00 0

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Shear transformation

(1 10 1

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Shear transformation

(1 10 1

)

-1 1 2-1

1

2

x

y

x

y

-1 1 2-1

1

2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Outline

1 Linear transformations on planeTypical ExamplesProperties

2 Eigen valuesEigen value and eigen vector

3 Markov MatricesFormationInterpretationProperties

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Properties

Area

Eigen vectors

Eigen values

Determinant

Diagonalizable

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Properties

Area

Eigen vectors

Eigen values

Determinant

Diagonalizable

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Properties

Area

Eigen vectors

Eigen values

Determinant

Diagonalizable

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Properties

Area

Eigen vectors

Eigen values

Determinant

Diagonalizable

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Properties

Area

Eigen vectors

Eigen values

Determinant

Diagonalizable

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

Typical ExamplesProperties

Table of properties

Map Area Fixed Dir Scale in FD Det DiagonableEigenvector Eigenvalue

Rotation 1 NO NO 1 NO

Reflection 1 x-axis, y -axis 1,-1 -1 Yes

Expansion 4 x-axis, y -axis 2, 2 4 YesCompression 1/4 x-axis, y -axis 1/2,1/2 1/4 Yes

Multi-scaling 6 x-axis, y -axis 2,3 6 Yes

Projection 0 x-axis, y -axis 1,0 0 Yes

Shear 1 x-axis 1 1 NO

Table: Properties

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Problem

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

Purpose

Showing all steps of this process using linear algebra

Mainly using eigenvalues and eigenvectors

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Problem

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

Purpose

Showing all steps of this process using linear algebra

Mainly using eigenvalues and eigenvectors

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Problem

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

Purpose

Showing all steps of this process using linear algebra

Mainly using eigenvalues and eigenvectors

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Problem

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

Purpose

Showing all steps of this process using linear algebra

Mainly using eigenvalues and eigenvectors

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Outline

1 Linear transformations on planeTypical ExamplesProperties

2 Eigen valuesEigen value and eigen vector

3 Markov MatricesFormationInterpretationProperties

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Eigen value

Let A a be square matrix.

Eigen values of A are solutions or roots of

det(A− λI ) = 0.

IfAx = λx or (A− λI )x = 0,

for a non-zero vector x then

λ is an eigenvalue of A andx is an eigenvector corresponding to the eigenvalue λ.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Eigen value

Let A a be square matrix.

Eigen values of A are solutions or roots of

det(A− λI ) = 0.

IfAx = λx or (A− λI )x = 0,

for a non-zero vector x then

λ is an eigenvalue of A andx is an eigenvector corresponding to the eigenvalue λ.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Eigen value

Let A a be square matrix.

Eigen values of A are solutions or roots of

det(A− λI ) = 0.

IfAx = λx or (A− λI )x = 0,

for a non-zero vector x then

λ is an eigenvalue of A and

x is an eigenvector corresponding to the eigenvalue λ.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Eigen value

Let A a be square matrix.

Eigen values of A are solutions or roots of

det(A− λI ) = 0.

IfAx = λx or (A− λI )x = 0,

for a non-zero vector x then

λ is an eigenvalue of A andx is an eigenvector corresponding to the eigenvalue λ.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Example

Consider the matrix A =

[2 53 0

].

Example (Eigen value)

A− λI =

[2 53 0

]− λ

[1 00 1

]=

[2− λ 5

3 −λ

]det(A− λI ) = (2− λ)(−λ)− (3× 5) = λ2 − 2λ− 15The roots of the polynomial are the eigen values: -3 and 5.

Example (When λ = −3)[2− (−3) 5

3 −(−3)

](x1x2

)=

(00

)Eigen vector

(−11

)Example (When λ = 5)[

2− 5 53 −5

](x1x2

)=

(00

)Eigen vector

(53

)

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Example

Consider the matrix A =

[2 53 0

].

Example (Eigen value)

A− λI =

[2 53 0

]− λ

[1 00 1

]=

[2− λ 5

3 −λ

]

det(A− λI ) = (2− λ)(−λ)− (3× 5) = λ2 − 2λ− 15The roots of the polynomial are the eigen values: -3 and 5.

Example (When λ = −3)[2− (−3) 5

3 −(−3)

](x1x2

)=

(00

)Eigen vector

(−11

)Example (When λ = 5)[

2− 5 53 −5

](x1x2

)=

(00

)Eigen vector

(53

)

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Example

Consider the matrix A =

[2 53 0

].

Example (Eigen value)

A− λI =

[2 53 0

]− λ

[1 00 1

]=

[2− λ 5

3 −λ

]det(A− λI ) = (2− λ)(−λ)− (3× 5) = λ2 − 2λ− 15

The roots of the polynomial are the eigen values: -3 and 5.

Example (When λ = −3)[2− (−3) 5

3 −(−3)

](x1x2

)=

(00

)Eigen vector

(−11

)Example (When λ = 5)[

2− 5 53 −5

](x1x2

)=

(00

)Eigen vector

(53

)

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Example

Consider the matrix A =

[2 53 0

].

Example (Eigen value)

A− λI =

[2 53 0

]− λ

[1 00 1

]=

[2− λ 5

3 −λ

]det(A− λI ) = (2− λ)(−λ)− (3× 5) = λ2 − 2λ− 15The roots of the polynomial are the eigen values: -3 and 5.

Example (When λ = −3)[2− (−3) 5

3 −(−3)

](x1x2

)=

(00

)Eigen vector

(−11

)Example (When λ = 5)[

2− 5 53 −5

](x1x2

)=

(00

)Eigen vector

(53

)

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Example

Consider the matrix A =

[2 53 0

].

Example (Eigen value)

A− λI =

[2 53 0

]− λ

[1 00 1

]=

[2− λ 5

3 −λ

]det(A− λI ) = (2− λ)(−λ)− (3× 5) = λ2 − 2λ− 15The roots of the polynomial are the eigen values: -3 and 5.

Example (When λ = −3)[2− (−3) 5

3 −(−3)

](x1x2

)=

(00

)Eigen vector

(−11

)

Example (When λ = 5)[2− 5 5

3 −5

](x1x2

)=

(00

)Eigen vector

(53

)

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

Example

Consider the matrix A =

[2 53 0

].

Example (Eigen value)

A− λI =

[2 53 0

]− λ

[1 00 1

]=

[2− λ 5

3 −λ

]det(A− λI ) = (2− λ)(−λ)− (3× 5) = λ2 − 2λ− 15The roots of the polynomial are the eigen values: -3 and 5.

Example (When λ = −3)[2− (−3) 5

3 −(−3)

](x1x2

)=

(00

)Eigen vector

(−11

)Example (When λ = 5)[

2− 5 53 −5

](x1x2

)=

(00

)Eigen vector

(53

)Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

For the matrix A =

[2 53 0

]the eigenvalues are -3 and 5

the eigenvector corresponding to -3 is

[−11

][

2 53 0

] [−11

]= −3

[−11

]

the eigenvector corresponding to 5 is

[53

][

2 53 0

] [53

]=

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

For the matrix A =

[2 53 0

]the eigenvalues are -3 and 5

the eigenvector corresponding to -3 is

[−11

][

2 53 0

] [−11

]=

[3−3

]= −3

[−11

]

the eigenvector corresponding to 5 is

[53

][

2 53 0

] [53

]=

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

For the matrix A =

[2 53 0

]the eigenvalues are -3 and 5

the eigenvector corresponding to -3 is

[−11

][

2 53 0

] [−11

]= −3

[−11

]

the eigenvector corresponding to 5 is

[53

][

2 53 0

] [53

]=

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

For the matrix A =

[2 53 0

]the eigenvalues are -3 and 5

the eigenvector corresponding to -3 is

[−11

][

2 53 0

] [−11

]= −3

[−11

]

the eigenvector corresponding to 5 is

[53

][

2 53 0

] [53

]=

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov MatricesEigen value and eigen vector

For the matrix A =

[2 53 0

]the eigenvalues are -3 and 5

the eigenvector corresponding to -3 is

[−11

][

2 53 0

] [−11

]= −3

[−11

]

the eigenvector corresponding to 5 is

[53

][

2 53 0

] [53

]= 5

[53

]

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Outline

1 Linear transformations on planeTypical ExamplesProperties

2 Eigen valuesEigen value and eigen vector

3 Markov MatricesFormationInterpretationProperties

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

5 Volunteers

1 Data: Each one should give your marking for each one ofyou.

For example: Isha: (I)100, (J)20, (K)50, (L)30, (M)0

2 Normalizing or averaging: How much you have given from thetotal marking

Total mark: 100+20+50+30+0=200Normal mark: , , , ,

3 Arranging: Writing them in a matrix form0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

5 Volunteers

1 Data: Each one should give your marking for each one ofyou. For example: Isha: (I)100, (J)20, (K)50, (L)30, (M)0

2 Normalizing or averaging: How much you have given from thetotal marking

Total mark: 100+20+50+30+0=200Normal mark: , , , ,

3 Arranging: Writing them in a matrix form0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

5 Volunteers

1 Data: Each one should give your marking for each one ofyou. For example: Isha: (I)100, (J)20, (K)50, (L)30, (M)0

2 Normalizing or averaging:

How much you have given from thetotal marking

Total mark: 100+20+50+30+0=200Normal mark: , , , ,

3 Arranging: Writing them in a matrix form0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

5 Volunteers

1 Data: Each one should give your marking for each one ofyou. For example: Isha: (I)100, (J)20, (K)50, (L)30, (M)0

2 Normalizing or averaging: How much you have given from thetotal marking

Total mark: 100+20+50+30+0=200

Normal mark: , , , ,

3 Arranging: Writing them in a matrix form0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

5 Volunteers

1 Data: Each one should give your marking for each one ofyou. For example: Isha: (I)100, (J)20, (K)50, (L)30, (M)0

2 Normalizing or averaging: How much you have given from thetotal marking

Total mark: 100+20+50+30+0=200Normal mark: 100/200, 20/200,50/200 , 30/200, 0/200

3 Arranging: Writing them in a matrix form0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

5 Volunteers

1 Data: Each one should give your marking for each one ofyou. For example: Isha: (I)100, (J)20, (K)50, (L)30, (M)0

2 Normalizing or averaging: How much you have given from thetotal marking

Total mark: 100+20+50+30+0=200Normal mark: 0.50, 0.1, 0.25, 0.15, 0.0

3 Arranging: Writing them in a matrix form0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

5 Volunteers

1 Data: Each one should give your marking for each one ofyou. For example: Isha: (I)100, (J)20, (K)50, (L)30, (M)0

2 Normalizing or averaging: How much you have given from thetotal marking

Total mark: 100+20+50+30+0=200Normal mark: 0.50, 0.1, 0.25, 0.15, 0.0

3 Arranging: Writing them in a matrix form0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Isha Jose Kumar Latha ManiIsha 0.5 0.8 0.0 0.4 0.2Jose 0.1 0.32 0.0 0.0 0.2

Kumar 0.25 0.24 1.0 0.0 0.2Latha 0.15 0.16 0.0 0.4 0.2Mani 0.0 0.2 0.0 0.2 0.2

↓ ↓ ↓ ↓ ↓sum is 1 1 1 1 1

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Markov Matrix

M =

m11 m12 · · · m1n

m21 m22 m2n...

......

mn1 mn2 mnn

n×n

Definition (Markov Matrix)

A real n × n matrix is called a Markov matrix if

1 Each entry is non-negative: mij ≥ 0 for all1 ≤ i ≤ n, 1 ≤ j ≤ n.

2 Each column sum is 1:∑n

i=1mij = 1 for each 1 ≤ j ≤ n.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Markov Matrix

M =

m11 m12 · · · m1n

m21 m22 m2n...

......

mn1 mn2 mnn

n×n

Definition (Markov Matrix)

A real n × n matrix is called a Markov matrix if

1 Each entry is non-negative: mij ≥ 0 for all1 ≤ i ≤ n, 1 ≤ j ≤ n.

2 Each column sum is 1:∑n

i=1mij = 1 for each 1 ≤ j ≤ n.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Outline

1 Linear transformations on planeTypical ExamplesProperties

2 Eigen valuesEigen value and eigen vector

3 Markov MatricesFormationInterpretationProperties

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Interpretation

We have formed a Markov matrix from individual opinions.

If Isha’s opinion is full value then Isha is better than others.

If Jose’s opinion is full value then Isha is better than others.

If Mani’s opinion is full value then all are equal.

If all opinions are equal value then Isha is better than others.

If opinion has different value then Kumar is better than others.

0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

When the opinion values matches with the conclusion value?.For which opinion value we will get the same conclusion value.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Interpretation

We have formed a Markov matrix from individual opinions.

If Isha’s opinion is full value then Isha is better than others.

If Jose’s opinion is full value then Isha is better than others.

If Mani’s opinion is full value then all are equal.

If all opinions are equal value then Isha is better than others.

If opinion has different value then Kumar is better than others.

0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

10000

=

0.50.1

0.250.15

0

When the opinion values matches with the conclusion value?.For which opinion value we will get the same conclusion value.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Interpretation

We have formed a Markov matrix from individual opinions.

If Isha’s opinion is full value then Isha is better than others.

If Jose’s opinion is full value then Isha is better than others.

If Mani’s opinion is full value then all are equal.

If all opinions are equal value then Isha is better than others.

If opinion has different value then Kumar is better than others.

0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

01000

=

0.8

0.320.240.160.2

When the opinion values matches with the conclusion value?.For which opinion value we will get the same conclusion value.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Interpretation

We have formed a Markov matrix from individual opinions.

If Isha’s opinion is full value then Isha is better than others.

If Jose’s opinion is full value then Isha is better than others.

If Mani’s opinion is full value then all are equal.

If all opinions are equal value then Isha is better than others.

If opinion has different value then Kumar is better than others.

0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

00001

=

0.20.20.20.20.2

When the opinion values matches with the conclusion value?.For which opinion value we will get the same conclusion value.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Interpretation

We have formed a Markov matrix from individual opinions.

If Isha’s opinion is full value then Isha is better than others.

If Jose’s opinion is full value then Isha is better than others.

If Mani’s opinion is full value then all are equal.

If all opinions are equal value then Isha is better than others.

If opinion has different value then Kumar is better than others.

0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

0.20.20.20.20.2

=

0.3800.1240.3380.1820.120

When the opinion values matches with the conclusion value?.For which opinion value we will get the same conclusion value.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Interpretation

We have formed a Markov matrix from individual opinions.

If Isha’s opinion is full value then Isha is better than others.

If Jose’s opinion is full value then Isha is better than others.

If Mani’s opinion is full value then all are equal.

If all opinions are equal value then Isha is better than others.

If opinion has different value then Kumar is better than others.0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

0.20.40.10.20.1

=

0.3200.0720.3940.1860.100

When the opinion values matches with the conclusion value?.For which opinion value we will get the same conclusion value.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Interpretation

We have formed a Markov matrix from individual opinions.

If Isha’s opinion is full value then Isha is better than others.

If Jose’s opinion is full value then Isha is better than others.

If Mani’s opinion is full value then all are equal.

If all opinions are equal value then Isha is better than others.

If opinion has different value then Kumar is better than others.0.5 0.8 0.0 0.4 0.20.1 0.32 0.0 0.0 0.2

0.25 0.24 1.0 0.0 0.20.15 0.16 0.0 0.4 0.20.0 0.2 0.0 0.2 0.2

x1x2x3x3x4

=

x1x2x3x4x5

When the opinion values matches with the conclusion value?.For which opinion value we will get the same conclusion value.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

For a Markov matrix M, we need a stable opinion value x .

Find a vector x such that

Mx = x

For M, find an eigenvector x corresponding to eigenvalue 1.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

For a Markov matrix M, we need a stable opinion value x .

Find a vector x such that

Mx = x

For M, find an eigenvector x corresponding to eigenvalue 1.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

For a Markov matrix M, we need a stable opinion value x .

Find a vector x such that

Mx = x

For M, find an eigenvector x corresponding to eigenvalue 1.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

For a Markov matrix M, we need a stable opinion value x .

Find a vector x such that

Mx = x

For M, find an eigenvector x corresponding to eigenvalue 1.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Big Problem

Getting a common opinion from individual opinion

From individual preference to common preference

For a Markov matrix M, we need a stable opinion value x .

Find a vector x such that

Mx = x

For M, find an eigenvector x corresponding to eigenvalue 1.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Outline

1 Linear transformations on planeTypical ExamplesProperties

2 Eigen valuesEigen value and eigen vector

3 Markov MatricesFormationInterpretationProperties

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Properties

Theorem

For every Markov matrix 1 is surely an eigenvalue.

Proof.

For a Markov matrix M every column sum is 1. Consider the

transpose matrix MT . Now its row sum is 1. Let e =

1...1

MT e = e

1 is an eigenvalue of MT with e as its eigenvector.

We know det(A) = det(AT ), so det(M − λI ) = det(MT − λI )Hence 1 is an eigenvalue of M

But eigen vectors of A and AT need not be same.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Properties

Theorem

For every Markov matrix 1 is surely an eigenvalue.

Proof.

For a Markov matrix M every column sum is 1. Consider the

transpose matrix MT . Now its row sum is 1. Let e =

1...1

MT e = e

1 is an eigenvalue of MT with e as its eigenvector.

We know det(A) = det(AT ), so det(M − λI ) = det(MT − λI )Hence 1 is an eigenvalue of M

But eigen vectors of A and AT need not be same.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Properties

Theorem

For every Markov matrix 1 is surely an eigenvalue.

Proof.

For a Markov matrix M every column sum is 1. Consider the

transpose matrix MT . Now its row sum is 1. Let e =

1...1

MT e = e

1 is an eigenvalue of MT with e as its eigenvector.

We know det(A) = det(AT ), so det(M − λI ) = det(MT − λI )Hence 1 is an eigenvalue of M

But eigen vectors of A and AT need not be same.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Properties

Theorem

For every Markov matrix 1 is surely an eigenvalue.

Proof.

For a Markov matrix M every column sum is 1. Consider the

transpose matrix MT . Now its row sum is 1. Let e =

1...1

MT e = e

1 is an eigenvalue of MT with e as its eigenvector.

We know det(A) = det(AT ), so det(M − λI ) = det(MT − λI )

Hence 1 is an eigenvalue of M

But eigen vectors of A and AT need not be same.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Properties

Theorem

For every Markov matrix 1 is surely an eigenvalue.

Proof.

For a Markov matrix M every column sum is 1. Consider the

transpose matrix MT . Now its row sum is 1. Let e =

1...1

MT e = e

1 is an eigenvalue of MT with e as its eigenvector.

We know det(A) = det(AT ), so det(M − λI ) = det(MT − λI )Hence 1 is an eigenvalue of M

But eigen vectors of A and AT need not be same.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Properties

Theorem

For every Markov matrix 1 is surely an eigenvalue.

Proof.

For a Markov matrix M every column sum is 1. Consider the

transpose matrix MT . Now its row sum is 1. Let e =

1...1

MT e = e

1 is an eigenvalue of MT with e as its eigenvector.

We know det(A) = det(AT ), so det(M − λI ) = det(MT − λI )Hence 1 is an eigenvalue of M

But eigen vectors of A and AT need not be same.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Further Properties

The previous result guaranteed the eigenvalue 1, but there is aproblem if it has more eigenvectors corresponding to eigenvalue 1.

Theorem

For a Markov matrix M with all entries mij > 0,

1 1 is always an eigenvalue.

2 Other eigenvalues have magnitude less than 1 ( |λ| < 1 ).

3 There is an eigenvector corresponding to the eigenvalue 1.

4 This eigenvector has all positive entries with sum 1.

5 Such an eigenvector is unique.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Further Properties

The previous result guaranteed the eigenvalue 1, but there is aproblem if it has more eigenvectors corresponding to eigenvalue 1.

Theorem

For a Markov matrix M with all entries mij > 0,

1 1 is always an eigenvalue.

2 Other eigenvalues have magnitude less than 1 ( |λ| < 1 ).

3 There is an eigenvector corresponding to the eigenvalue 1.

4 This eigenvector has all positive entries with sum 1.

5 Such an eigenvector is unique.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Further Properties

The previous result guaranteed the eigenvalue 1, but there is aproblem if it has more eigenvectors corresponding to eigenvalue 1.

Theorem

For a Markov matrix M with all entries mij > 0,

1 1 is always an eigenvalue.

2 Other eigenvalues have magnitude less than 1 ( |λ| < 1 ).

3 There is an eigenvector corresponding to the eigenvalue 1.

4 This eigenvector has all positive entries with sum 1.

5 Such an eigenvector is unique.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Further Properties

The previous result guaranteed the eigenvalue 1, but there is aproblem if it has more eigenvectors corresponding to eigenvalue 1.

Theorem

For a Markov matrix M with all entries mij > 0,

1 1 is always an eigenvalue.

2 Other eigenvalues have magnitude less than 1 ( |λ| < 1 ).

3 There is an eigenvector corresponding to the eigenvalue 1.

4 This eigenvector has all positive entries with sum 1.

5 Such an eigenvector is unique.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Further Properties

The previous result guaranteed the eigenvalue 1, but there is aproblem if it has more eigenvectors corresponding to eigenvalue 1.

Theorem

For a Markov matrix M with all entries mij > 0,

1 1 is always an eigenvalue.

2 Other eigenvalues have magnitude less than 1 ( |λ| < 1 ).

3 There is an eigenvector corresponding to the eigenvalue 1.

4 This eigenvector has all positive entries with sum 1.

5 Such an eigenvector is unique.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Further Properties

The previous result guaranteed the eigenvalue 1, but there is aproblem if it has more eigenvectors corresponding to eigenvalue 1.

Theorem

For a Markov matrix M with all entries mij > 0,

1 1 is always an eigenvalue.

2 Other eigenvalues have magnitude less than 1 ( |λ| < 1 ).

3 There is an eigenvector corresponding to the eigenvalue 1.

4 This eigenvector has all positive entries with sum 1.

5 Such an eigenvector is unique.

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Finding the stable opinion

Now we know that every Markov matrix with positive entries has aunique eigenvector corresponding to the eigenvalue λ = 1.

M − λI =

m11 m12 · · · m1n

m21 m22 m2n...

......

mn1 mn2 mnn

n×n

− λ

1 0 0 00 1 0 0...

.... . .

...0 0 0 1

n×n

(M − λI )x =

m11 − λ m12 · · · m1n

m21 m22 − λ m2n...

......

mn1 mn2 mnn − λ

x1x2...vn

=

00...0

Solve (M − λI )x = 0 by Gauss Elimination Process

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Finding the stable opinion

Now we know that every Markov matrix with positive entries has aunique eigenvector corresponding to the eigenvalue λ = 1.

M − λI =

m11 m12 · · · m1n

m21 m22 m2n...

......

mn1 mn2 mnn

n×n

− λ

1 0 0 00 1 0 0...

.... . .

...0 0 0 1

n×n

(M − λI )x =

m11 − λ m12 · · · m1n

m21 m22 − λ m2n...

......

mn1 mn2 mnn − λ

x1x2...vn

=

00...0

Solve (M − λI )x = 0 by Gauss Elimination Process

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Finding the stable opinion

Now we know that every Markov matrix with positive entries has aunique eigenvector corresponding to the eigenvalue λ = 1.

M − λI =

m11 m12 · · · m1n

m21 m22 m2n...

......

mn1 mn2 mnn

n×n

− λ

1 0 0 00 1 0 0...

.... . .

...0 0 0 1

n×n

(M − λI )x =

m11 − λ m12 · · · m1n

m21 m22 − λ m2n...

......

mn1 mn2 mnn − λ

x1x2...vn

=

00...0

Solve (M − λI )x = 0 by Gauss Elimination Process

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Finding the stable opinion

Now we know that every Markov matrix with positive entries has aunique eigenvector corresponding to the eigenvalue λ = 1.

M − λI =

m11 m12 · · · m1n

m21 m22 m2n...

......

mn1 mn2 mnn

n×n

− λ

1 0 0 00 1 0 0...

.... . .

...0 0 0 1

n×n

(M − λI )x =

m11 − λ m12 · · · m1n

m21 m22 − λ m2n...

......

mn1 mn2 mnn − λ

x1x2...vn

=

00...0

Solve (M − λI )x = 0 by Gauss Elimination Process

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Other Views

It is a simpler version of page-rank.

It represents transition matrix and steady state.

Markov process in input-output business models.

· · ·

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Other Views

It is a simpler version of page-rank.

It represents transition matrix and steady state.

Markov process in input-output business models.

· · ·

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Other Views

It is a simpler version of page-rank.

It represents transition matrix and steady state.

Markov process in input-output business models.

· · ·

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Other Views

It is a simpler version of page-rank.

It represents transition matrix and steady state.

Markov process in input-output business models.

· · ·

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Questions

Thank you

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

Questions

Thank you

Dr. D. Sukumar (IITH) Eigenvalues

Linear transformations on planeEigen values

Markov Matrices

FormationInterpretationProperties

You know better

In aeronautical engineering eigenvalues may determine whetherthe flow over a wing is laminar or turbulent.

In electrical engineering they may determine the frequencyresponse of an amplifier or the reliability of a nationalpower system.

In structural mechanics eigenvalues may determine whether anautomobile is too noisy or whether a building willcollapse in an earth-quake.

In probability they may determine the rate of convergence of aMarkov process.

In ecology they may determine whether a food web will settleinto a steady equilibrium.

In numerical analysis they may determine whether a discretizationof a differential equation will get the right answer orhow fast a conjugate gradient iteration will converge.

Dr. D. Sukumar (IITH) Eigenvalues