31
Effective Field Theory of Dissipative Fluids Hong Liu Michael Crossley arXiv: 1511.03646 Paolo Glorioso

Effective Field Theory of Dissipative Fluids

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Effective Field Theory of Dissipative Fluids

EffectiveFieldTheoryofDissipativeFluids

HongLiu

MichaelCrossley

arXiv:1511.03646

PaoloGlorioso

Page 2: Effective Field Theory of Dissipative Fluids

ConservedquantitiesConsideralong wavelengthdisturbanceofasysteminthermalequilibrium

conserved quantities:cannot relaxlocally,onlyviatransports

Conserved quantitiesGaplessandlong-livedmodes

(only onesinamedium)

Thereshouldexistauniversal lowenergyeffectivetheory.

non-conserved quantities:relaxlocally,

Page 3: Effective Field Theory of Dissipative Fluids

Hydrodynamics

Thermalequilibrium:

Promotethesequantitiestodynamicalvariables:(localequilibrium)

slowlyvaryingfunctionsofspacetime

Expressexpectationvaluesofthestresstensorandconservedcurrent intermsofderivativeexpansionofthesevariables:constitutiverelations.

Equationsofmotion:

d+1variables,d+1equations

Page 4: Effective Field Theory of Dissipative Fluids
Page 5: Effective Field Theory of Dissipative Fluids
Page 6: Effective Field Theory of Dissipative Fluids

Despitethelongandglorioushistoryofhydrodynamics

Itdoesnot capturefluctuations.

Page 7: Effective Field Theory of Dissipative Fluids

Fluctuations

Therearealwaysstatistical fluctuations…..

transports,

Importantinmanycontexts:

Atlowtemperatures,quantum fluctuationscanalsobeimportant.

Longtimetail

dynamicalaspectsofphasetransitions,

non-equilibriumstates,turbulence,

finitesizesystems….

Page 8: Effective Field Theory of Dissipative Fluids

Phenomenologicallevel:stochastic hydro(Landau,Lifshitz)

:noiseswithlocalGaussiandistribution

3.fluctuationsofdynamicalvariablesthemselves

Expect:

1.interactionsamongnoises

2.interactionsbetweendynamicalvariablesandnoises

Untilnownotknownhowtotreatsuchnonlineareffectssystematically.Notevenclearitisagoodquestion.

particularlyimportantfornon-equilibriumsituations.

Page 9: Effective Field Theory of Dissipative Fluids

Constraints

Constitutiverelations:notenough tojustwritedownthemostgeneralderivativeexpansionconsistentwithsymmetries.

1.Entropycondition

2.Onsagerrelations:linearresponsematrixmustbesymmetric

Phenomenologicalconstraints:solutionsshouldsatisfy:

Arethesecomplete?

Currentformulationofhydrodynamicsis awkward.

awkward:usesolutionstoconstrainequationsofmotion

Microscopicderivation?

Page 10: Effective Field Theory of Dissipative Fluids

EffectivetheoryapproachmayalsomakeiteasiertogeneralizehydrodynamicsEOMtolessfamiliarsituations,saywithmomentumdissipations,anomalies.....

develophydrodynamicsasabonafidelowenergyeffectivefieldtheoryofageneralmany-bodysystematfinitetemperature

1.givesafullinteractingtheory ofnoises.

2.Microscopicoriginandcompletenessofphenomenologicalconstraints

3.Newconstraints(nonlinearOnsagerrelations)

Actionprinciplewhichincorporatesbothdissipationsandnoises

Shouldbedistinguished fromanactionwhichjustreproducesstandardeoms (whichmaynotcapturefluctuationscorrectly)

Page 11: Effective Field Theory of Dissipative Fluids

Searchingforanactionprincipleforhydrodynamicshasbeenalongstandingopenproblem,datingbackatleasttoG.Herglotz in1911….....

Allresultsatnon-dissipativelevel….

Manyactivitiessince70’stounderstandhydrodynamicfluctuations….....

Page 12: Effective Field Theory of Dissipative Fluids

Results

1.Hydrodynamicswithclassicalstatisticalfluctuations

isdescribedbyasupersymmetric quantum fieldtheory

2.Hydrodynamicswithquantumfluctuationsalsoincorporated

isdescribedbya“quantum-deformed”(supersymmetric)quantumfieldtheory.

SeealsoHaehl,Loganayagam,Rangamani

Approach:putarelativisticquantummany-bodyssystem inacurvedspacetime

Page 13: Effective Field Theory of Dissipative Fluids

PartII:formulation

Page 14: Effective Field Theory of Dissipative Fluids

Transitionamplitudesv.s.expectationvalues

Weareinterestedinaneffectivetheorydescribingnonlineardynamicsaroundastate.

ShouldbecontrastedwithEFTdescribingtransitionamplitudes,

Closedtimepath(CTP)orSchwinger-Keldysh contour

Shoulddouble alldegreesoffreedom

Page 15: Effective Field Theory of Dissipative Fluids

Hydroeffectivefieldtheory

hydrodynamicmodes

EFTapproach:

1.Whatare? donotwork

2.Whatarethesymmetriesof?

3.Integrationmeasure?

Atlongdistancesandlargetimes:

Allcorrelationfunctionsofthestresstensorandconservedcurrentsinthermalequilibrium

Page 16: Effective Field Theory of Dissipative Fluids

Dynamicalvariables:integratinginToyexample:asingleconservedcurrent

1.Currentconservation:

2.Wmustbenonlocal:Non-localitysolely duetointegratingouthydromodes

Integratein hydromodes:

(a):local (b):Ensure1issatisfied

(c):EOMsmustbeequivalenttocurrentconservations

Page 17: Effective Field Theory of Dissipative Fluids

Proposal:(usetheusualStueckelberger trick)

isalocal action. :hydromodes

Satisfythefollowingconsistencyrequirements:

1.

2.Eoms ofareequivalenttocurrentconservations.

Page 18: Effective Field Theory of Dissipative Fluids

Dynamicalvariables(II)Forstresstensor,weputthesysteminacurvedspacetime

Conservationofstresstensor:

Integrateinhydromodes: Promotespacetime coordinatestodynamicalfields

1.2.Xeoms areequivalenttoconservationofstresstensor

anemergent spacetime withcoordinates

Page 19: Effective Field Theory of Dissipative Fluids

Interpretationof: labelindividualfluidelements, internaltime

:motionofafluidelementinphysicalspacetime

SowejustrecoveredtheLagrangedescriptionofafluid!

Asastartingpoint,wecouldsimplydoublethedegreesoffreedomintheLagrangedescription.

Page 20: Effective Field Theory of Dissipative Fluids

Abithistory:

NickelandSonshowedthecovariantversionarisesnaturallyfromholography(arXiv:1103.2137).

DoubledcopiesappearedinHaehl,Loganayagam,RangamaniarXiv:1502.00636, andCrossley,Glorioso,HL,WangarXiv:1504.07611.

UsingasinglecopyofasdynamicalvariableforanidealfluidactiondatedbacktoG.Herglotz in1911.

CovariantwasusedbyTaub in1954.

Rediscoveredin2005byDubovsky,Gregoire,Nicolis andRattazziinhep-th/0512260andfurtherdevelopedbyDubovsky,Hui,Nicolis and Son inarXiv:1107.0731 ,......

Page 21: Effective Field Theory of Dissipative Fluids

Standardhydrovariables(whicharenowderivedquantities)

Asignificantchallenge: ensuretheeoms fromtheactionofXandcanbesolelyexpressedintermsofthesevelocitytypeofvariables.(e.g.solids v.s.fluids)

Page 22: Effective Field Theory of Dissipative Fluids

Symmetries(I)Nowneedtospecifythesymmetriesof

Notethatitisdefinedinfluidspacetime

Requiretheactiontobeinvariantunder:

Interpretationof: labelindividualfluidelements, internaltime

definewhatisafluid!

Page 23: Effective Field Theory of Dissipative Fluids

Itturnsoutthesesymmetriesindeeddomagicforyou:

atthelevelofequationsofmotion,theyensurealldependenceondynamicalvariablescanbeexpressedin

Recoverstandardformulationofhydrodynamics(modulo phenomenological constraints)

Thiswouldbethefullthestoryinausualsituation.

Fullnon-linearfluidfluctuatingdynamicsencodedinnon-trivialdifferentialgeometry:

Page 24: Effective Field Theory of Dissipative Fluids

Symmetries(II)WeareconsideringEFTforasystemdefinedwithCTP:

Thegeneratingfunctionalhasthefollowingproperties:

• KMSconditionplusPTimplyaZ2 symmetryonW:

• Reflectivitycondition:

• Unitaritycondition:

Page 25: Effective Field Theory of Dissipative Fluids

Fullbosonic theoryReflectivityconditioncanbeeasilyimposed,leadingtoacomplex action.

ImposingKMSconditionisverytricky.

AlltheconstraintsfromentropycurrentconditionandlinearOnsagerrelations

NewconstraintsonequationsofmotionfromnonlinearOnsagerrelations.

proposal:localKMScondition,aZ2symmetryontheaction

Imaginarypartoftheactionnon-negative

Page 26: Effective Field Theory of Dissipative Fluids

FermionsandSupersymmetry

isa“topological”conditiononthemeasureofpathintegrals

Introducefermionic partners(“ghost”fieds)fordynamicalvariablesandrequiretheactiontohaveaBRSTtypesymmetry.

SeealsoHaehl etalarXiv:1510.024941511.07809Unitarity condition:

Ataquadratic levelindynamicalfields,onefindsthatlocalKMSconditionleadstoanemergentfermionic symmetry.

Butnotclearhowtowritedownanonlinearactionwithsuchanalgebra.

Requiresa“quantum-deformed”SUSY

Page 27: Effective Field Theory of Dissipative Fluids

Classicallimit:

becomestandardsupersymmetry intimedirection.

Inthislimitonecanwritedownasupersymmetric completionofthefullbosonic hydrodynamicaction.

Notethatintheclassicallimit,pathintegralremains,capturingstatisticalfluctuations.

Page 28: Effective Field Theory of Dissipative Fluids

Example:nonlinearstochasticdiffusion

Considerthetheoryforasingleconservedcurrent,wheretherelevantphysicsisdiffusion.

Dynamicalvariables: (or)

Roughly,:standarddiffusionmode,:thenoise.

Ifignoringinteractionsofnoise

AvariationofKardar-Parisi-Zhang equation

Page 29: Effective Field Theory of Dissipative Fluids

Summary

Fermionic excitationsandEmergentsupersymmetry.

AnEFTforgeneraldissipativefluids.

Recoversthestandardhydrodynamicsasequationsofmotion,constitutiverelations,constraints.

Encodesquantumandthermalfluctuationssystematicallyinapathintegralexpansion.

Fullnon-linearfluidfluctuatingdynamicsencodedinnon-trivialdifferentialgeometry.

Page 30: Effective Field Theory of Dissipative Fluids

FuturedirectionsFormalism:

Non-relativisticlimit,superfluids,Anisotropic,inhomogeneous,“quantum-deformed”Supersymmetry

…....Applications:

Longtimetails,runningofviscosities,

Dynamicalaspectsofclassicalandquantumphasetransitions

ScalingbehaviorinhydrobehaviorviafixedpointsofQFTs,suchasKPZscaling,turbulence….

….........

Non-equilibriumsteadystates,dynamicalflowsofQGP

Page 31: Effective Field Theory of Dissipative Fluids

ThankYou