3
./ / \ \\I BUCKING C O l ~ PICKUP COIL SAMPLE THERMOCOUPLE ..,,,_ l ,.m,ol fl M fl MAGNET T RECORDER Fig. 1-Experimental apparatus. Magnet is a water-cooled copper solenoid, 28.5 mm bore, capable of producing 130 kOe at 9000 A, 400 V. placed in a pickup coil in the center of a high-field magnet, and the magnetic field was set to a prede- termined value. The integrated output of the pickup coil, which is a direct measure of the magnetization of the sample and hence the amount of martensite formed, was plotted directly against the sample tem- perature during the cooling. The magnetization axis was calibrated using a sample of pure iron. A set of experimental curves for 410 stainless is shown in Fig. 2. The M s temperature for each run was deter- mined by extrapolating the linear portion of the curve to 0 pct martensite. Fig. 3 shows the M s tem- peratures, determined in this way, as a function of the applied field for both alloys. It is clear from the figure that the effect of magnetic field on the M s tem- perature is linear up to at least 130 kOe. (The de- magnetizing field correction is about 1 kOe maximum and has been neglected. Eq. [4] of Satyanarayan et al, which apparently attempts to account for the demag- netizing field, is not correct when the applied field is large compared to the demagnitizing field). It is inherent in the measuring method used here that the IO0 75 5o 25 0- 0 I00 150 200 250 300 350 400 TEMPERATURE (~ Fig. 2--Percent martensite vs temperature for 410 stainless steel in various fields. Curves traced directly from x-y re- corder plots. Table II, Summary of Results Magnetization* AT ~ IH cal Alloy 4~cM, Gauss /, emu/mol M s, ~ AH' kOe AT' mol-K Comp. 2 20.600 11,600 321 0.28 1.0 Comp. t 21,300 12,100 lO! 0.31 0.9 52100 21,300 12,100 121 0.34 0.8 410 17,700 10,000 342 0.15 1.6 *Martensite magnetization assumed equal to the corresponding ferdte. 370 360 350 340 o LLJ W 17'0 I-- 160 uJ 13_ 150 t.iJ I-- 140 130 120 0 I I I I [ 1 -e J .y I I 1 I 20 40 60 80 FIELD , KOe I I I00 120 140 Fig. 3--Effect of magnetic field on the martensite start ~14 s ) temperature of two alloy steels. 14 -* 1.2 9 I.O -- I O 2O I I I l I 410 l I e-- I I I L I I 40 60 80 I00 120 140 FIELD , KOe Fig. 4--Rate of formation of martens[re in 410 stainless steel vs magnetic field. z o I- < 2.0 ~ ~o I I I J J J -- /* Ref.6 -- / / / Ref. I / -- comp. 2 o/" "/Ref I * 410 / comp. /. / / / / / / / / / I I I 0 0 05 1.0 15 2.0 $--a ENTROPY OF TRANSFORMATION /kS ,cal/moI-K Fig. 5--Rate of formation of martensite vs entropy of trans- formation. Unlabelled point is from Ref. 6, for a steel con- taining 0.6 C, 4 Cr, 8 Ni, 3 Si, and 1 Mo. 720-VOLUME 7A, MAY 1976 METALLURGICAL TRANSACTIONS A

Effect of high magnetic fields on the martensite transformation

Embed Size (px)

Citation preview

Page 1: Effect of high magnetic fields on the martensite transformation

. /

/ \

\\I

B U C K I N G C O l ~ P I C K U P C O I L

S A M P L E

T H E R M O C O U P L E

..,,,_ l ,.m,ol fl M

fl M A G N E T

T

R E C O R D E R

Fig. 1 - E x p e r i m e n t a l a p p a r a t u s . Magne t i s a w a t e r - c o o l e d c o p p e r so leno id , 28.5 m m b o r e , c a p a b l e of p r o d u c i n g 130 kOe a t 9000 A, 400 V.

placed in a pickup coil in the cen te r of a high-f ie ld magnet , and the magnet ic field was set to a p rede- t e r m i n e d value. The in tegra ted output of the pickup coil, which is a d i rec t m e a s u r e of the magne t iza t ion of the sample and hence the amount of m a r t e n s i t e formed, was plotted d i rec t ly agains t the sample t em- p e r a t u r e dur ing the cooling. The magne t iza t ion axis was ca l ib ra ted us ing a sample of pure i ron . A set of expe r imen ta l curves for 410 s t a in l e s s is shown in Fig. 2. The M s t e m p e r a t u r e for each run was de t e r - mined by ext rapola t ing the l i nea r port ion of the curve to 0 pct m a r t e n s i t e . Fig. 3 shows the M s t em- pe ra tu r e s , de t e rmined in this way, as a funct ion of the applied field for both a l loys . It is c l ea r f rom the f igure that the effect of magnet ic field on the M s t em- pe ra tu r e is l i nea r up to at l eas t 130 kOe. (The de- magne t iz ing field co r r ec t ion is about 1 kOe max i mum and has been neglected. Eq. [4] of Sa tyanarayan e t al ,

which apparen t ly a t tempts to account for the demag- ne t iz ing field, is not co r r ec t when the applied field is large compared to the demagni t i z ing field). It is i nhe ren t in the m e a s u r i n g method used here that the

IO0

75

5o

25 0-

0 I 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

T E M P E R A T U R E ( ~

F i g . 2 - - P e r c e n t m a r t e n s i t e v s t e m p e r a t u r e for 410 s t a i n l e s s s t e e l in v a r i o u s f i e l d s . C u r v e s t r a c e d d i r e c t l y f r o m x - y r e - c o r d e r p lo t s .

T a b l e I I , S u m m a r y o f Resu l ts

Magnetization* AT ~ I H cal

Alloy 4~cM, Gauss /, emu/mol M s, ~ AH' kOe AT' mol-K

Comp. 2 20.600 11,600 321 0.28 1.0 Comp. t 21,300 12,100 lO! 0.31 0.9 52100 21,300 12,100 121 0.34 0.8

410 17,700 10,000 342 0.15 1.6

*Martensite magnetizatio n assumed equal to the corresponding ferdte.

3 7 0

3 6 0

350

3 4 0 o LLJ W 17'0

I--

160 uJ 13_

1 5 0 t.iJ I--

1 4 0

1 3 0

1 2 0 0

I I I I [ 1

- e

J

. y I I 1 I

2 0 4 0 6 0 8 0

F I E L D , KOe

I I I 0 0 1 2 0 140

Fig. 3--Effect of m a g n e t i c f ie ld on the m a r t e n s i t e s t a r t ~14 s ) t e m p e r a t u r e of two a l l o y s t e e l s .

1 4 - *

1.2 �9

I.O --

I O 2O

I I I l I

4 1 0

l I

e - -

I I I L I I 4 0 6 0 8 0 I 0 0 1 2 0 1 4 0

F I E L D , K O e

Fig . 4 - - R a t e of f o r m a t i o n of m a r t e n s [ r e in 410 s t a i n l e s s s t e e l v s m a g n e t i c f ie ld .

z o I- < 2 . 0

~ ~o

I I I J

J J -- / * Re f . 6 --

/ /

/ Ref. I /

-- comp. 2 o/" " / R e f I * 4 1 0

/ comp. / . /

/ /

/ /

/ /

/

/ I I I 0 0 0 5 1.0 1 5 2 . 0

$--a E N T R O P Y OF T R A N S F O R M A T I O N /kS ,cal/moI-K

F ig . 5 - -Ra te of f o r m a t i o n of m a r t e n s i t e v s e n t r o p y of t r a n s - f o r m a t i o n . Un labe l l ed point is f r o m Ref. 6, for a s t e e l con- t a i n i n g 0.6 C, 4 Cr , 8 Ni, 3 Si, and 1 Mo.

720-VOLUME 7A, MAY 1976 METALLURGICAL TRANSACTIONS A

Page 2: Effect of high magnetic fields on the martensite transformation

. /

/ \

\\I

B U C K I N G C O l ~ P I C K U P C O I L

S A M P L E

T H E R M O C O U P L E

..,,,_ l ,.m,ol fl M

fl M A G N E T

T

R E C O R D E R

Fig. 1 - E x p e r i m e n t a l a p p a r a t u s . Magne t i s a w a t e r - c o o l e d c o p p e r so leno id , 28.5 m m b o r e , c a p a b l e of p r o d u c i n g 130 kOe a t 9000 A, 400 V.

placed in a pickup coil in the cen te r of a high-f ie ld magnet , and the magnet ic field was set to a p rede- t e r m i n e d value. The in tegra ted output of the pickup coil, which is a d i rec t m e a s u r e of the magne t iza t ion of the sample and hence the amount of m a r t e n s i t e formed, was plotted d i rec t ly agains t the sample t em- p e r a t u r e dur ing the cooling. The magne t iza t ion axis was ca l ib ra ted us ing a sample of pure i ron . A set of expe r imen ta l curves for 410 s t a in l e s s is shown in Fig. 2. The M s t e m p e r a t u r e for each run was de t e r - mined by ext rapola t ing the l i nea r port ion of the curve to 0 pct m a r t e n s i t e . Fig. 3 shows the M s t em- pe ra tu r e s , de t e rmined in this way, as a funct ion of the applied field for both a l loys . It is c l ea r f rom the f igure that the effect of magnet ic field on the M s t em- pe ra tu r e is l i nea r up to at l eas t 130 kOe. (The de- magne t iz ing field co r r ec t ion is about 1 kOe max i mum and has been neglected. Eq. [4] of Sa tyanarayan e t al ,

which apparen t ly a t tempts to account for the demag- ne t iz ing field, is not co r r ec t when the applied field is large compared to the demagni t i z ing field). It is i nhe ren t in the m e a s u r i n g method used here that the

IO0

75

5o

25 0-

0 I 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

T E M P E R A T U R E ( ~

F i g . 2 - - P e r c e n t m a r t e n s i t e v s t e m p e r a t u r e for 410 s t a i n l e s s s t e e l in v a r i o u s f i e l d s . C u r v e s t r a c e d d i r e c t l y f r o m x - y r e - c o r d e r p lo t s .

T a b l e I I , S u m m a r y o f Resu l ts

Magnetization* AT ~ I H cal

Alloy 4~cM, Gauss /, emu/mol M s, ~ AH' kOe AT' mol-K

Comp. 2 20.600 11,600 321 0.28 1.0 Comp. t 21,300 12,100 lO! 0.31 0.9 52100 21,300 12,100 121 0.34 0.8

410 17,700 10,000 342 0.15 1.6

*Martensite magnetizatio n assumed equal to the corresponding ferdte.

3 7 0

3 6 0

350

3 4 0 o LLJ W 17'0

I--

160 uJ 13_

1 5 0 t.iJ I--

1 4 0

1 3 0

1 2 0 0

I I I I [ 1

- e

J

. y I I 1 I

2 0 4 0 6 0 8 0

F I E L D , KOe

I I I 0 0 1 2 0 140

Fig. 3--Effect of m a g n e t i c f ie ld on the m a r t e n s i t e s t a r t ~14 s ) t e m p e r a t u r e of two a l l o y s t e e l s .

1 4 - *

1.2 �9

I.O --

I O 2O

I I I l I

4 1 0

l I

e - -

I I I L I I 4 0 6 0 8 0 I 0 0 1 2 0 1 4 0

F I E L D , K O e

Fig . 4 - - R a t e of f o r m a t i o n of m a r t e n s [ r e in 410 s t a i n l e s s s t e e l v s m a g n e t i c f ie ld .

z o I- < 2 . 0

~ ~o

I I I J

J J -- / * Re f . 6 --

/ /

/ Ref. I /

-- comp. 2 o/" " / R e f I * 4 1 0

/ comp. / . /

/ /

/ /

/ /

/

/ I I I 0 0 0 5 1.0 1 5 2 . 0

$--a E N T R O P Y OF T R A N S F O R M A T I O N /kS ,cal/moI-K

F ig . 5 - -Ra te of f o r m a t i o n of m a r t e n s i t e v s e n t r o p y of t r a n s - f o r m a t i o n . Un labe l l ed point is f r o m Ref. 6, for a s t e e l con- t a i n i n g 0.6 C, 4 Cr , 8 Ni, 3 Si, and 1 Mo.

720-VOLUME 7A, MAY 1976 METALLURGICAL TRANSACTIONS A

Page 3: Effect of high magnetic fields on the martensite transformation

z e r o - f i e l d value of M, mus t be obtained by ex t r apo la - tion, s ince the m a r t e n s i t e wi l l not be magne t i zed and wi l l give no s ignal at z e r o f ie ld .

The e x p e r i m e n t a l r e su l t s , e x p r e s s e d both as in- c r e a s e in M s per kOe of f ie ld and as I H / L x T , a re given in Table II, along with o ther r e l evan t data. The equivalent data f rom Satyanarayan e t al is included in the table; the a g r e e m e n t is good. F o r c o m p a r i s o n of these r e s u l t s with o ther magne t ic expe r imen t s , and with va r ious e s t i m a t e s of AGe, To, and AGo, see the d i scuss ion of Sa tyanarayan e t a l .

The data below M s for the 410 s t a in l e s s w e r e ade- quate to d e t e r m i n e the ra te of m a r t e n s i t e fo rmat ion . The amount of m a r t e n s i t e i n c r e a s e d l inea r ly with de- c r e a s i n g t e m p e r a t u r e f rom about 10 to 50 pct m a r - t ens i t e . The ra te of fo rma t ion of m a r t e n s i t e was in- dependent of magne t ic field, as shown in Fig . 4, and in a g r e e m e n t with a t h e o r e t i c a l t r e a t m e n t as out l ined by Magee 4 which equates the ra te of nuclea t ion of m a r t e n s i t e to the f r ee energy d i f fe rence between aus ten i te and m a r t e n s i t e . Sa tyanarayan e t a l give a

�9 !

plot of m a r t e n s l t e fo rma t ion ra te v s ~xS3'-a for t h r ee al loy s t ee l s , which conf i rms the t h e o r e t i c a l p r ed i c - t ion by Brooks , Entwis t le , and Ib rah im 5 of a l inea r r e l a t ionsh ip . T h e i r graph is r ep roduced as F ig . 5, with an added point for the new data on 410 s t a in l e s s s t ee l . The new point c l e a r l y fa i l s to l ie on the l ine.

CONC LUSIONS

We have found that the m a r t e n s i t e s t a r t t e m p e r a - t u re i n c r e a s e s l inea r ly with f ie ld up to 130 kOe in two al loy s t e e l s . The r a t e of fo rma t ion of m a r t e n s i t e is not inf luenced by magne t ic f ield. N u m e r i c a l va lues fo r the entropy of t r a n s f o r m a t i o n have been obtained, and a r e in r easonab le a g r e e m e n t with o ther de t e rmina t i ons and e s t i m a t e s .

ACKNOWLEDGMENTS

P. J . F l a n d e r s helped us g rea t ly with the e x p e r i - men ta l a r r a n g e m e n t s , and the L abo ra to ry fo r R e s e a r c h on the S t ruc tu re of Mat t e r , U n ive r s i t y of Pennsylvania , p rov ided a c c e s s to the h igh- f ie ld equipment . The L a b o r a t o r y is suppor ted by the National Science Foundat ion. SKF Inc. of Ph i lade lph ia kindly provided s a m p l e s of 52100 s t ee l .

R E F E R E N C E S

1. K. R. Satyanarayan, W. Eliasz, and A. P. Miodownik: ActaMet., 1968, vol. 16, p. 877.

2. A. B. Greninger and A. R. Troiano: Trans. ASM, 1940. vol. 28, p. 537. 3. E. I. Estrin: Phys. Metals Metallogr., 1965. vol. 19. no. 6, p. 117. 4. C. L. Magee: in Phase Transformations, p. 118, ASM, Metals Park, Ohio, 1970. 5. R. Brook, A. R. Entwistle, and E. F. lbrahim: J. Iron Steellnst., 1960,

vol. 195. p. 292. 6. L. V. Voronchikhin and 1. G. Fakidov: Phys. Metals Metallogr., 1966, vol. 21,

no. 3. p. 119.

METALLURGICAL TRANSACTIONS A VOLUME 7A, MAY 1976-721