36
EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 1 EE247 Lecture 19 ADC Converters Sampling (continued) Clock boosters (continued) Sampling switch charge injection & clock feedthrough Complementary switch Use of dummy device Bottom-plate switching Track & hold circuits T/H circuit incorporating gain & offset cancellation •E lectro-S tatic D ischarge (ESD) protection EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 2 Summary Last Lecture DAC Converters (continued) DAC reconstruction filter ADC Converters – Sampling Sampling network thermal noise Acquisition bandwidth limitations – For example 1% accuracy T s /2>5RC Sampling switch induced distortion – Sampling switch conductance dependence on input voltage – Complementary switch – Clock boosters

EE247 Lecture 19 - University of California, Berkeleyee247/fa06/lectures/L19_f06.pdfEE247 Lecture 19 ADC Converters • Sampling (continued) – Clock boosters (continued) – Sampling

  • Upload
    others

  • View
    20

  • Download
    0

Embed Size (px)

Citation preview

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 1

EE247Lecture 19

ADC Converters• Sampling (continued)

– Clock boosters (continued)– Sampling switch charge injection & clock

feedthrough• Complementary switch• Use of dummy device• Bottom-plate switching

– Track & hold circuits– T/H circuit incorporating gain & offset cancellation

• Electro-Static Discharge (ESD) protection

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 2

Summary Last Lecture• DAC Converters (continued)

– DAC reconstruction filter

• ADC Converters– Sampling

• Sampling network thermal noise• Acquisition bandwidth limitations

– For example 1% accuracy Ts /2>5RC• Sampling switch induced distortion

– Sampling switch conductance dependence on input voltage

– Complementary switch– Clock boosters

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 3

Boosted Clock Sampling Complete Circuit

Ref: A. Abo et al, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” JSSC May 1999, pp. 599.

Clock Multiplier

Switch

M7 & M13 for reliability

Remaining issues:

-VGS constant only for Vin <Vout

-Nonlinearity due to Vth dependence of M11on body-source voltage

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 4

Advanced Clock Boosting Technique

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Tech. Papers, pp. 314

Sampling Switch

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 5

Advanced Clock Boosting Technique

• clk low– Capacitors C1a & C1b charged to VDD– MS off– Hold mode

Sampling Switch

clk low

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 6

Advanced Clock Boosting Technique

Sampling Switch

• clk high– Top plate of C1a & C1b connected to gate of sampling switch– Bottom plate of C1a connected to VIN– Bottom plate of C1b connected to VOUT– VGS & VGD of MS both @ VDD & ac signal on G of MS average of VIN &

VOUT

clk high

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 7

Advanced Clock Boosting Technique

• Gate tracks average of input and output, reduces effect of I·R drop at high frequencies

• Bulk also tracks signal ⇒ reduced body effect (technology used allows connecting bulk to S)

• Reported measured SFDR = 76.5dB at fin=200MHz

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Tech. Papers, pp. 314

Sampling Switch

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 8

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 9

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

OFF

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 10

Constant Conductance Switch

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000

ON

M2 Constant currentconstant gds

M1 replica of M2 & same VGSas M2M1 alsoconstant gds

• Note: Authors report requirement of 280MHz GBW for the opamp for 12bit 50Ms/s ADC

• Also, opamp common-mode compliance for full input range

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 11

Switch Off-Mode Feedthrough Cancellation

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Techn. Papers, pp. 314

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 12

Practical Sampling

Vo

CM1

φ1

• Rsw = f(Vi) distortion• Switch charge injection & clock feedthrough

Vi

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 13

Sampling Switch Charge Injection & Clock FeedthroughSwitching from Track to Hold

Vi VO

Cs

M1

VG

• First assume Vi is a DC voltage• When switch turns off offset voltage induced on Cs• Why?

VG

t

VH

Vi

VL

Vi +Vth

VO

Vi

toff

ΔV

t

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 14

SamplingSwitch Charge Injection

• Channel distributed RC network formed between G,S, and D• Channel to substrate junction capacitance distributed & voltage dependant• Drain/Source junction capacitors to substrate voltage dependant• Over-lap capacitance Cov = LDxWxCox

’ associated with G-S & G-D overlap

MOS xtor operating in triode regionCross section view

Distributed channel resistance & gate & junction capacitances

S

G

D

B

LD

L

Cov Cov

Cjdb

Cjsb

CHOLD

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 15

Switch Charge Injection Slow Clock

• Slow clock clock fall time >> device speed During the period (t- to toff) current in channel discharges channel charge into low impedance signal source

• Only source of error Clock feedthrough from Cov to Cs

VG

t

VH

Vi

VL

Vi +Vth

tofft-

Device still conducting

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 16

Switch Clock Feedthrough Slow Clock

VG

t

VH

Vi

VL

Vi +Vth

VO

Vi

toff

ΔV

t

D

Cov

VG

( )

( )

( ) ( )

( )

( )

ovi th L

ov s

ovi th L

so i

ov ov ovo i i th L i th L

s s so i os

ov ovos th L

s s

CV V V V

C C

CV V V

CV V V

C C CV V V V V V 1 V V

C C CV V 1 V

C Cwhere ; V V V

C C

ε

ε

Δ = − + −+

≈ − + −

= + Δ⎛ ⎞

= − + − = − − −⎜ ⎟⎜ ⎟⎝ ⎠

= + +

= − = − −

t-

Cs

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 17

Switch Charge Injection & Clock Feedthrough Slow Clock- Example

( )

' 2ov ox th L

ov

s

ovos th L

s

C 0.1 fF / C 9 fF / V 0.4V V 0

C 10 x0.1 fF /.1%

C 1pFAllowing 1/ 2LSB ADC resolut ion ~ 9bit

CV V V 0.4mV

C

μ μ

μ με

ε

= = = =

= − = − = −

= → <

= − − = −

VG

t

VH

Vi

VL

Vi +Vth

VO

Vi

toff

ΔV

t

Vi VO

Cs=1pF

M1

VG 10μ/0.18μ

t-

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 18

Switch Charge Injection & Clock Feedthrough Fast Clock

VG

t

VH

Vi

VL

Vi +Vth

VO

Vi

toff

ΔV

t

Vi VO

Cs=1pF

M1VG

• Sudden gate voltage drop no gate voltage to establish current in channel channel charge has no choice but to escape out towards S & D

Qch

mQchnQch

n+m=1

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 19

( )

( ) ( )( )

( )

( ) ( )

ov cho H L

ov s s

ox H i thovH L

ov s s

o io i os

ox

s

ov ox H thos H L

s s

C 1 QV V V

C C 2 C

WC L V V VC 1V V

C C 2 C

V VV V 1 V

1 WC Lwhere

2 C

C 1 WC L V VV V V

C 2 C

ε

ε

Δ = − − − ×+

− −≈ − − − ×

+

= −= + +

= ×

−= − − − ×

• For simplicity it is assumed channel charge divided equally between S & D • Source of error channel charge transfer + clock feedthrough via Cov to Cs

VG

t

VH

Vi

VL

Vi +Vth

VO

Vi

toff

ΔV

t

Switch Charge Injection & Clock FeedthroughFast Clock

Clock Fall-Time << Device Speed:

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 20

Switch Charge Injection & Clock FeedthroughFast Clock- Example

( ) ( )

2ov ox th DD L

2ox

s

ov ox H thos H L

s s

C 0.1 fF / C 9 fF / V 0.4V V 1.8V V 0

WLC 10 x0.18 x9 fF /1/ 2 1.6% ~ 5 bit

C 1pF

C 1 WC L V VV V V 1.8mV 14.6mV 16.4mV

C 2 C

μ μ

μ μ με

= = = = =

= = = → −

−= − − − × = − − = −

Vi VO

Cs=1pF

M1

VG 10μ/0.18μ VG

t

VH

VIN

VL

Vi +Vth

VO

Vi

toff

ΔV

t

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 21

Vo

ΔV

Vi

Switch Charge Injection & Clock FeedthroughSlow Clock versus Fast Clock

Slow Clock

Vo

ΔV

Vi

Fast Clock

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 22

Switch Charge Injection & Clock FeedthroughExample-Summary

Error function of:Clock fall time Input voltage level Source impedance Sampling capacitanceSwitch size

Clock fall/rise should be controlled not be faster (sharper) than necessary

Clock fall time

ε VOS

Clock fall time

1.6%

.1%

16mV

0.4mV

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 23

Switch Charge InjectionError Reduction

( )

( )

( )( )

cho

ss s

ON s

ox GS th

ox GS ths

o s ox H i th

2

1 QV

2 CC T

R C ( note : kW 2C V VL

Consider the f igure of meri t (FOM):W

C V V1 CLFOM 2V C WC L V V V

FOML

μ

μ

τ τ

τ

Δ = − ↓

= = ↑ =−

−= ≈ ×

Δ − −

→ ≈

××

• How do we reduce the error? Reduce switch size?

Reducing switch size increases τ increased distortion not a viable solutionSmall τ and small ΔV use minimum chanel length (mandated by technology)For a given technology τ x ΔV ~ constant

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 24

Sampling Switch Charge Injection & Clock FeedthroughSummary

• Extra charge injected onto sampling capacitor @ switch device turn-off

–Channel charge injection–Clock feedthrough to Cs via Cov

• Issues:–DC offset–Input dependant error voltage distortion

• Solutions:–Complementary switch?–Addition of dummy switches?–Bottom-plate sampling?

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 25

Switch Charge InjectionComplementary Switch

• In slow clock case if area of n & p devices widths are equal (Wn=Wp) effect of overlap capacitor for n & p devices to first order cancel (cancellation accuracy depends on matching of n & p width and ΔL)

• Since in CMOS technologies μn~2.5μp choice of Wn=Wp not optimal from linearity perspective (Wp>Wn preferable)

φ1φ1B

φ1

φ1B

VG

t

VH

Vi

VL

φ1 φ1B

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 26

Switch Charge Injection Complementary Switch

Fast Clock

• In fast clock case To 1st order, offset due to overlap caps

cancelled for equal device widthInput voltage dependant error worse!

φ1

φ1B

VG

t

VH

Vi

VL

( )

( )

( )

ch n n ox n H i th n

th pch p p ox p i L

ch pch no

s s

o i os

n ox n p ox p

s

Q W C L V V V

VQ W C L V V

Q1 QV

2 C C

V V 1 V

W C L W C L12 C

ε

ε

− −

−−

−−

= − −

= − −

⎛ ⎞Δ ≈ − −⎜ ⎟⎜ ⎟

⎝ ⎠

= + +

+≈ ×

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 27

Switch Charge InjectionDummy Switch

Vi

VO

Cs

t

VH

Vi

VL

VG VGB

WM2=1/2WM1

VG VGB

M1 M2

M 1 M 11 ch ov

M 2 M 22 ch ov

M 2 M 1 2 1

1Q Q Q

2Q Q 2Q

1For W W Q Q

2

≈ +

≈ +

= → = −

Q1 Q2

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 28

Switch Charge InjectionDummy Switch

Vi

VO

Cs

t

VH

Vi

VL

VG VGB

• Dummy switch same L as main switch but half W • Main device clock goes low, dummy device gate goes high dummy

switch acquires same amount of channel charge main switch needs to lose

• Effective only if exactly half of the charge transferred to M2 (depends on input/output node impedance) and requires good matching between clock fall/rise

WM2=1/2WM1

VG VGB

M1 M2

Q1 Q2

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 29

Switch Charge InjectionDummy Switch

Vi VOM1

VG

M2

VGB

To guarantee half of charge goes to each side create the same environment on both sides

Add capacitor equal to sampling capacitor to the other side of the switch + add fixed resistor to emulate input resistance of following circuit

Issues: Degrades sampling bandwidth

CsCs

RWM2=1/2WM1

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 30

Dummy Switch Effectiveness Test

Ref: L. A. Bienstman et al, “ An Eight-Channel 8 13it Microprocessor Compatible NMOS D/A Converter with Programmable Scaling”, IEEE JSSC, VOL. SC-15, NO. 6, DECEMBER 1980

• Dummy switch W=1/2Wmain

• As Vin is increased Vc1-Vin is decreased channel charge decreased less charge injection

• Note large Lsgood device

area matching

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 31

Switch Charge InjectionDifferential Sampling

Vi+

VO+

Vi-

VO-

• To 1st order, offset terms cancel• Note gain error ε still about the same• Has the advantage of better immunity to

noise coupling and cancellation of even order harmonics

φ

Cs

Cs

( )( )

( ) ( )

o o od i i id

o o i ioc ic

o i 1 os1

o i 2 os2

1 2od id id 1 2 ic os1 os2

V V V V V V

V V V VV V

2 2V V 1 V

V V 1 V

V V V V V V2

ε

ε

ε ε ε ε

+ − + −

+ − + −

+ +

− −

− = − =

+ += =

= + +

= + +

+= + + − + −

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 32

Switch Charge InjectionBottom Plate Sampling

• Switches M2 opened slightly earlier compared to M1Injected charge by the opening of M2 is constant & eliminated when

used differentially

• Since Cs bottom plate open when M1 opened no charge injected on Cs

φ1aVH

VL

t

φ1bVi

VO

M1

φ1b

φ1a M2

Cs

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 33

Flip-Around Track & Hold

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

• Concept based on bottom-plate sampling

φ1

φ2

φ1D

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 34

Flip-Around T/H-Basic Operationφ1 high

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

Charging C

φ1

φ1D

φ2

Note: Opamp has to be stable in unity-gain configuration

Qφ1=VINxC

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 35

Flip-Around T/H-Basic Operationφ2 high

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

Holding

φ1

φ2

φ1D

Qφ2=VOUTxCVOUT=VIN

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 36

Flip-Around T/H - Timing

S1 opens earlier than S1ANo resistive path from C bottom plate to Gnd charge can not change"Bottom Plate Sampling"

vIN

vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

φ1

φ2

φ1D

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 37

Charge Injection• At the instant of transitioning from track to hold

mode, some of the charge stored in sampling switch S1 is dumped onto C

• With "Bottom Plate Sampling", only charge injection component due to opening of S1 and is to first-order independent of vIN– Only a dc offset is added This dc offset can be

removed with a differential architecture

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 38

Flip-Around T/H

vIN vOUT

C

S1A

φ1D

S2

φ2

S2A

φ2

S3

φ1D

φ1 S1

vCM

Constant switch VGSto minimize distortion

Note: Among all switches only S1A & S2A experience full input voltage swing

φ1

φ2

φ1D

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 39

Flip-Around T/H• S1 is chosen to be an n-channel MOSFET• Since it always switches the same voltage, it’s on-

resistance, RS1, is signal-independent (to first order) • Choosing RS1 >> RS1A minimizes the non-linear

component of R = RS1A+ RS1– S1A is a wide (much lower resistance than S1) & constant

VGS switch– In practice size of S1A is limited by the (nonlinear) S/D

capacitance that also adds distortion– If S1A’s resistance is negligible delay depends only on S1

resistance– S1 resistance is independent of VIN error due to finite

time-constant independent of VIN

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 40

Differential Flip-Around T/H

Ref: W. Yang, et al. “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001 1931

Offset voltage associated with charge injection of S11 & S12 cancelled by differential nature of the circuitDuring input sampling phase amp outputs shorted together

S11

S12

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 41

Differential Flip-Around T/H

• Gain=1• Feedback factor=1

φ1’φ1φ2

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 42

Differential Flip-Around T/HIssues: Input Common-Mode Range

• ΔVin-cm=Vout_com-Vsig_com

Amplifier needs to have large input common-mode compliance

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 43

Differential Flip-Around T/HChoice of Sampling Switch Size

Ref: K. Vleugels et al, “A 2.5-V Sigma–Delta Modulator for Broadband Communications Applications “IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 12, DECEMBER 2001, pp. 1887

•THD simulated w/o sampling switch boosted clock -45dB•THD simulated with sampling switch boosted clock (see figure)

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 44

Input Common-Mode Cancellation

Ref: R. Yen, et al. “A MOS Switched-Capacitor Instrumentation Amplifier,”IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. SC-17, NO. 6,, DECEMBER 1982 1008

•Shorting switches M4, M5 added

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 45

Input Common-Mode Cancellation

Track mode (φ high)VC1=VI1 , VC2=VI2Vo1=Vo2=0

Hold mode (φ low)Vo1+Vo2 =0Vo1-Vo2= -(VI1-VI2)(C1/(C1+C3))

Input common-mode level removed

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 46

T/H + Charge Redistribution Amplifier

Track mode: (S1, S3 on S2 off)VC1=Vos –VIN , VC2=0Vo=Vos

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 47

T/H + Charge Redistribution AmplifierHold Mode

Hold/amplify mode (S1, S3 off S2 on)

Offset NOT cancelled, but not amplifiedInput-referred offset =(C2/C1) x VOS, & C2<C1

2

1

2

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 48

T/H & Input Difference Amplifier

Sample mode (S1, S3 on S2 off)VC1=Vos –VI1 , VC2=0Vo=Vos

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 49

Input Difference AmplifierCont‘d

Subtract/Amplify mode (S1, S3 off S2 on)During previous phase:VC1=Vos –VI1 , VC2=0Vo=Vos

1

Offset NOT cancelled, but not amplifiedInput-referred offset =(C2/C1)xVOS, & C2<C1

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 50

T/H & Summing Amplifier

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 51

T/H & Summing AmplifierCont‘d

Sample mode (S1, S3, S5 on S2, S4 off)VC1=Vos –VI1 , VC2=Vos-VI3, VC3=0Vo=Vos

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 52

T/H & Summing AmplifierCont‘d

Amplify mode (S1, S3, S5 off, S2, S4 on)

3

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 53

Differential T/H Combined with Gain Stage

Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Employs the previously discussed technique to eliminate the problem associated with high common-mode voltage excursion at the input of the opamp

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 54

Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

Differential T/H Combined with Gain Stageφ1 High

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 55

Ref: S. H. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC, VOL. SC-22,NO. 6, DECEMBER 1987

• Gain=4C/C=4• Input voltage common-mode level removed opamp can have low CMRR• Amplifier offset NOT removed

Differential T/H Combined with Gain Stage

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 56

Ref: H. Ohara, et al., "A CMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral," IEEE Journal of Solid-State Circuits, vol. 22, pp. 930 - 938, December 1987.

• Operation during offset cancellation phase shown• Auxilary inputs added with Amain/Aaux.=10• During offset cancellation phase:

•Aux. amp configured in unity-gain mode: Vout=Vosmain offset stored

on CAZ & canceled

Differential T/H Including Offset Cancellation

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 57

Differential T/H Including Offset CancellationOperational Amplifier

Ref: H. Ohara, et al., "A CMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral," IEEE Journal of Solid-State Circuits, vol. 22, pp. 930 - 938, December 1987.

• Operational amplifier dual input folded-cascode opamp

• M3,4 auxiliary input, M1,2 main input

• To achieve 1/10 gain ratio WM3, 4 =1/10x WM1,2 & current sources are scaled by 1/10

• M5,6,7 common-mode control

• Output stage dual cascode high DC gain

Vout=gm1roVin1 + gm2roVin2

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 58

• During offset cancellation phase AZ and S1 closed main amplifier offset amplified by gm1/gm2 & stored on CAZ

• Auxiliary amp chosen to have lower gain so that:Aux. amp offset & charge injection associated with opening of switch AZ reduced

by Aaux/Amain=1/10Low increase in power dissipation resulting from addition of aux. inputs

• Requires an extra auto-zero clock phase

Differential T/H Including Offset Cancellation Phase

Voffset

+

-(VINAZ+ -VINAZ- )= -gm1/gm2 Voffset

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 59

ESD ProtectionADC Architectures

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 60

What is ESD?

• Electrostatic discharge• Example: Charge built up on human body

while walking on carpet...• Charged objects near or touching IC pins

can discharge through on-chip devices• Without dedicated protection circuitry, ESD

events could be destructive

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 61

Model and Protection Circuit

[http://www.ce-mag.com/archive/03/ARG/dunnihoo.html]

[http://www.idt.com/docs/AN_123.pdf]

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 62

Equivalent Circuit

• Nonlinear capacitance causes distortion• Distortion increases with frequency

– Today's converters: High frequency, low distortion!

Ref: I. E. Opris, "Bootstrapped pad protection structure," IEEE J.Solid-State Circuits, pp. 300, Feb. 1998

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 63

ESD Circuit Distortion

Ref: I. E. Opris, "Bootstrapped pad protection structure," IEEE J.Solid-State Circuits, pp. 300, Feb. 1998.

C(Vin)= 2......4pFfor Vin=2....0V

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 64

ESD Circuit Distortion

• Analysis: – Volterra Series – Or SPICE simulations

• Example:

R Cj CL

vi vo R=25ΩCjo=1pFCL=5pFVipeak=0.5V

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 65

ESD Circuit Distortion

HD3(@ 37.5MHz) = -92dBHD3(@ 100MHz) = -84dB

106

107

108

109

1010

-100

-80

-60

2nd

Ord

er H

arm

onic

Dis

torti

on [d

Bc]

Input Frequency

-120

3rd

Ord

er H

arm

onic

Dis

torti

on [d

Bc]

106

107

108

109

1010

Input Frequency

-100

-80

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 66

ESD Circuit Distortion• Distortion from ESD circuits approaches state

of-the-art ADC performance!• If you are working on a new, record breaking

ADC, better think about ESD now...• Ref.: A. Wang, "Recent developments in ESD

protection for RF IC," Proc. DAC Conference, Jan. 2003

• Solutions still pre-mature• Lots of company intellectual property! (IP)

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 67

ADC Architectures• Slope Converters• Successive approximation• Flash• Folding• Time-interleaved / parallel converter• Residue type ADCs

– Two-step– Pipeline– Algorithmic– …

• Oversampled ADCs

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 68

Single Slope ADC

• Low complexity• Hard to generate precise ramp• Better: Dual Slope, Multi-Slope

RampGenerator

Time

VR

amp

VRampVIN

"0"

Counterstop

start

Clock

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 69

Dual Slope ADC

http://www.maxim-ic.com/appnotes.cfm/appnote_number/1041

• Integrate Vin for fixed time, de-integrate with Vref applied TDe-Int ~ Vin/Vref

• Insensitive to most linear error sources

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 70

Successive Approximation ADC

• Binary search over DAC output

DACVIN

ControlLogic

Clock

VREF

ResetDAC

Set DAC[MSB]=1

VIN>VDAC?1 MSB 0 MSB

Set DAC[MSB-1]=1

VIN>VDAC?1 [MSB-1] 0 [MSB-1]

....

VIN>VDAC?1 [LSB] 0 [LSB]

DAC[Input]= ADC[Output]

Y

Y

Y

N

N

N

EECS 247 Lecture 19: Data Converters © 2006 H.K. Page 71

Successive Approximation ADC

• High accuracy achievable (16+ Bits) • Moderate speed proportional to B (MHz range)

VDAC/VREF

Time / Clock Ticks

1

1/2

3/45/8

VIN

1/2 3/4 5/8 11/16 21/32 41/64DAC

VIN

ControlLogic

Clock

VREF

Example: 6-bit ADC & VIN=5/8VREF

ADC 101000