24
EE105 Fall 2007 Lecture 27, Slide 1 Prof. Liu, UC Berkeley Lecture 27 ANNOUNCEMENTS Regular office hours will end on Monday 12/10 Special office hours will be posted on the EE105 website Final Exam Review Session: Friday 12/14, 3PM, HP Auditorium Video will be posted online by Monday 12/17 Final Exam: Thursday 12/20, 12:30PM-3:30PM, 277 Cory Closed book; 6 pages of notes only Comprehensive in coverage: • Material of MT#1 and MT#2, plus MOSFET amplifiers, MOSFET current sources, BJT and MOSFET differential amplifiers, feedback. • Qualitative questions on state-of-the-art device technology

EE105 Fall 2007Lecture 27, Slide 1Prof. Liu, UC Berkeley Lecture 27 ANNOUNCEMENTS Regular office hours will end on Monday 12/10 Special office hours will

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

EE105 Fall 2007 Lecture 27, Slide 1 Prof. Liu, UC Berkeley

Lecture 27ANNOUNCEMENTS

• Regular office hours will end on Monday 12/10• Special office hours will be posted on the EE105 website

• Final Exam Review Session: Friday 12/14, 3PM, HP Auditorium– Video will be posted online by Monday 12/17

• Final Exam:– Thursday 12/20, 12:30PM-3:30PM, 277 Cory– Closed book; 6 pages of notes only– Comprehensive in coverage:

• Material of MT#1 and MT#2, plus MOSFET amplifiers, MOSFET current sources, BJT and MOSFET differential amplifiers, feedback.

• Qualitative questions on state-of-the-art device technology

EE105 Fall 2007 Lecture 27, Slide 2 Prof. Liu, UC Berkeley

Outline

• IC technology advancementQ: How did we get here?

• Modern BJT technologyQ: What is an HBT?

• Modern MOSFET technologyQ: What are the challenges (and potential solutions)

for continued MOSFET scaling?

EE105 Fall 2007 Lecture 27, Slide 3 Prof. Liu, UC Berkeley

The IC Market• The semiconductor industry is approaching $300B/yr in sales

Transportation

8%

Consumer Electronics16%

Communications24%

Computers42%

Industrial8%

Military2%

Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

EE105 Fall 2007 Lecture 27, Slide 4 Prof. Liu, UC Berkeley

IC Technology AdvancementImprovements in IC performance and cost have been enabled by the steady miniaturization of the transistor

Better Performance/Cost

Market Growth

2000 2005 2010 2015 20201

10

100

GA

TE

LE

NG

TH

(n

m)

YEAR

LOW POWER HIGH PERFORMANCE

International Technology Roadmap for Semiconductors

Transistor Scaling

Investment

SMIC’s Fab 4 (Beijing, China)Photo by L.R. Huang, DigiTimes

PITCH

YEAR: 2004 2007 2010 2013 2016

HALF-PITCH: 90nm 65nm 45nm 32nm 22nm

EE105 Fall 2007 Lecture 27, Slide 5 Prof. Liu, UC Berkeley

The Nanometer Size Scale

Carbon nanotube

MOSFET

EE105 Fall 2007 Lecture 27, Slide 6 Prof. Liu, UC Berkeley

Nanogap DNA Detector

Prof. Luke Lee, BioEngineering Dept.http://www-biopoems.berkeley.edu/

Insulator (

Polysilicon

Insulator (Si3N4) Insulator (Insulator (Si3N4)

Poly-Si

Double-stranded DNA

Poly-Si

Single-stranded DNA

Poly-SiPoly-Si

EE105 Fall 2007 Lecture 27, Slide 7 Prof. Liu, UC Berkeley

• Goal: Mass fabrication (i.e. simultaneous fabrication) of many IC “chips” on each wafer, each containing millions or billions of transistors

• Approach: Form thin films of semiconductors, metals, and insulators over an entire wafer, and pattern each layer with a process much like printing (lithography).

IC Fabrication

Planar processing consists of a sequence of additive and subtractive steps with lateral patterning

oxidationdeposition

ion implantation

etching lithography

EE105 Fall 2007 Lecture 27, Slide 8 Prof. Liu, UC Berkeley

• DEPOSITION of a thin film

• LITHOGRAPHY– Coat with a protective layer– Selectively expose the protective layer– Develop the protective layer

• ETCH to selectively remove the thin film

• Strip (etch) the protective layer

Planar Processing(patented by Fairchild Semiconductor in 1959: J. A. Hoerni, US Patent 3,064,167)

Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

EE105 Fall 2007 Lecture 27, Slide 9 Prof. Liu, UC Berkeley

Deposition/growth

Etch

Epitaxy

Anneal

CMP

Ion Implantation

Test

CD SEMMetrology

DefectDetection

Lithography

Mask Pattern Generation

Bare SiliconWafer

ProcessedWafer

Overview of IC Process Steps

Courtesy of Dr. Bill Flounders, UC Berkeley Microlab

EE105 Fall 2007 Lecture 27, Slide 10 Prof. Liu, UC Berkeley

Features:• Narrow base • n+ poly-Si emitter• Self-aligned p+ poly-Si base contacts• Lightly-doped collector• Heavily-doped epitaxial subcollector• Shallow trenches and deep trenches filled with SiO2 for electrical isolation

B E C

p+ p+ P base

N collector

N+ subcollector

P substrate

N+ polySi

N+

Deeptrench

Deep trench

Shallowtrench

P+polySiP+polySi

Modern BJT Structure

EE105 Fall 2007 Lecture 27, Slide 11 Prof. Liu, UC Berkeley

BJT Performance Parameters• Common emitter current gain, :

• The cutoff frequency, fT, is the frequency at whichfalls to 1.It is correlated with the maximum frequency of oscillation, fmax.

• Intrinsic gain

BBiEE

EEiBB

EE

iEEE

BB

iBBE

B

C

WNnD

WNnD

WN

nDqA

WN

nDqA

I

I2

2

2

2

T

A

C

A

T

Com V

V

I

V

V

Irg

EE105 Fall 2007 Lecture 27, Slide 12 Prof. Liu, UC Berkeley

• To improve , we can increase niB by using a base material (Si1-xGex) that has a smaller band gap energy

• for x = 0.2, Eg of Si1-xGex is 0.1eV smaller than for Si

• Note that this allows a large to be achieved with large NB (even >NE), which is advantageous for

• increasing Early voltage (VA)• reducing base resistance

Heterojunction Bipolar Transistor (HBT)

kT

En gi exp2

BBiEE

EEiBB

WNnD

WNnD2

2

EE105 Fall 2007 Lecture 27, Slide 13 Prof. Liu, UC Berkeley

Modern MOSFET Structures(Intel Penryn, from www.semiconductor.com)

• 45nm CMOS technology features:– High-permittivity gate dielectric and metal gate electrodes– strained channel regions– shallow trench isolation

N-channel MOSFETs P-channel MOSFETs

EE105 Fall 2007 Lecture 27, Slide 14 Prof. Liu, UC Berkeley

MOSFET Performance Parameters

• Transconductance (short-channel MOSFET):

– The average carrier velocity v is dependent on the velocity at which carriers are “injected” from the source into the channel, which is dependent on the carrier mobility

• The cutoff frequency of a MOSFET is given by

• Intrinsic gain:

THGS

Doxm VV

IvWCg

)(

11

THGSDTHGS

Dom VVIVV

Irg

GS

mT C

gf 2

EE105 Fall 2007 Lecture 27, Slide 15 Prof. Liu, UC Berkeley

MOSFET Scaling Challenges• Suppression of short-channel effects

– Gain in ION is incommensurate with Lg scaling

• Variability in performance– Sub-wavelength lithography:

(Costly resolution-enhancement techniques are needed)

– Random variations:• Photoresist line-edge roughness

• Statistical dopant fluctuations

Substrate

Gate

Source Drain

Substrate

Gate

Source Drain

MOSFET:

LeffNsub

Xj

Lg

Tox

Design

Mask

Wafer

250nm250nm 180nm180nm

OPCOPC

90nm and Below90nm and Below

PSM

180°

PSMPSM

180°

180°

OPC0°

180°OPCOPCOPC

180°

photoresist SiO2

Gate

A. Brown et al., IEEE Trans. Nanotechnology, p. 195, 2002

Source Drain

EE105 Fall 2007 Lecture 27, Slide 16 Prof. Liu, UC Berkeley

“VTH Roll-Off”• |VTH| decreases with Lg

– Effect is exacerbated by high values of |VDS|

• Qualitative explanation:– The source & drain p-n junctions assist in depleting the Si underneath

the gate. The smaller the Lg, the greater the percentage of charge balanced by the S/D p-n junctions:

M. Okuno et al., 2005 IEDM p. 52

Large Lg: S D

Small Lg: DS

n+n+

VG

p depletion region

xj

EE105 Fall 2007 Lecture 27, Slide 17 Prof. Liu, UC Berkeley

Why New Transistor Structures?• DIBL must be suppressed to scale down Lg

• Leakage occurs in region far from channel surface Let’s get rid of it!

DrainSource

Gate

Lg

Thin-BodyMOSFET

Buried Oxide

Source Drain

Gate

Substrate

“Silicon-on-Insulator”

(SOI)Wafer

EE105 Fall 2007 Lecture 27, Slide 18 Prof. Liu, UC Berkeley

Thin-Body MOSFETs• Leakage is suppressed by using a thin body (TSi < Lg)

– Channel doping is not needed higher carrier mobility

• Double-gate structure is more scalable (to Lg<10nm)

Ultra-Thin Body (UTB)

Buried Oxide

Substrate

Source Drain

Gate

TSi

Lg

Double-Gate (DG)

Gate

Source Drain

Gate

TSi

EE105 Fall 2007 Lecture 27, Slide 19 Prof. Liu, UC Berkeley

Double-Gate “FinFET”

Planar DG-FET

Gate

Source Drain

Gate

TSi

Fin Width = TSi

Lg

GATE

SOURCE

DRAIN20 nm

10 nmY.-K. Choi et al. (UC Berkeley), IEDMTechnical Digest, pp. 421-424, 2001

15nm Lg FinFET:

Fin Height HFIN = W/2

D. Hisamoto et al. (UC Berkeley), IEDM Technical Digest, pp. 1032-1034, 1998

N. Lindert et al. (UC Berkeley), IEEE Electron Device Letters, pp. 487-489, 2001

FinFET

Source

DrainGate

Lg

EE105 Fall 2007 Lecture 27, Slide 20 Prof. Liu, UC Berkeley

15 nm Lg FinFETs

-1.0 -0.5 0.0 0.5 1.0 1.5 2.010-12

10-10

10-8

10-6

10-4

10-2

10-12

10-10

10-8

10-6

10-4

10-2

N-body=

2x1018cm-3

P+Si0.4

Ge0.6

Gate

NMOSPMOS

Vd=-0.05 V

Vd=-1.0 V

Vd=0.05 V

Vd=1.0 V

Dra

in C

urre

nt, I

d [A

/um

]

Gate Voltage, Vg [V]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50

100

200

300

400

500

600

0

100

200

300

400

500

600

Voltage step : 0.2V

|Vg-V

t|=1.2V NMOSPMOS

Dra

in C

urre

nt, I

d[u

A/u

m]

Drain Voltage, Vd [V]

TSi = 10 nm; Tox = 2.1 nm

Y.-K. Choi et al. (UC Berkeley), IEDM Technical Digest, pp. 421-424, 2001

Transfer Characteristics Output Characteristics

EE105 Fall 2007 Lecture 27, Slide 21 Prof. Liu, UC Berkeley

10 nm Lg FinFETsB. Yu et al. (AMD & UC Berkeley), IEDM Technical Digest, pp. 251-254, 2002

220ÅSiO2 cap

Lg=10nm

BOX

NiSi

Poly-Si

Si Fin

Source

DrainGate

EE105 Fall 2007 Lecture 27, Slide 22 Prof. Liu, UC Berkeley

G

S D

Si classical

multi-gateG

S DSi

G

high- gate dielectric

metallic gate

strained Si

Lg (nm): 50 40 30 20 10

MOSFET Scaling Scenario• Advanced structures will enable Si MOSFET scaling to Lg <10 nm

forward body biasing

EE105 Fall 2007 Lecture 27, Slide 23 Prof. Liu, UC Berkeley

The End is Not the Limit !

Information technology pervasive embedded human-centered solving societal-

scale problems

Philips

Innovations in process technology, materials, and device design will sustain the Si revolution

Lower Power,Lower Cost

Market Growth

Technology, Device & CircuitInnovations,

Heterogeneous Integration

Investment

Acknowledgement: Mark Weiser

UbiComp (>1 computers per person)

today

SA

LES

($)/

YR

TIME

PCs (1 person/computer)Mainframes (>1 persons per computer)

Transportation

Healthcare Disaster response

Energy

Environment

Sensatex

Information technology will be pervasive embedded human-centered

for better quality-of-life

EE105 Fall 2007 Lecture 27, Slide 24 Prof. Liu, UC Berkeley

EECS 105 in the Grand Scheme • Example electronic system: cell phone