42
Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2008 www.nanohub.org NCN

EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

  • Upload
    others

  • View
    16

  • Download
    7

Embed Size (px)

Citation preview

Page 1: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 1

EE-612:Lecture 6

MOSFET IV: Part II

Mark LundstromElectrical and Computer Engineering

Purdue UniversityWest Lafayette, IN USA

Fall 2008

www.nanohub.orgNCN

Page 2: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 2

outline

1) Review

2) Bulk charge theory (approximate)

3) Velocity saturation theory

4) Summary

Page 3: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 3

typical Si NMOS characteristics

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

VGSID ∝W VGS −VT( )1

Page 4: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 4

MOSFET IV: summary

ID =WLμeff Cox VGS −VT( )VDS

linear region: VDS << VDSAT

ID =W2L

μeff Cox VGS −VT( )2saturated region: VDS > VDSAT

ID = W Coxυsat VGS −VT( )

VDS = VGS −VT

VDS > VSAT

See: “A Review of MOSFET Fundamentals,” M. Lundstrom,http://nanohub.edu/resources/5307

Page 5: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 5

square law theory

ID = −

WLμeff QI (V )dV

0

VDS

QI (y) = −Cox VG −VT −V (y)[ ]ID = μeff Cox

W2 ′L

VGS −VT( )2

VGS >VT VDS >VGS −VT

ID = μeff CoxWL

VGS −VT( )VDS −VDS

2

2⎡

⎣⎢

⎦⎥

VGS > VT VDS ≤ VGS −VT

QI (y) = −Cox VG −VT (y)[ ]

Page 6: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 6

bulk charge theory

ID = −

WLμeff QI (V )dV

0

VDS

QI (y) = −Cox VG −VT (y)[ ]

VT (y) = VFB + 2ψ B +V (y) + 2qεSiNA 2ψ B +V (y)( ) Cox

Page 7: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 7

bulk charge theory

ID = μeff CoxWL

VGS −VFB − 2ψ B −VDS

2⎛⎝⎜

⎞⎠⎟

VDS

−2 2εSiqNA

3Cox

2ψ B +VDS( )3/2− 2ψ B( )3/2⎡

⎣⎤⎦

⎢⎢⎢⎢

⎥⎥⎥⎥

VGS > VT VDS ≤ VGS −VT

expand for small VDS :

ID = μeff CoxWL

VGS −VT( )VDS

eqn. (3.18) Taur and Ning

Page 8: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 8

bulk charge theory: ii

ID = μeff CoxWL

VGS −VFB − 2ψ B −VDS

2⎛⎝⎜

⎞⎠⎟

VDS

−2 2εSiqNA

3Cox

2ψ B +VDS( )3/2− 2ψ B( )3/2⎡

⎣⎤⎦

⎢⎢⎢⎢

⎥⎥⎥⎥

VGS > VT VDS ≤ VGS −VT( ) m

expand for larger VDS :

ID = μeff CoxWL

VGS −VT( )VDS −m2

VDS2⎡

⎣⎢⎤⎦⎥

m = 1+εSiqNA 4ψ B

Cox

Page 9: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 9

bulk charge theory: iii

VGS > VT VDS > VGS −VT( ) m

ID = μeff CoxWL

VGS −VT( )VDS −m2

VDS2⎡

⎣⎢⎤⎦⎥→

ID = μeff CoxW′L

VGS −VT( )22m

Page 10: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 10

bulk charge theory: summary

VGS > VT VDS > VGS −VT( ) m

ID = μeff CoxW′L

VGS −VT( )22m

How can we derive these results more simply and give a physical interpretation to m?

VGS > VT VDS ≤ VGS −VT( ) m

ID = μeff CoxWL

VGS −VT( )VDS −m2

VDS2⎡

⎣⎢⎤⎦⎥

m = 1+εSiqNA 4ψ B

Cox

Page 11: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 11

outline

1) Review

2) Bulk charge theory (approximate)

3) Velocity saturation theory

4) Summary

Page 12: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 12

I-V formulation

VG VD0

ID = W QI y( )υy (y)

xy

ID = −WLμeff QI V( )

0

VDS

∫ dVID

QI (y) = −Cox VG −VT (y)[ ]

VT (y) = VFB + 2ψ B +V (y) + 2qεSiNA 2ψ B +V (y)( ) Cox

VT (y) = VFB + 2ψ B +V (y) −QD V( ) Cox

Page 13: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 13

approximate QD

QD (V ) = − 2qεSiNA (2ψ B +V )

QD (V )

V

QD (0) = − 2qεSi NA (2ψ B )

can we use a linear approximation for QD?

Page 14: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 14

approximate QD

QD (V ) = − 2qεSiNA (2ψ B +V )

QD (V ) = QD (0) +dQD

dV V =0

V + ...

dQD

dV V =0

= −εSi

WDM

= −CDM

QD (V ) = QD (2ψ B ) − CDMV

Page 15: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 15

approximate QI

QI (V ) = −Cox VG −VFB − 2ψ B +QD (2ψ B )

Cox

−V −CDM

Cox

V⎛

⎝⎜⎞

⎠⎟

−VT − 1+ CDM Cox( )VQI (y) = −Cox VG −VT − mV( )m = 1+ CDM Cox( )

VT (y) = VFB + 2ψ B +V (y) −QD V( ) CoxQI (y) = −Cox VG −VT (y)[ ]QD (V ) = QD (2ψ B ) − CDMV

Page 16: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 16

meaning of m

m = 1+ CDM Cox( )

VG

Cox

CS

ψ S

Δψ S =Cox

Cox + CDM

ΔVG =ΔVG

m

‘body effect coefficient’

m = 1+ 3tox WDM( )

Page 17: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 17

IV relation

VG VD0

xy

ID = −WLμeff QI V[ ]

0

VDS

∫ dV

ID = μeff CoxWL

VG −VT − mV[ ]0

VD

∫ dV

ID = μeff CoxWL

VGS −VT( )VDS −m2

VDS2⎡

⎣⎢⎤⎦⎥

Page 18: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 18

pinch-off

VG VD0

xy

QI (L) = −Cox VG −VT − mVD[ ]

when VD = VG −VT( ) m ,then QI (L) = 0

Ey >> Ex GCA fails!

Page 19: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 19

beyond pinch-off, VDS > VDSAT

VG VD0

xy

V x( )= VGS −VT( ) m

channel is pinched-off near the drain but current still flows.

ID ≈ ID VDS = VGS −VT( ) m( )

ID = μeff CoxW2 ′L

VGS −VT( )2m

VGS > VT

VDS > VGS −VT( ) m

′L < L

Page 20: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 20

IV summary

ID = μeff CoxW2 ′L

VGS −VT( )2 m

ID

VDS

ID = μeff CoxW′L

VGS −VT( )VDS

VDSAT = VGS −VT( )/ m

VGS

Page 21: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 21

outline

1) Review

2) Bulk charge theory (approximate)

3) Velocity saturation theory

4) Summary

Page 22: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 22

velocity saturation in bulk silicon

electric field V/cm --->

velo

city

cm

/s --

->

107

104

υ =υ sat

υ = μE

Page 23: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 23

velocity saturation and MOSFETs

ID = W QI y( )υy (y)

υy (y) = μeff Ey (y) ?

Ey ~VDD

L<< 104 V/cm

L >>VDD

104

OK for L >> 1 micrometer

Page 24: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 24

expected result

ID

VDSVDSAT

VDSAT = VGS −VT( )/ m

VDSAT reduced IDSAT reduced

Page 25: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 25

velocity vs. field characteristic (electrons)

electric field V/cm --->

velo

city

cm

/s --

->

107

104

υ = μE

υ =υ sat

υd =−μE

1+ (E Ec )2⎡⎣ ⎤⎦1/2

υd =−μE

1+ ( E Ec )

μEC = υsat

Page 26: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 26

I-V derivation

VG VD0 ID = −W QI y( )υy (y)

xy

ID = WQIμeff

Ey

1+ Ey Ec

ID

υ(y) =−μeff E

1+ ( E Ec )

ID 1+1Ec

dVdy

⎛⎝⎜

⎞⎠⎟= −WQIμeff

dVdy

Page 27: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 27

I-V derivation: ii

VG VD0

xy

ID ID 1+1Ec

dVdy

⎛⎝⎜

⎞⎠⎟= −WQIμeff

dVdy

ID 1+1Ec

dVdy

⎛⎝⎜

⎞⎠⎟

dy = −WQIμeff dV

ID dy0

L

∫ + +1Ec

dV0

VDS

∫⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪= − WQIμeff dV

0

VDS

same as beforeIDL 1+VDS LEc{ }

Page 28: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 28

derivation (iii)

ID = Fv μeff CoxWL

VGS −VT( )VDS − mVDS

2

2⎡

⎣⎢

⎦⎥

Fv =1

1+VDS / LEc( ) =1

1+ μeffVDS /υsat L( )

VGS > VT VDS < ?

(1) valid when:

VDS / L = average electric field in the channel

when VDS / L >> Ec then F << 1

(1)

Page 29: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 29

VDSAT

dID

dVDS

= 0

VDSAT =2 VGS −VT( )/ m

1+ 1+ 2μeff VGS −VT( ) mυsat L<

VGS −VT( )m

eqn. (3.77) of Taur and Ning

Page 30: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 30

IDSAT

IDSAT = W Coxυsat VGS −VT( )1+ 2μeff VGS −VT( ) mυsat L −1

1+ 2μeff VGS −VT( ) mυsat L +1

eqn. (3.78) of Taur and Ning

Examine two limits:

i) L →∞ii) L → 0

Page 31: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 31

L --> inf

VDSAT →VGS −VT( )

m

IDSAT →μeff CoxW2L

VGS −VT( )2m

Page 32: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 32

L --> 0

IDSAT = W Coxυsat VGS −VT( )

VDSAT → 2υsat L VGS −VT( ) mμeff

“complete velocity saturation”

current independent of L

Page 33: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 33

near threshold

VDSAT → VGS −VT( ) m

2μeff VGS −VT( )mυsat L

<< 1

IDSAT →μeff CGW2L

VGS −VT( )2m

near threshold is like long channel

Page 34: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 34

near threshold

2μeff VGS −VT( )mυsat L

<< 1

VGS −VT( ) mL

<Ec

2

VG VD0

xy

V x( )= VGS −VT( )/ m

Page 35: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 35

‘signature’ of velocity saturation

VGS

ID

VDS

ID =W2L

μeff Cox

VGS −VT( )2m

VGS

ID

VDS

ID = WυsatCox VGS −VT( )

Page 36: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 36

ID and (VGS - VT)

VGS

ID

VDS

ID (VDS = VDD ) ~ VGS −VT( )α

1 < α < 2

long channelcomplete velocity

saturation

Page 37: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 37

typical Si NMOS characteristics

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

VGS ID ∝W VGS −VT( )α

α ≈ 1

Page 38: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 38

velocity overshoot in a MOSFET

Page 39: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 39

outline

1) Review

2) Bulk charge theory (approximate)

3) Velocity saturation theory

4) Summary

Page 40: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 40

MOSFET IV approaches

ID = −WLμeff QI V( )

0

VDS

∫ dV

1) “exact” (Pao-Sah or Pierret-Shields)see p. 117 Taur and Ning

2) Square Law

3) Bulk Charge

4) Simplified Bulk Charge QI (V ) = −Cox VG −VT − mV )[ ]

QI (V ) = −Cox VG −VT −V )[ ]

QI (V ) = −Cox VG −VFB − 2ψ B −V −2qεSi NA 2ψ B +V( )

Cox

⎝⎜⎜

⎠⎟⎟

Page 41: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 41

MOSFET IV approaches

ID = Fv × −WLμeff QI V( )

0

VDS

∫ dV

5) Velocity saturation

QI (V ) = −Cox VG −VT − mV )[ ]

Fv =1

1+VDS / LEc( )

6) Full numerical

Page 42: EE-612: Lecture 6 MOSFET IV: Part II · Lundstrom EE-612 F08 1 EE-612: Lecture 6 MOSFET IV: Part II Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette,

Lundstrom EE-612 F08 42

suggested reference

For a thorough treatment of MOSFET theory, see:

Yannis Tsividis, Operation and Modeling of the MOS Transistor, 2nd Edition, WCB McGraw-Hill, Boston, 1999.

especially Chapters 3, 4, and 6.5