21
Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering Purdue University West Lafayette, IN USA Fall 2006 www.nanohub.org NCN

EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

  • Upload
    lamtruc

  • View
    235

  • Download
    2

Embed Size (px)

Citation preview

Page 1: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 1

EE-612:Lecture 1: MOSFET Review

Mark LundstromElectrical and Computer Engineering

Purdue UniversityWest Lafayette, IN USA

Fall 2006

www.nanohub.orgNCN

Page 2: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 2

S DG

MOSFETs

physical structure

S D

G

circuit schematic

65 nm technology node:L = 35 nmTox = 1.2nmVDD = 1.2V

Page 3: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 3

common source characteristics

S

D

G

1) ground source2) set VG3) sweep VD from 0 to VDD4) Step VG from 0 to VDD

ID

VDS

VGS

VDD

VG = VDD

1 2

Page 4: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 4

common source characteristics

ID

VDS

VGS

VDD

channel resistance = VDS / IDS

VG = VDD

on current (μA/μm)

outputconductance

Page 5: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 5

transfer characteristics

ID

VGSVDD

S

D

G

1) ground source2) set VD3) sweep VG from 0 to VDD

low VD

high VD

Page 6: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 6

transfer characteristics

ID

VGSVDD

low VD

high VD

intercept gives VT(lin)slope is related to the effective mobility

intercept givesVT(sat) < VT(lin)

Page 7: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 7

log10 ID vs. VGS

VGS -->Lo

g 10

I DS-

->

S

D

G

1) ground source2) set VD = VDD3) sweep VG from 0 to VDD

VT

subthresholdregion

above threshold

Page 8: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 8

log10 ID vs. VGS

VDD

Log 1

0I D

S-->

VGS

VGS = VDS = VDD

on-current

off-currentVGS = 0 VDS = VDD

S > 60 mV/decadesubthreshold swing

Page 9: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 9

DIBL (drain-induced barrier lowering)

VDD

Log 1

0I D

S-->

VGS

VD = 0.05V

VD = 1.0V

VT(VD = 1.0V) < VT(VD = 0.05V)

DIBL mV/V

Page 10: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 10

GIDL (gate-induced drain leakage)

VDD

Log 1

0I D

S-->

VGS

VD = 1.0V

GIDL

Page 11: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 11

physics of MOSFETs

S DG

VD= VDD

electron energyvs. position

VD≈ 0V

E = −qV

E.O. Johnson, RCA Review, 34, 80, 1973

Page 12: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 12

modern MOSFETs

Intel Technical J., Vol. 6, May 16, 2002.(low VT device)

130 nm technology (LG = 60 nm)

PMOSI D

S(m

A/μm

)NMOS

Page 13: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 13

MOSFET IV: low VDS

VG VD0

ID =W Qi x( )υ x (x) =W Qi 0( )υ x (0)

ID =W Cox VGS −VT( )μeffEx

Ex =

VDS

L

Qi x( )= −Cox VGS −VT −V (x)( )

ID

VDS

VGS

ID =WLμeff Cox VGS −VT( )VDS

Page 14: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 14

MOSFET IV: high VDS

VG VD0

ID =W Qi x( )υ x (x) =W Qi 0( )υ x (0)

ID =W Cox VGS −VT( )μeffEx

V x( )= VGS −VT( )

VGS

ID

VDS

ID =WLμeff Cox VGS −VT( )2

2 E x ≈

VGS −VT

L

Page 15: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 15

velocity saturation

electric field V/cm --->

velo

city

cm

/s --

->

107

104

υ = μE

υ =υ sat

VDS

L=

1.5V60nm

≈ 25 ×104 V/cm

Page 16: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 16

MOSFET IV: velocity saturation

VG VD0

ID =W Qi x( )υ x (x) =W Qi 0( )υ x (0)

ID =W Cox VGS −VT( )υ sat

ID = W Coxυsat VGS −VT( )

E x >> 104

0 0.4 0.8 1.2 1.4

Page 17: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 17

MOSFET IV: discussion

Qi = −Cox VGS −VT( ) ≈ ?

VGS 1.2V

VT = 0.3V

Tox = 1.5 nm

Qi ≈ 2 ×10−6 C/cm2

Qi

q≈ 1×1013 /cm2

Page 18: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 18

MOSFET IV: discussion

Intel Technical J., Vol. 6, May 16, 2002.

130 nm technology (LG = 60 nm)

ID ≈W Qi(0)υ sat ≈1.6 mA/μm

Page 19: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 19

MOSFET IV: velocity overshoot

Frank, Laux, and Fischetti, IEDM Tech. Dig., p. 553, 1992

Veloc

ity (c

m/s)

Position along Channel (mm) 0.0 0.01 0.02 0.03 0.04 0.05

VD = 0.8V VG-VT = 0.5V

0.0

1.0x107

2.0x107

3.0x107

Position along Channel (μm) 0.0 0.01 0.02 0.03 0.04 0.05

VD = 0.8V VG-VT = 0.5V

Page 20: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 20

MOSFET IV: Quantum effectsL = 10 nm

(quantum confinementtreated in both cases)

n(x, E)

ID vs. VDS

classical

quantum

Log ID vs. VGS

reducedon-current

increasedoff-current

nanoMOS at www.nanohub.org

Page 21: EE-612: Lecture 1: MOSFET Review - Department of ...reza2/courses/491/Slides/02...Lundstrom EE-612 F06 1 EE-612: Lecture 1: MOSFET Review Mark Lundstrom Electrical and Computer Engineering

Lundstrom EE-612 F06 21

Summary

1) A MOSFET’s ID = inversion layer charge times velocity

2) 2D electrostatics determine Qi

3) Carrier transport determines the velocity

4) Second order effects are becoming first order(e.g. leakage)