E3-327 (3) -m SOI MOSFET Oct 2013 (2)

Embed Size (px)

Citation preview

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    1/56

    1

    Module-3

    Professor K. N. BhatCentre for Nano Science and Engineering

    (CeNSE)

    Indian Institute of Science

    Bangalore-560 012Email : [email protected]

    NON-classical MOSFETs

    Silicon On Insulator (SOI) MOSFETS

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    2/56

    2

    Requirement for High Performance nanoscale MOSFETs

    Doping concentrations should not be highElectric field E(x) normal to the channel to be kept lowVDDshould be kept low to minimize power dissipation- Need to minimize threshold voltage.This calls for idealsub-threshold slope-in conventional devices this is

    difficult to achieve

    For electrons

    Low field mobility should be high

    VDSVGS

    E(y)E(x)

    E(0+) =E(y) at y=0+

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    3/56

    3

    High Performance nanoscale MOSFETs

    1. Non classical devices SOI MOSFETs and variations.

    2. Germanium based MOSFETs

    3. Schottky Barrier S/D MOSFETs4. Strained layers to achieve higher mobility MOSFETs

    5. GaAs FETsand HEMTS

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    4/56

    4

    Shallow junctions formation and metal

    spiking and shorting the junction

    (100) Bulk silicon wafer

    Bulk Silicon wafer cross section and Bulk Si MOSFET

    N+P

    DrainGateSource

    N+

    N+

    (100) Silicon

    Silicon

    < 0112 >Sapphire

    (Al2O3 )

    Gate DS

    N+N

    +

    P

    Silicon On Sapphire (SOS) Wafer and SOS MOSFET cross-section

    < 0112 >Sapphire

    (Al2O3 )

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    5/56

    5

    BOX= Buried Oxide

    Lateral and vertical scaling easier.

    Spiking and shorting the junction is not an issue

    SOI Layer

    Silicon substrate

    BOX

    Back Gate

    Front GateDS

    N+ N+P

    (100) Silicon

    SOI Wafer Cross section and SOI MOSFET

    SiO2 SiO2

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    6/56

    6

    Silicon-On-Insulator (SOI) Technologies

    1. Silicon-On-Sapphire (SOS)

    Low channel electron mobility is observed in SOS

    MOSFETs (n= 230-250 cm2/V-sec)

    Used mainly for Defense applications for operation in

    harsh environment (high Temperature and radiation )

    (100) Silicon

    (0112) Sapphire (Al2O3)

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    7/56

    7

    Multiple implants often reduce defectdensity

    Typical BOX thickness: 100, 200, 400 nm SOI film thickness varies from ~50 - 240 nm

    Oxygen implant at:-Energy 120-200 keV-Dose ~0.3-1.8x1018cm-2

    Anneal in inert ambientabove 1300C, 3-6 hours

    SOI

    BOX

    Substrate

    2.Separation by Implanted Oxygen (SIMOX)

    Implant1.8x1018/cm2

    for 400nm

    BOX thickness

    There are 4.4x1022O2atoms /cm3

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    8/56

    8

    1m SiO2is formed by oxidation of 0.44 m thickness of Si(Oxidation of 0.44m of Si gives an oxide thickness = 2.27x044=1m )

    No of Si atoms in 0.44m thick Si = (5x1022 )x0.44x10-4= 2.2x1018

    No of Oxygen atoms in 1m thick SiO2is = 4.4x1018/cm2 (twice that of

    no of Si atoms )

    O2atoms implanted to achieve 1m thick BOX layer =4.4x1018/cm2

    Therefore, Oxygen dose required for 400 nm (=0.4 micron) BOX = 1.76 x

    1018/ cm2.

    Number oxygen atoms in SiO2layer of 1 micron thickness

    Si: Molecular wt = 28 ; Density = 2.33 gm/cm3

    SiO2: Molecular wt = 60 ; Density = 2.27 gm/cm3

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    9/56

    9

    Thermally Oxidize

    Wafer-A

    Etch back the topwafer to the required

    SOI thickness

    Bond wafer -B

    on the oxide bySFB

    BOX

    A

    B

    Silicon Fusion Bonding (SFB) is done in two steps :

    (1) Press the two hydrophilic wafers at lowtemperature (400 C ) OH bonding due to Vanderwalforce.(2) Anneal ~1100C to drive H out and

    strengthen the bond by Si-O-Si bonding

    3. Bonded and Etch back SOI (BESOI)

    BOX

    A

    BOX

    A

    SOI

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    10/56

    10

    Hydrogen implantationthrough thermal oxide

    dose ~1-5x1016cm-2

    At ~400-600C wafer A

    separates from B

    at H2peak

    BOX

    A

    B

    Handle wafer B

    is bonded

    BOX

    A

    B

    After low temperature splitting, SOI wafer (B) is annealed~1100C to strengthen the bond. Wafer (A) is reused.

    SOI thickness set by H2implant energy and BOX thickness

    4. Smart- Cutprocess

    BOX

    H2peak

    A

    Range RPfor H2in Si is 8 nm/KV

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    11/56

    Benefits of SOI MOSFET

    11

    Low drain / source junction Capacitances and lowleakage currents

    Ability to operate in harsh environments

    (high temperature and high radiation dose rate)

    N+

    P

    DrainGateSource

    N+ N+

    Bulk Silicon MOSFET SOI MOSFET

    N+ N+P

    Front

    Gate DrainSource

    SiO2

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    12/56

    12

    SOI CMOS: Capacitance Advantage

    Junction capacitance: smaller than in bulk

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    13/56

    13

    Planarized surface by etching and LOCOS

    Etch the SOI layer partially

    leaving 0.44 tSOI un-etched as

    shown

    SOI layer

    LPCVD nitride Thermally oxidize. The Si3N4

    oxidation rate is about 30 times

    smaller than that of Si oxidation

    rate. The region where nitride is

    absent oxidizes. The volume of

    SiO2is 2.27 times that of Si. Thesurface of oxide is the same as

    that of Si

    Local Oxidation Of Silicon

    (LOCOS)

    SiO2

    SiO2

    SiO2

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    14/56

    14

    Bulk CMOS SOI CMOS

    SOI CMOS: Latch-up advantage

    latch-up free operation

    INOUT VDGND

    IN

    P+ P+ P+ N+N+ N+

    N-well

    P-substrate

    P-Channel

    VD

    N-Channel

    N+ N+P P+ P+N

    OUTGND

    Latch-up free operationSusceptible to Latch up

    SiO2

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    15/56

    15

    CMOS - Bulk vs. SOI

    Bulk CMOS structure Complicated with

    trench isolation etc

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    16/56

    16

    SOI CMOS structure Simpler Technology

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    17/56

    17

    N+ N+P P+ P+N

    OUTGND VDD

    Benefits of SOI CMOS Technology over bulk CMOS

    Low parasitic capacitances :Drain /Source junctions and interconnectsAbility to operate at higher temperaturesand radiation environment

    Simpler technology with no wells or trenchesShallow junctionseasy to fabricate

    Better dielectric isolation in bothvertical and horizontal directions

    Latch up free CMOS Low voltage operation Ideal sub-threshold slope S

    (60mV per decade)N-Channel P-Channel

    N NPS D

    Gf

    Gb

    Summary

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    18/56

    18

    SOI MOSFET Structure

    Front Gate Oxide

    (FOX), Thickness =G1 DS

    G2

    N+ N+P

    Substrate

    BOX Buried Oxide (BOX)Thickness=

    Symmetrical Double Gate (DG) MOSFET: G1 and G2identical material and

    Undoped Ultra Thin Body (UTB) MOSFET:

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    19/56

    19

    Common types of SOI MOSFET

    Partially Depleted SOI MOSFETFully Depleted MOSFET

    Reference:J.F.Colinge, Silicon On Insulator Technology:Materials

    to VLSIKluwer Academic Publishers , 1991 (first

    edition ), 1997 (second edition)

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    20/56

    20

    Case (i) Double Gate MOSET

    is PD if

    Case (ii) Single Gate MOSFET

    is PD if

    PartiallyDepleted (PD) SOI MOSFET

    The basic device equations of PD SOI MOSFETs are the sameas for bulk devices.

    In this case two inverted channels independent of each othercan exist in parallel

    Handle wafer

    BOX

    FOX

    N+N+

    +VGf

    +VGb

    SOI

    Handle wafer

    When Surface inverted , the

    surface potential is and thedepletion layer width is xd(max)

    2 f

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    21/56

    21

    Case (i) Double Gate MOSET

    is PD if

    Case (ii) Single Gate MOSFET

    is PD if

    PartiallyDepleted (PD) SOI MOSFET

    The basic device equations of PD SOI MOSFETs are the sameas for bulk devices.

    In this case two inverted channels independent of each othercan exist in parallel

    Handle wafer

    BOX

    FOX

    N+N+

    +VGf

    +VGb

    SOI

    Handle wafer

    When Surface inverted , the

    surface potential is and thedepletion layer width is xd(max)

    2 f

    Neutral p-region

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    22/56

    22

    Fully Depleted (FD) SOI MOSFET : tSOI< xd(max)

    This electrostatic coupling, makes the front channelFD device parameters dependent on the back gate

    voltage, including drain current, threshold voltage,

    sub-threshold slope etc

    In FDSOI case,the front and

    back channels are

    electro-statically

    coupled duringdevice operation

    VGb = 0 or +ve

    BOX

    FOX

    N+N+

    +VGf

    Handle wafer

    SOI

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    23/56

    23

    Energy Band diagrams of

    (A)Bulk, (B) Partially Depleted (PD) SOI MOSFET(C)Fully Depleted (FD) SOI MOSFETs

    Shaded regions are depleted

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    24/56

    24

    FD MOSFET: Operation Modes and Threshold Voltages

    a) Front Channel inverted, Back channel accumulatedb) Front Channel inverted, Back channel depleted

    c) Front Channel inverted Back Channel invertedd) Volume Inversion in UTB DG SOI MOSFET

    VGf

    pn+ n+tSi

    tOxf

    tOxb

    P+-Substrate

    VGb

    Front channel

    Back channel

    Front Gate

    Back Gate

    VD

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    25/56

    25

    N+ P N+

    SOI MOSFET: Front channel and back

    channel can have various bias conditions

    Front n- Channel Inverted with the

    (a)Back n-Channel accumulated (VGb< 0),

    (b) Back n-Channel Depleted (VGb> 0)

    ( c) Back n-Channel Inverted

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    26/56

    Channel depletedChannel

    accumulated

    VG

    x

    P-Si

    Accumula

    tion

    + + + + + + +

    P-Si

    Depletion

    -- -

    E(x)

    X

    X

    E(x) X

    V(x) XV(x)

    VSi

    -V G

    Bulk MOS Channel Inverted

    P-Si

    -- -- - - - - - - E

    x

    sE

    sf Q

    s Q

    D

    oxE

    ox

    sE

    sf

    Vox Eoxtox QDtoxox

    QDC

    ox

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    27/56

    27

    Threshold voltages of MOSFETs:

    P-Si

    Depletion

    Accumulation

    Depletion layer width reaches a

    maximum = and

    reaches a minimum

    At threshold voltage

    Inversion

    VOX+

    -+

    -VSi

    (A) Bulk MOSFET

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    28/56

    (B)FD SOI MOSFET Back channel in Accumulati0n

    E(x)

    Dotted lines represent the situation

    just when channel is fully depleted N+ P N+

    (i) SOI Layer is just depleted (Vgf=Vgf1)Vgf1

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    29/56

    (C) Fully Depleted SOI MOSFET Back gate grounded

    E

    sfE

    oxfEoxb

    Dotted lines represent the situation

    just when channel is just depleted

    N+ P N+

    When SOI Layer is just depleted

    (represented by dotted lines)

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    30/56

    30

    Using (2) in (1)

    When

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    31/56

    (D) Vgf varied with Back channel in depletion

    x1

    Vgb =Vgb1is held constantand Vgf is increased from 0

    to Vgf1

    At Vgf= Vgf1 depletionlayers merge at x1.

    E=0 at x1and potential isminimum and is 0 at x1.

    If Vgfand Vgbare nowincreased by V, the electric

    field distribution does not

    change , but the potentialdistribution curve shifts up

    by the voltage, V tillV

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    32/56

    32

    Back VGf = VGbabove VpT

    Esf

    E

    sb

    Eoxf

    Eoxb

    N+P

    N+

    Both Channels Inverted

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    33/56

    33

    General equations governing the VGf , VGb ,!sfand !sb

    Similarly,

    Using (3) in (1) we obtain, noting that

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    34/56

    3434

    Electric Field Esfon the surface of the SOI

    Front Channel inverted

    (1) Back channel in

    accumulation:

    (2) Back channel

    depleted :

    (3) Back channel

    Inverted :

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    35/56

    35

    Electric field and Potential distribution

    Front surface is inverted

    A- Back surface accumulated

    B Back surface depleted

    C - Back surface Inverted0

    E

    0

    0

    AB

    B

    A

    C

    C

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    36/56

    36

    Effect of Coupling on VThf of FD SOI

    Back Channel depleted

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    37/56

    3737

    Measured ID - VGfcharacteristics at various

    back gate bias voltages VGb

    p n+n+

    VGf

    VGb

    VD

    tOxf = 115nm

    tSi = 87nm

    tOxb = 400 nm

    W/L = 200m/ 15m

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    38/56

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    39/56

    39

    Sub-threshold Swing FD SOI MOSFET

    (PD)

    (FD)

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    40/56

    40

    Subthreshold slope vs. SOI Thickness

    The subthreshold slope changes drastically in the

    transition region from PD to FD SOI

    NA=8X1016/cm3, toxf=25nm

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    41/56

    41

    Electric field (Mobility): FD vs. Bulk

    Since transverse electric fields are smaller in FD devices,mobility is higher

    Also reflected in higher current drive

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    42/56

    42

    00

    E

    Front surface is always in inversion

    A Back surface is in accumulationB Back surface is in depletion

    C Back surface is in inversion

    Transverse Electric

    Field in the channel

    region is minimum

    in DGFD SOI

    MOSFET

    A

    B

    C

    Highest mobility

    can be achieved in

    DGFD FET

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    43/56

    43

    Measured Transconductance of SOI MOSFET

    toxf= 115nm, W/L = 200!m/15 !m, toxb= 400nm,

    "=14-22ohms

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    44/56

    44

    Extracted Mobility

    -30 -20 -10 0 10 20 30 400

    200

    400

    600

    800

    1000 mnfBESOIm

    nbBESOIm

    nf Smart Cutm

    nb Smart Cut

    Mobility(cm

    2

    /V-sec)

    VGb(V)

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    45/56

    45

    Higher Mobility in FD DG MOSFET

    (1) Transverse electric field is low.Therefore high mobility

    (2) Thin SOI layer leads to tight coupling of VG with

    channel potential. Therefore no need to dope the channel

    to control SCE and VTH. .This leads to higher low - field

    mobility and relieves scaling limitation of VTH .

    (a) Improvement in low field mobility

    (b) Reduced 2D SCE and in shorter channel length

    devices with (i) ideal sub-threshold slope, S=60mV

    and (ii) negligible shift in VTH

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    46/56

    46

    Criterion to Suppress SCE in FD DG MOSFET

    Threshold voltage shift due to SCE

    Sub-threshold voltage versus

    L

    SCE reduces for smaller silicon thickness

    Electrical Distance of channel centre to

    the gates

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    47/56

    47

    Definition of VTHin un doped FD DG MOSFET

    Since the silicon film is un doped, it is virtually equi-

    potential across the thickness as shown.

    This results in volume inversion. Popular definition of

    VTH (surface potential equal to ) cannot be used.

    Alternate definition :

    Gate voltage when inversion charge density reaches aparticular value (QTH)

    Inversion

    DepletionAccumulation

    Depth (nm)

    Potential(V)

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    48/56

    48

    Ultra thin DGSOI MOSFET Transconductance(Experimental results)

    gm( dg )

    ( gm( fg )

    gm( bg )

    )

    (dg)

    (fg)

    (bg)

    Ref: Thomas Ernst, S.Cristoloveanu etal

    Ultimately Thin Double Gate SOI MOSFETs

    IEEE Transactions on Electron Devices, pp.

    830-839, Vol.50 March 2003.

    VGf

    VGb

    P N+N+

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    49/56

    49

    Ultra Thin DG SOI MOSFET Carrier confinement in very

    narrow potential wells isgoverned by the wavefunctions and energy levelsof the various sub-bands.

    Self consistent solution ofSchrdinger and Poissonsequation is now necessaryto calculate carrierconcentration.

    The striking featureobtained by this solution isthat most of the carriersflow through the middle ofthe film, and not at theinterfaces

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    50/56

    50

    Ultra Thin DG SOI MOSFET

    Interesting result The

    transconductanceof DG SOI is morethan double SG

    SOI Why ?

    Most of carriers inDGSOI flow throughthe middle of thefilm, where carriermobility is muchhigher than at theinterfaces

    I t f Q ti ti

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    51/56

    51

    Impact of Quantization

    Effects

    Threshold voltage increases below 10 nmsilicon thickness due to increase of EO

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    52/56

    52

    Sensitivity of lowest sub band Energy E0in thin

    silicon quantum well to the silicon thickness a

    Ultimate limit to SOI filmthickness is governed by

    Quantum confinement which

    increases the sub-band

    energies for very thin Silicon

    layers..

    This makes the ofDGFET to be very sensitive

    to thickness variations, thus

    limiting the practical SOIthickness to above 3nm.

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    53/56

    53

    Advanced MOSFET Structures

    Special Triple Gate Device -

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    54/56

    54

    Special Triple Gate Device -

    FINFET

    Relatively simple process Effective channel width (W) = 2 x Hfin+ Tfin W can be increased by having multiple fins Devices with L = 18 nm and tox= 2.5 nm have been

    demonstrated

    Empirical scaling rule to suppress SCE L > 3Tfin

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    55/56

    55

    FD SOI MOS devices have several inherentadvantages over conventional bulk MOS deviceslike low VTh, Ideal S, Improved low fieldMobility and drive current mobility

    SOI wafers are also being increasingly used forother applications such as MEMS, radiation harddevices and high temperature electronics.

    Integrationof FD SOI MOSFETs has been madepossible withthe invention of Fin FET

    Summary

  • 8/13/2019 E3-327 (3) -m SOI MOSFET Oct 2013 (2)

    56/56

    (1) Qiang Chen, K.A. Bowman, E.M.Harrell and J.D.MeindlDoubleJeopardy in nanoscale Court

    , IEEE Circuits and Devices, pp.28-34,January 2003

    (2)Thomas Ernst, S.Cristoloveanu etalUltimately Thin Double Gate SOI

    MOSFETsIEEE Transactions on Electron Devices, pp.830-839, Vol.50

    March 2003.

    (3) B.Bindu, N.Lakshmi, K.N.Bhat , A.DasGupta,

    Design of single gate n-channel and p-channel MOSFETs with enhanced current - drive due to

    simultaneous switching of front and back channels in SOI CMOS

    technologySolid State Electronics, Vol.50,pp.1359-1367, 2006

    (4) IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 5,

    MAY 2002

    (5)Aditya Sankar Medury, K. N. Bhat and Navakanta BhatThreshold

    voltage modeling under size quantization for ultra-thin silicon double-

    gate metal-oxide-semiconductor field-effect transistor J. Appl. Phys.

    Some useful References