70
1 1 The “Cathode Rays” experiment is associated with: A Millikan B Thomson C Townsend D Plank E Compton

MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

1

1 The “Cathode Rays” experiment is associated with: A Millikan

B Thomson

C TownsendD PlankE Compton

Page 2: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

2

2 The electron charge was measured the first time in: 

A Cathode ray experimentB Photoelectric effect experimentC Oil drop experimentD Diffraction electrons from aluminum foilE Compton effect experiment

Page 3: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

3

3 Which of the following colors associated with the lowest temperature? 

A VioletB BlueC GreenD YellowE Red

Page 4: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

4

4 Which of the following photons has the greatest energy? 

A InfraredB BlueC X­RayD γ­ photonE UV – photon

Page 5: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

5

5 The energy of a photon depends on: 

A AmplitudeB SpeedC TemperatureD PressureE Frequency

Page 6: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

6

6 How does the energy of a photon change if the wavelength is doubled? 

A DoublesB QuadruplesC Stays the sameD Is cut to one­halfE Is cut to one­fourth

Page 7: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

7

7 How does the momentum of a photon change if the wavelength is halved? 

A DoublesB QuadruplesC Stays the sameD Is cut to one­halfE Is cut to one­fourth

Page 8: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

8

8 The photoelectric effect explains : 

A The wave nature of lightB The particle nature of lightC The wave properties of an electronD The particle properties of an electronE The atomic structure

Page 9: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

9

9 The kinetic energy of photo­electrons depends on: 

A Speed of lightB Angle of illuminationC Intensity of lightD WavelengthE None of the above

Page 10: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

10

10 Which of the following is the formula of the photon mass? 

A m = h/cλB m = cλ/hC m = h/fD m = f/hE m = Ec2

Page 11: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

11

11 The maximum kinetic energy of photo­electrons depends on which of the following: 

I. The light intensity  II. The frequency of the light  III. The nature of the photo­cell A Only IB Only IIC Only IIID Only I and IIE Only II and III

Page 12: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

12

12 Which of the following formulas explains the photo­electric effect? 

A hλ = W0 + KEB hf = W0 ­  KEC hf = W0 + KED hλ = ­W0 + KEE hc/λ = W0 ­  KE

Page 13: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

13

13 Which of the following graphs is a correct relationship between the maximum kinetic energy of photo­electrons and the frequency of the incident light? A  

B  

C  

D  

E  

Page 14: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

14

14 Which of the following graphs is a correct relationship between the maximum kinetic energy of photo­electrons and the intensity of the incident light? 

A   B  

C   D  

E  

I

I

I

I

I

Page 15: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

15

15 Which of the following graphs is a correct relationship between the de Broglie wavelength and the linear momentum of a particle? A   B  

C   D  

E  

Page 16: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

16

16 All of the following are properties of γ rays EXCEPT:

 

A They discharge electrified objects B They ionize gases C They are deflected by magnetic fields D They penetrate light objects 

E They are diffracted by crystals

Page 17: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

17

17 Which of the following phenomena provides the best evidence that light can have particle properties?   

A Diffraction of light B Electromagnetic radiation C Compton effect D Electron diffraction 

E γ­ray diffraction

Page 18: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

18

18 Which of the following phenomena provides the best evidence that particles can have wave properties? 

A The absorption of photons by electrons in an atom 

B The alpha­decay of radioactive nuclei 

C The interference pattern produced by neutrons incident on a crystal 

D The production of x­rays by electrons striking a metal target 

E The scattering of photons by electrons at rest 

Page 19: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

19

19 Which of the following formulas can be used to determine the de Broglie wavelength? 

A λ = hmvB λ = h/mvC λ = mv/hD λ = hm/cE λ = mc/h

Page 20: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

20

20 A photon can disappear producing an electron and positron, this phenomenon is called? 

A Interference of lightB Diffraction of X­RaysC Pair productionD Scattering of electronsE Annihilation

Page 21: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

21

21 When a positron collides with an electron they disappear producing photons, this phenomenon is called? 

A Interference of lightB Diffraction of X­RaysC Pair productionD Scattering of electronsE Annihilation

Page 22: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

22

22 The following statement: “In order to understand a given experiment, we must use either the wave or the photon theory, but not both” is called? 

A Wave theory of lightB Particle theory of lightC Planetary theory of an atomD Principle of complementarityE Wave theory of matter

Page 23: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

23

23 Electrons are accelerated to a maximum speed of v in an X­Ray tube by an applied voltage V0. What is the maximum speed of the electrons if the voltage is quadrupled?  

A 4v

B 2v

C  

D  

E v/4

Page 24: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

24

24 In a Compton Effect experiment a photon scattered from an electron at rest increases its wavelength from λi to λf. Which of the following deflecting angles   gives the greatest raise in the wavelength of the scattered? 

A 0  B 30   C 60   D 90   E 180   

Page 25: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

25

25 Which one of the following objects moving at the same speed is associated with a greatest wavelength? 

A NeutronB ElectronC Tennis ballD Bowling ballE α­ Particle

Page 26: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

26

26 According to the Bohr model of the atom, the angular momentum of an electron is: 

A Linearly increases with increasing electron’s velocity

B Linearly increases with increasing orbital radiusC QuantizedD Inversely proportional to the electron’s velocityE Inversely proportional to the orbital radius

Page 27: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

27

27 Rutherford’s experiment “Scattering α–particles by a gold foil” was conducted to prove which of the following: 

A Plum­pudding model of the atomB Planetary model of the atomC De Broglie hypothesisD Wave nature of lightE Quantum theory of light

Page 28: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

28

28 In Rutherford’s Experiment “Scattering α – particles by a gold foil” the biggest part of α – particles could pass through the foil undeflected.  Which of the following properties of the atom can be explained from this observation? A The positive charge is concentrated in the 

nucleusB The nucleus has electrons and protonsC The atomic mass is concentrated in the nucleus

D The α – particles couldn’t be deflected by electrons

E The size of the nucleus is much less than the size of the atom

Page 29: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

29

29 Which of the following statement(s) can be associated with Bohr’s theory of the atom?

I. An electron orbiting the  nucleus can change its energy continuously

II. An electron orbiting the nucleus emits energy and falls on the nucleus

III. An electron orbits the nucleus without radiating energy and can change its energy only by a certain portion when it jumps between the orbits

IV. The angular momentum of an electron around the nucleus is equal an integer times h/2π

 A I and II

B II and IV

C II and III

D III and IVE I, II, III and IV

Page 30: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

30

30 When an electron falls from an orbit where n = 2 to n = 1: 

A A photon is emittedB A photon is absorbedC No change in atomic energyD Atomic energy decreases to zeroE Atomic energy increases

Page 31: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

31

31 When an electron jumps from an orbit where n = 1 to n = 3 its orbital radius in terms of the smallest radius r1 is: 

A r1/9B r1/3C 2 r1D 3 r1E 9 r1

Page 32: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

32

32 When an electron jumps from an orbit where n = 1 to n = 4 its energy  in terms of the energy on the ground level is: 

A E1/9B E1/16C 2 E1

D 4 E1

E 16 E1

Page 33: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

33

33 An electron is moving around a single proton in an orbit characterized by n = 5.  How many of the electron's de Broglie wavelengths fit into the circumference of this orbit?  

A 3B 4C 5D 16E 25

Page 34: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

34

34 In a cathode ray tube an electron is accelerated by an electric field. When the applied voltage is 600 V the electron’s De Broglie wavelength is λ. What is the De Broglie wavelength of the accelerated electron through a potential difference of 150 V? 

A λB 2 λC λ /2D λ /4E 4 λ

Page 35: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

35

35 According to Maxwell’s theory of electro­magnetism an electron orbiting the atomic nucleus: 

A Changes its energy by certain portionsB Conserves its angular momentumC Conserves its energyD Radiates its energy and falls on the nucleus

E Changes its angular momentum by certain portions

Page 36: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

36

36 A hypothetical atom has the energy levels presented by the graph. An electron is excited from the ground state to the energy level ­1 eV. The following are the energies of the emitted photons EXCEPT: 

A 9 eVB 4 eVC 6 eVD 2 eVE 10 eV

Page 37: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

37

37 A hypothetical atom has energy levels presents by the graph. A container with the hypothetical gas is irradiated with electro­magnetic radiation with the energy range from 4 eV to 9 eV. The following sequence of the photons can be found in the emission spectrum. 

A 1 eV, 2 eV, and 6 eV onlyB 2 eV, 3 eV, and 4 eV onlyC 1 eV, 3 eV, and 5 eV onlyD 7 eV and 2 eV  onlyE None from the above

Page 38: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

38

38 A hypothetical atom has energy levels presents by the graph. A container with the hypothetical gas is irradiated with electro­magnetic radiation with the energy range from 4 eV to 9 eV. Which of the following transitions will produce a photon with the longest wavelength? 

A From n = 4 to n = 1B From n = 4 to n = 2C From n = 2 to n = 1D From n = 3 to n = 1E From n = 4 to n = 3

Page 39: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

39

39 According to the Bohr’s theory of the hydrogen atom, electrons starting in the 4th energy level and eventually ending in the ground state could produce a total of how many lines in the hydrogen spectra? 

A 6B 5C 7D 4E 3

Page 40: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

40

40 Which of the following transitions is related to the energy absorption? 

A α1B α2C α3D α4E α5

Page 41: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

41

1. In an experiment conducted to investigate a photo­electric effect physics students use an apparatus show on the diagram. Photo­electrons emitted as a result of incident light can be accelerated or stopped by an applied voltage. When the incident light has a wavelength of 300 nm the stopping voltage required to stop them is 1 V. If the incident light has a wavelength of 200 nm the stopping voltage is 3 V.

a) Calculate the Plank’s constant from the data collected in the experiment.

hf = KE +φ

KE = hf-φ

1eV = (3x108 m/s/ 3x10-7m) h -φ3eV = (3x108 m/s / 2x10­7m) h  ­ φ

subtracting the 2 equations yields

2 eV = 0.5 x 1015 s-1 h

h = 4 x 10 -15eV-s

Page 42: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

42

1. In an experiment conducted to investigate a photo­electric effect physics students use an apparatus show on the diagram. Photo­electrons emitted as a result of incident light can be accelerated or stopped by an applied voltage. When the incident light has a wavelength of 300 nm the stopping voltage required to stop them is 1 V. If the incident light has a wavelength of 200 nm the stopping voltage is 3 V.

b) Calculate the work function for the photo­cell use in the experiment.

plug h into either of the equations from aand you get that φ = 3eV

Page 43: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

43

1. In an experiment conducted to investigate a photo­electric effect physics students use an apparatus show on the diagram. Photo­electrons emitted as a result of incident light can be accelerated or stopped by an applied voltage. When the incident light has a wavelength of 300 nm the stopping voltage required to stop them is 1 V. If the incident light has a wavelength of 200 nm the stopping voltage is 3 V.

c) Determine the threshold frequency for this type of photo­cell.

hf = 3 eV

f = 3 eV / 4x10­15 eV­s

f = 7.5 x 1014 Hz

Page 44: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

44

1. In an experiment conducted to investigate a photo­electric effect physics students use an apparatus show on the diagram. Photo­electrons emitted as a result of incident light can be accelerated or stopped by an applied voltage. When the incident light has a wavelength of 300 nm the stopping voltage required to stop them is 1 V. If the incident light has a wavelength of 200 nm the stopping voltage is 3 V.

d) Calculate the stopping voltage required to stop photo­electrons emitted by the cell when the incident light has a wavelength of 100 nm.

KE = 3x108 * 4 x10­15/ 10­7  ­ 3 = 12­3 =9 eV

Page 45: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

45

2. A group of physics students conducts an experiment to investigate a photo­electric effect. They graphed the kinetic energy as a function of frequency of the incident light. 

a) Determine the Plank’s constant from the given graph.

calculate the slope   (1015 Hz, 1ev)  and (1.5 x 1015Hz, 3eV)

Page 46: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

46

2. A group of physics students conducts an experiment to investigate a photo­electric effect. They graphed the kinetic energy as a function of frequency of the incident light. 

b) Determine the work function of the photo­cell.

­ y intercept  = 3

Page 47: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

47

2. A group of physics students conducts an experiment to investigate a photo­electric effect. They graphed the kinetic energy as a function of frequency of the incident light. 

c) Determine the threshold frequency.

x intercept    0.75x1015 Hz

Page 48: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

48

2. A group of physics students conducts an experiment to investigate a photo­electric effect. They graphed the kinetic energy as a function of frequency of the incident light. 

In the second trial students use a photo­cell with greater work function.

d) How does it change the graph? Explain.

slope remains the same (planck's constant)  but y intercept will be at ­φ

Page 49: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

49

3. An electromagnetic radiation is incident on a metallic surface and electrons are emitted by the plate when the wavelength is 450 nm or less.

a. What is the work function of the metal?

hf = KE +φ

hf = φ

(3x108/4.5x10-7)x4x10-15 = 2.6667 V

Page 50: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

50

3. An electromagnetic radiation is incident on a metallic surface and electrons are emitted by the plate when the wavelength is 450 nm or less.

b. What is the maximum kinetic energy of photo­electrons if the incident light has a wavelength of 400 nm?

KE = hf­φ = 4x10-15 3 x108 /4x10-7 -2.6667 =0.333eV

Page 51: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

51

3. An electromagnetic radiation is incident on a metallic surface and electrons are emitted by the plate when the wavelength is 450 nm or less.

c. What is the stopping voltage required to stop photo­electrons ejected by the plate when the incident light has a wavelength of 300 nm?

0.333V

Page 52: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

52

3. An electromagnetic radiation is incident on a metallic surface and electrons are emitted by the plate when the wavelength is 450 nm or less.

d. If the stopping voltage is 5 V, what is the wavelength of the incident light?

hf = KE + φ = 7.6667eV

λ = hc/7.6667 = 4x10-15 3x108 /7.6667 = 1.565x10-7m

157 nm

Page 53: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

53

4. An X­Ray photon with a wavelength of λi = 0.14 nm collides with a electron at rest and bounces back.

a. What is the wavelength of the scattered photon?

0.14nm + 6.6x10­34/(9.11x10­31 3x108)(1­cos 180)= 0.145nm

Page 54: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

54

4. An X­Ray photon with a wavelength of λi = 0.14 nm collides with a electron at rest and bounces back.

b. What is the momentum of the recoil electron?

p = h/λ+h/λ'= 6.6x10-34(0.145x10-9 + 0.14x10-9)/(0.145x0.14x10-

18)= 9.3 x10 -24 kg-m/s

Page 55: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

55

4. An X­Ray photon with a wavelength of λi = 0.14 nm collides with a electron at rest and bounces back.

c. What is the energy of the recoil electron?

E = 1/2 p2/m = 1/2 (9.3x10­24)2/(9.11x10­31)  = 4.7x10­17J

Page 56: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

56

4. An X­Ray photon with a wavelength of λi = 0.14 nm collides with a electron at rest and bounces back.

d. Is the energy conserved during the collision?

yes

Eo =E'

Eo = hc/(0.14x10-9) = 1.46 x10-15 J

E' = hc/(0.145x10-9) + 1/2 p2/m = 1.41x10-15 +4.7 x10-17 =1.46 x10-15J

Page 57: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

57

4. An X­Ray photon with a wavelength of λi = 0.14 nm collides with a electron at rest and bounces back.

e. What is the De Broglie wave length of the scattered electron?

p = h/λ λ =h/p = 6.6x10-34/ 9.3x10-24 = 7.09x109 m

Page 58: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

58

5. An X­Ray tube accelerates an electron beam between two electrodes. A 70,000 V potential difference is applied across the tube.

a. What is the speed of the accelerated electrons?

v= √ (2Ue/m) =√ [2(1.6x10-19 70000/9.11x10-31)] = 1.6x108 m/s

Page 59: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

59

Page 60: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

60

5. An X­Ray tube accelerates an electron beam between two electrodes. A 70,000 V potential difference is applied across the tube.

b. What is the energy of the emitted photons?

E= qV = 1.12x10­14J = 70000eV

Page 61: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

61

5. An X­Ray tube accelerates an electron beam between two electrodes. A 70,000 V potential difference is applied across the tube.

c. What is the wavelength of the emitted photons?

 λ = hc/E = 6.6x10­34 x 3x108 / (1.12x10­14) = 1.8x10­11m

Page 62: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

62

5. An X­Ray tube accelerates an electron beam between two electrodes. A 70,000 V potential difference is applied across the tube.

d. What is the mass of the emitted photons?

Page 63: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

63

5. An X­Ray tube accelerates an electron beam between two electrodes. A 70,000 V potential difference is applied across the tube.

e. What is the momentum of the emitted photons?

p = me ve = 9.11x10­31 x 1.6x108 = 1.5x10­22kg­m/s

p = h/λ = 6.6x10-34/1.8x10-11 = 3.67 x10-23kg-m/s

Page 64: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

64

6.  A free electron is captured by a proton. As a result of this process two photons are emitted. The energy of the first photon is E1 = 3.4 eV.

a. Calculate the wavelength of the photon with energy E1.

λ = hc/E =  4.14x10­15x3x108/(3.4)= 3.65x10­7m

Page 65: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

65

6.  A free electron is captured by a proton. As a result of this process two photons are emitted. The energy of the first photon is E1 = 3.4 eV.

b. Calculate the energy of the second photon E2.

13.6­3.4 = 10.2eV

Page 66: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

66

6.  A free electron is captured by a proton. As a result of this process two photons are emitted. The energy of the first photon is E1 = 3.4 eV.

c. Calculate the wavelength of the second photon?

 1/3 of the other wavelength because E2 = 3E1

  1.22x10­7 m

Page 67: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

67

6.  A free electron is captured by a proton. As a result of this process two photons are emitted. The energy of the first photon is E1 = 3.4 eV.

d. On the diagram below show arrows associated with these transitions of the electron.

free to n=2

n=2 to n=1

Page 68: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

68

6.  A free electron is captured by a proton. As a result of this process two photons are emitted. The energy of the first photon is E1 = 3.4 eV.

The electron stays on the ground level for a long period of time and then absorbs an energy of 15 eV from an incident photon.

e. What is the energy of the emitted electron?

1.4 eV

Page 69: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

69

6.  A free electron is captured by a proton. As a result of this process two photons are emitted. The energy of the first photon is E1 = 3.4 eV.

f. What is the De Broglie wavelength of the emitted electron?

v = √(2 x1.4 x 1.6x10-19/(9.11x10-31)) = 7.0 x105m/s

λ = h/mv = 6.6x10-34/(9.11x10-31x7x105) = 1x10-9m

Page 70: MillikanE Compton. 2 2 The electron charge was measured the first time ... the De Broglie wavelength of the accelerated

70