112

e-ce-500

  • Upload
    abbass

  • View
    231

  • Download
    5

Embed Size (px)

DESCRIPTION

w

Citation preview

FOREWORD TheIranianPetroleumStandards(IPS)reflectthe views of the Iranian Ministry of Petroleum and are intendedforuseintheoilandgasproduction facilities,oilrefineries,chemicaland petrochemical plants, gas handling and processing installations and other such facilities. IPSisbasedoninternationallyacceptable standardsandincludesselectionsfromtheitems stipulatedinthereferencedstandards.Theyare alsosupplementedbyadditionalrequirements and/ormodificationsbasedontheexperience acquiredbytheIranianPetroleumIndustryand thelocalmarketavailability.Theoptionswhich arenotspecifiedinthetextofthestandardsare itemized in data sheet/s, so that, the user can select his appropriate preferences therein. TheIPSstandardsarethereforeexpectedtobe sufficientlyflexiblesothattheuserscanadapt thesestandardstotheirrequirements.However, theymaynotcovereveryrequirementofeach project.Forsuchcases,anaddendumtoIPS Standardshallbepreparedbytheuserwhich elaboratestheparticularrequirementsoftheuser. ThisaddendumtogetherwiththerelevantIPS shallformthejobspecificationforthespecific project or work. TheIPSisreviewedandup-datedapproximately everyfiveyears.Eachstandardsaresubjectto amendmentorwithdrawal,ifrequired,thusthe latest edition of IPS shall be applicable TheusersofIPSarethereforerequestedtosend theirviewsandcomments,includingany addendumpreparedforparticularcasestothe followingaddress.Thesecommentsand recommendations will be reviewed by the relevant technicalcommitteeandincaseofapprovalwill beincorporatedinthenextrevisionofthe standard. Standards and Research department No.19, Street14, North kheradmandKarimkhan Avenue, Tehran, Iran . Postal Code- 1585886851 Tel: 88810459-60& 66153055 Fax: 88810462 Email: [email protected] ) IPS ( . . . . . . . .

. . . . 19 : 1585886851 : 60 - 88810459 66153055 : 88810462 - [email protected] : GENERAL DEFINITIONS:ThroughoutthisStandardthefollowing definitions shall apply. : .COMPANY : Referstooneoftherelatedand/oraffiliated companiesoftheIranianMinistryofPetroleum suchasNationalIranianOilCompany,National IranianGasCompany,NationalPetrochemical CompanyandNationalIranianOilRefineryAnd Distribution Company. : .PURCHASER : Meansthe"Company"wherethisstandardisa partofdirectpurchaserorderbytheCompany, and the Contractor where this Standard is a part of contract document. : .VENDOR AND SUPPLIER:Referstofirmorpersonwhowillsupplyand/or fabricate the equipment or material. : .CONTRACTOR: Referstothepersons,firmorcompanywhose tender has been accepted by the company. : .EXECUTOR : Executor is the party which carries out all or part of construction and/or commissioning for the project. : .INSPECTOR : TheInspectorreferredtointhisStandardisa person/personsorabodyappointedinwritingby thecompanyfortheinspectionoffabricationand installation work : / .SHALL:Is used where a provision is mandatory. SHOULD: Is used where a provision is advisory only. : . : .WILL: Is normally used in connection with the action by theCompanyratherthanbyacontractor, supplier or vendor. : .MAY: Isusedwhereaprovisioniscompletely discretionary. : . IPS-E-CE-500(1) ENGINEERING STANDARD FOR LOADS FIRSTREVISION JANUARY2009 1387 ThisStandardisthepropertyofIranianMinistryof Petroleum.Allrightsarereservedtotheowner.Neither whole nor any part of this document may be disclosed to any thirdparty,reproduced,storedinanyretrievalsystemor transmittedinanyformorbyanymeanswithouttheprior written consent of the Iranian Ministry of Petroleum. . . Jan. 2009 / 1387IPS-E-CE-500(1) 1

PART I DESIGN LOADS FOR ONLAND BUILDINGS AND STRUCTURES I Jan. 2009 / 1387IPS-E-CE-500(1) 2

CONTENTS :PageNo : 0. INTRODUCTION ............................................. 60 - ................................ .............................. 6PART I: I :1. SCOPE ................................................................ 9 1 - ................................ ...................... 72. REFERENCES .................................................. 8 2 - ................................ ............................. 83. DEFINITIONS ................................................... 9 3 - ................................ ............................ 94. SYMBOLS AND ABBREVIATIONS ............. 9 4 - ................................ .............. 95. UNITS ................................................................. 11 5 - ................................ ............................ 116. BASIC REQUIREMENTS ............................... 11 6 - ................................ .................. 116.1 Safety ........................................................... 11 6 - 1 ................................ ........................ 116.2 Serviceability ............................................... 11 6 - 2 ................................ ........... 116.3 Self-Straining Forces .................................. 11 6 - 3 ................................ ... 116.4 Analysis ........................................................ 11 6 - 4 ................................ ....................... 116.5 General Structural Integrity ..................... 11 6 - 5 ............................... 117. ENVIRONMENTAL LOADS .......................... 12 7 - .............................. 127.1 Wind Load ................................................... 12 7 - 1 ................................ ........................ 127.2 Snow Loads ................................................. 14 7 - 2 ................................ ................ 147.3 Seismic (Earthquake) Loads ...................... 20 7 - 3 ) ( ................................ .. 208. DEAD LOADS ................................................... 20 8 - ................................ ..................... 208.1 Definition ..................................................... 20 8 - 1 ................................ ....................... 208.2 Weight of Materials and Constructions ... 21 8 - 2 ...................... 21 Jan. 2009 / 1387IPS-E-CE-500(1) 38.3 Weight of Fixed Service Utilities ............... 21 8 - 3 ................................ .... 218.4 Special Considerations ............................... 21 8 - 4 ................................ ............ 218.5 Equipment Load, (Q) ................................. 22 8 - 5 (Q) ................................ ........ 229. LIVE LOADS .................................................... 23 9 - ................................ ...................... 239.1 Definition ..................................................... 23 9 - 1 ................................ ....................... 239.2 Load Values ................................................. 23 9 - 2 ................................ ................... 239.3 Reduction of Uniformly Distributed Loads ........................................................... 26 9 - 3 ) ( .......... 269.4 Limitations on Live-Load Reduction ........ 27 9 - 4 .......................... 279.5 Minimum Roof Live Loads (Lr) ................ 27 9 - 5 ) Lr ( ........................ 279.6 Special Considerations ............................... 29 9 - 6 ................................ ............ 2910. OTHER LOADS .............................................. 30 10 - ................................ ........................ 3010.1 Crane Loads and Moving Loads (C) ...... 30 10 - 1 .................. 3010.2 Differential Settlement, (ds) ..................... 30 10 - 2 ) ds ( ............................ 3010.3 Dynamic (Vibration) Loads ..................... 30 10 - 3 ) ( ........................ 3010.4 Erection Loads, (er) .................................. 31 10 - 4 ) er ( ................................ ....... 3110.5 Factored Loads ......................................... 32 10 - 5 ................................ ......... 3210.6 Fluid Loads (F) ......................................... 32 10 - 6 ) F ( ................................ ........ 3210.7 Horizontal Loads ...................................... 32 10 - 7 ................................ .............. 3210.8 Hydrostatic Pressure, (H) ........................ 33 10 - 8 ) H ( ............................ 3310.9 Impact Loads, (I) ...................................... 33 10 - 9 ) I ( ................................ ..... 3310.10 Maintenance Loads, (M) ........................ 35 10 - 10 ) M ( ...................... 3510.11 Thermal Loads (T) ................................. 35 10 - 11 ................................ .......... 35 Jan. 2009 / 1387IPS-E-CE-500(1) 410.12 Loads of Vessels, Columns, etc. ............. 37 10 - 12 .................... 3711. COMBINATIONS OF LOADS ...................... 37 11 - ................................ ............. 3711.1 General ...................................................... 37 11 - 1 ................................ ...................... 3711.2 Combinations of LoadsUsingStrengthDesign ............................ 38 11 - 2 ................................ 3811.3 Combining Nominal Loads Using Allowable Stress Design ................ 39 11 - 3 ................ 39APPENDICES: APPENDIX IA BASES FOR DESIGN OF STRUCTURES ...................... 40 : I - .......................... 40IA.1 General ........................................................... 40 I - - 1 ................................ ..................... 40IA.2 Density Values ............................................... 40 I - - 2 ................................ ........... 40APPENDIX IBDESIGN LOADS FOR BUILDINGS-LIVE LOADS ..... 56 I - ......... 56IB.1 Scope ............................................................... 56 I - - 1 ................................ ................ 56IB.2 Live (Imposed) Floor and Ceiling Loads ..... 57 I - - 2 ..................... 57APPENDIX IC ADDITIONAL REQUIREMENTS FOR BLAST RESISTANT BUILDINGS AND STRUCTURES ........................ 67 I - .................... 67IC.1 Scope ............................................................... 67 I - - 1 ................................ ............... 67IC.2 References ...................................................... 67 I - - 2 ................................ ....................... 67IC.3 Definitions ...................................................... 67 I - - 3 ................................ ..................... 67IC.4 Loads .............................................................. 67 I - - 4 ................................ ......................... 67IC.5 Structure Design ............................................ 70 I - - 5 ................................ ............... 70 Jan. 2009 / 1387IPS-E-CE-500(1) 5IC.6 Foundation Design ........................................ 73 I - - 6 ................................ ............ 73IC.7 Doors and Openings ...................................... 74 I - - 7 ................................ ............ 74APPENDIX ID EARTHQUAKE DESIGN BASES IN PETROLEUM INDUSTRIES . 76 I - ..... 76ID.1 Scope ............................................................... 76 I - - 1 ................................ ................. 76ID.2 References ...................................................... 76 I - - 2 ................................ ........................ 76ID.3 Seismic Zone .................................................. 76 I - - 3 ................................ ........... 76

Jan. 2009 / 1387IPS-E-CE-500(1) 6 0. INTRODUCTION ThepurposeofthisStandardistospecifythe externalforces(loads)actingonastructure, which are classified in accordance with the nature ofthesourceandinordertoprovidesome guidanceonthefundamentalcharacteristicsof various types of loadings. 0 - ) ( .Forconvenienceofuse,thisstandardhasbeen divided into two parts: :PARTIDESIGNLOADSFORONLAND BUILDINGS AND STRUCTURES This Part applies to loads recommended in current designspecificationsforconventionalstructural materialsusedinonlandgeneralbuildings construction and in oil industries. I .PARTIIDESIGNLOADSINOFFSHORE AND ONSHORE STRUCTURES ThisPartisapplicabletospecialstructuressuch asoffshoreplatformsandonshorejettiesetc.It consistsofallloadsthatmayinfluencethe dimensioningofoffshoreandonshorestructures orpartsthereofduringtheexpectedlifeofthe structure. II . .Note: 1)Throughoutthisstandard,thesymbolAR denotestheauthorizedRepresentativeofthe Owner. :1 ( AR . Jan. 2009 / 1387IPS-E-CE-500(1) 7 1. SCOPE ThisStandardprovidesminimumload requirements for the design of buildings and other structures. Theloadsspecifiedhereinaresuitableforuse with the stresses and load factors recommended in currentdesignspecificationsforconcrete,steel, wood,masonry,andanyotherconventional structural materials used in buildings. 1 - .

.ThisStandardisalsointendedforuseinoil refineries,chemicalplants,gasplantsand,where applicable, in exploration and new ventures. .ThisStandardalsoincludesthedesignloadsfor buildings to resist blast forces (see Appendix IC). ) ( . ) I - ( .Note 1: Thisstandardspecificationisreviewedand updatedbytherelevanttechnicalcommitteeon March 1998, as amendment No. 1 by circular No. 29. 1 : 1377 1 29 .Note 2: Thisstandardspecificationisreviewedand updatedbytherelevanttechnicalcommitteeon May2005,asamendmentNo.2bycircularNo. 259. 2 : 1384 2 259 .Note 3:Thisbilingualstandardisarevisedversionofthe standardspecificationbytherelevanttechnical committeeonJanuary2009,whichisissuedas revision(1).Revision(0)ofthesaidstandard specification is withdrawn. 3 : 1387 ) 1 ( . ) 0 ( .Note 4: IncaseofconflictbetweenFarsiandEnglish languages, English language shall govern. 4 : . Jan. 2009 / 1387IPS-E-CE-500(1) 82. REFERENCES Throughout this Standard the following dated and undatedstandards/codesarereferredto.These referenced documents shall, to the extent specified herein,formapartofthisstandard.Fordated references,theeditioncitedapplies.The applicabilityofchangesindatedreferencesthat occur after the cited date shall be mutually agreed uponbytheCompanyandtheVendor.For undatedreferences,thelatesteditionofthe referenced documents (including any supplements and amendments) applies. 2 - . . . .ACI (AMERICAN CONCRETE INSTITUTE) 318-05"BuildingCodeRequirementsfor Structural Concrete" ) ( ACI318-05 " "API (AMERICAN PETROLEUM INSTITUTE)650-05 "Welded Steel Tanks for Oil Storage" API ) (650-05 " "ASCE(AMERICANSOCIETYOFCIVIL ENGINEERS) ASCE7-05"MinimumDesignLoadsfor Building and other Structures" ASCE ) (

ASCE 7-05 " "IRANIAN NATIONALBUILDING CODES Loads in Buildings Part 6-1385 - - 1385BHRC (BUILDING AND HOUSING RESEARCH CENTER) BHRC) ( BHRC-PNS253"IranianCodeofPracticefor SeismicResistantDesignof BuildingsStandardNo.2800-05 (3rd Edition)" 2800 " 2800 ) ( "BSI (BRITISH STANDARDS INSTITUTION) 6399Part2-02"CodeofPracticeforWind Loads" BSI ) (6399 2-02 " "IPS (IRANIAN PETROLEUM STANDARDS) IPS-E-GN-100"EngineeringStandardfor Units" IPS ) (100 - GN - E - IPS " "IPS-E-CE-200"EngineeringStandardfor Concrete Structures" 200 - CE - E - IPS " "IPS-E-CE-390"Engineering Standard for Rain andFoulWaterDrainageof Buildings" 390 - CE - E - IPS " "IPS-G-CE-170"EngineeringandConstruction StandardforCulvertBridges 170 - CE - G - IPS " " Jan. 2009 / 1387IPS-E-CE-500(1) 9and Related Structures"MCA(MANUFACTURINGCHEMISTS ASSOCIATION) Safety Guide, SG-22-1978"SittingandConstructionofNewControl Houses for Chemical Manufacturing Plants" MCA ) (

SG-22-1978" "3. DEFINITIONS ForthepurposesofthisStandard,thefollowing definitions apply: APPROVAL: ARs approval in writing of plans, drawings and specification, etc. ACCEPTANCE: ARs acceptance in writing that informationsubmittedin connectionwithapproval,e.g. methods calculations or special investigations,hasbeenfound acceptable. 3 - : : . ) :( .4. SYMBOLS AND ABBREVIATIONS InthispartoftheStandardthefollowinggeneral symbolsareusedforvariousloadclassifications. Othersymbolsaredefinedinthesectionwhere they are used: 4 - . :C = Crane load, see sub-clause 10.1 C = 10 - 1 .D = Dead load consisting of: a) Weight of the structural member itself. b)Weightofmaterialsofconstruction incorporatedintothebuildingtobe permanentlysupported by the structural member, including built-in partitions. c)Weightofpermanentserviceutilities.see 8.3. D = : ( ( ( . 8 - 3 .E = Earthquake (Seismic) load, see 7.3. E = ) )( 7 - 3 (F=Loadsduetofluidswithwell-defined pressures and maximum heights. F = .H=Loadsduetotheweightandlateralpressure of soil and water in soil, see 10.8. H = ) 10 - 8 (hb = height of balanced snow load see 7.2.7 hb= ) 7 - 2 - 7 (hc=clearheightfromtopofbalancedsnowload to (1) closest point on adjacent upper roof,(2)topofparapet,or(3)topofaprojectionon the roofsee 7.2.7 hc= ) 1 ( ) 2 ( ) 3 ( ) 7 - 2 - 7 ( Jan. 2009 / 1387IPS-E-CE-500(1) 10I = Impact load, See 10.9. I = ) 10 - 9 (L=Liveloadsduetointendeduseand occupancy, including loads due to movable objectsandmovablepartitionsandloads temporarilysupportedbythestructure duringmaintenance.Lincludesany permissiblereduction.Ifresistanceto impactloadsistakenintoaccountin design,sucheffectsshallbeincludedwith the live load L, see 9. L = . L . L ) 9 ( .Lr = Roof live loads, see 9.5. Lr= ) 9 - 5 (M = Maintenance load, see 10.10. M = ) 10 - 10 (pf = snow load on flat roofs ("flat" = roof slope 5) see 7.2.9 pf= ) 5 )( 7 - 2 - 9 (pg = ground snow load as determined from Map no.1 and Table 2; pg= 1 2Q=Weightofequipmentssuchaspumps, compressors, motors, etc. see 8.5. Q = ) 8 - 5 (R=Requireddynamicresistancetoblastloads, see Appendix IC. R = ) I - (T=Thermalloads;=Selfstartingforcesand effectsarisingfromcontractionor expansionresultingfromtemperature changes, shrinkage, moisture changes, creep incomponentmaterials,movementdueto differentialsettlement,orcombinations thereof, see 10.11. T = = ) 10 - 11 ( .V = Vibration (Dynamic) load, see 10.3. V = ) ) ( 10 - 3 ( .W = Wind load, see 7.1. W = ) 7 - 1 ( .Ve. = Empty weight of vessels, columns, etc., see 10.12.1. Ve. = ) 10 - 12 - 1 ( .Vo.=Operatingweightofvessels,columns,etc., see sub 10.12.2. Vo. = ) 10 - 12 - 2 ( .Vt.=Testingloadofvessels,columnsetc.,see 10.12.3. Vt. = ) 10 - 12 - 3 ( .er = Erection load, see clause 10.4. er = ) 10 - 4 ( .ds = Differential settlement, see 10.2. ds = ) 10 - 2 ( . Jan. 2009 / 1387IPS-E-CE-500(1) 11 5. UNITS ThisstandardisbasedonInternationalSystemof Units(SI),asperIPS-E-GN-100exceptwhere otherwise specified. 5 - (SI) 100 - GN - E - IPS .6. BASIC REQUIREMENTS 6.1 Safety Buildings or other structures, and all parts thereof, shallbedesignedandconstructedtosupport safelyallloads,includingdeadloads,without exceedingtheallowablestresses(orspecified strengthswhenappropriateloadfactorsare applied)forthematerialsofconstructioninthe structural members and connections. 6 - 6 - 1 ) ( .6.2 Serviceability Structuralsystemsandcomponentsthereofshall bedesignedtohaveadequatestiffnesstolimit transversedeflections,lateraldrift,vibration,or anyotherdeformationsthatmayadverselyaffect the serviceability of building or structure. 6 - 2 .6.3 Self-Straining Forces Provisionshallbemadeforself-strainingforces arisingfromassumeddifferentialsettlementsof foundationsandfromrestraineddimensional changesduetotemperaturechanges,moisture expansion, shrinkage, creep and similar effects. 6 - 3 .6.4 Analysis Loadeffectsonindividualcomponentsand connectionsshallbedeterminedbyaccepted methods of structural analysis, taking equilibrium, geometriccompatibility,andbothshortandlong termmaterialpropertiesintoaccount.Members thattendtoaccumulateresidualdeformations underrepeatedserviceloadsshallhaveincluded intheiranalysistheaddedeccentricitiesexpected to occur during their service life. 6 - 4 . . 6.5 General Structural Integrity Throughaccidentormisuse,structurescapableof supportingsafelyallconventionaldesignloads maysufferlocaldamage,thatis,thelossofload resistanceinanelementorsmallportionofthe structure.Inrecognitionofthis,buildingsand structuralsystemsshallpossesgeneralstructural integrity,whichisthequalityofbeingableto sustain local damage with the structure as a whole remainingstableandnotbeingdamagedtoan 6 - 5 . . Jan. 2009 / 1387IPS-E-CE-500(1) 12extentdisproportionatetotheoriginallocal damage.Themostcommonmethodofachieving generalstructuralintegrityisthroughan arrangementofthestructuralelementsthatgives stabilitytotheentirestructuralsystem,combined withtheprovisionofsufficientcontinuityand energyabsorbingcapacity(ductility)inthe componentsandconnectionsofthestructureto transfer loads from any locally damaged region to adjacentregionscapableofresistingtheseloads without collapse. ) ( . 7. ENVIRONMENTAL LOADS 7.1 Wind Load Forrequirementsgoverningthedeterminationof windloadsinthedesignofbuildingsand structures,referenceismadetotheBritish Standards,BS6399part2orIranianNational Building code part 6. 7 - 7 - 1 BS6399 2 .Forguidance, Table 1. Illustrates thevelocity and pressureofwindinIran.(reference:Iranian National Building code part 6.) 1 ) . .(Forthewinddesignloadsofpetroleumplantsin Iran,thisstandardrecommendstheuseoflatest statisticsgatheredbytheIranianMeteorological Bureau, i.e., the Annual Yearbooks, and the Wind Roses. . Jan. 2009 / 1387IPS-E-CE-500(1) 13TABLE 1- VELOCITY AND BASIC PRESSURE OF WIND IN IRAN 1 - BASIC WIND PRESSURE daN/m2 VELOCITY OF WIND (V) km/h STATION(City) ) ( 40.5 50.0 60.5 40.5 84.5 40.5 60.5 60.5 60.5 60.5 60.5 50.0 84.5 60.5 60.5 50.0 40.5 50.0 40.5 50.0 60.5 32.0 50.0 50.0 60.5 50.0 40.5 32.0 40.5 60.5 40.5 40.5 72.0 84.5 32.0 40.5 60.5 50.0 32.0 40.5 32.0 32.0 32.0 40.5 40.5 40.5 50.0 40.5 50.0 84.5 40.5 32.0 60.5 40.5 84.5 40.5 50.0 60.590 100 110 90 130 90 110 110 110 110 110 100 130 110 110 100 90 100 90 100 110 80 100 100 110 100 90 80 90 110 90 90 120 130 80 90 110 100 80 90 80 80 80 90 90 90 100 90 100 130 90 80 110 90 130 90 100 110 Abadan Abadeh Abali ARAK ARDABIL URUMIYEH Aghajari ISFAHAN Omidiyeh AHWAZ Iran Shahr Babolsar Bojnurd Bam Bandar Anzali BANDAR ABBAS Bandar Lengeh BUSHEHR Birjand Parsabad Moghan TABRIZ Torbat-e-Heydarieh TEHRAN Jask Siri Kish Chabahar KHORAMABAD Khoy Dezful Ramsar RASHT Zabol ZAHEDAN ZANJAN Sabzevar Serakhs Saqez SEMNAN SANANDAJ Shahrud SHAHR-e-KORD SHIRAZ Tabas Fasa Ghaem Shahr QAZVIN QOM Kashan KERMAN KERMANSHAH GORGAN Maragheh MASHHAD Manjil Noshahr HAMADAN YAZD 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. Jan. 2009 / 1387IPS-E-CE-500(1) 14

7.2 Snow Loads Thisclausegivesminimumimposedroofloads that may be applied by snow accumulation for use in designing buildings and building components. 7 - 2 .7.2.1 Zoning Variouspartsofthecountryhavebeenclassified intofourzonesaccordingtotheintensityof annual snowfall: 7 - 2 - 1 :ZoneI:Regionswithnopreviousrecordof snowfall. I : .Zone II: Regions with low rate of snowfall. II : Zone III: Regions with medium rate of snowfall. III : Zone IV: Regions with high rate of snowfall. IV : Zone V: Regions with heavy snowfall. V : Zone VI: Regions with ultra heavy snowfall. VI : The above zones are shown in Map No. 1. 1 .7.2.2 Calculation of snow load SnowLoadshallbedeterminedaccordingtothe zoning and slope of the roof, as shown in Table 2 below: 7 - 2 - 2 2 . TABLE 2- SNOW LOAD, IN kPa (kN/m2), AS APPLIED ON THE HORIZONTAL PROJECTION OF THE ROOF 2 - (kN/m2) ZONE SLOPEOFTHEROOF 15 OR LESS 15 20253545 60 OR MORE 60 I0.250.250.250.250.250.25 II0.500.500.450.350.250.25 III1.000.950.850.70.500.25 IV1.51.401.251.000.750.40 V2.001.852.001.351.00.5 VI3.002.752.502.001.500.75 Note 1: Figures shown in Table 1 are the least amounts. In regions,withunusualconditions,wheresnowfall ismoreintense,loadsapplicable to thatcondition shall be used. 1 : 1 . .7.2.3 Snow loads on roofs Inthedesignofroofsthegreatervalueofeither 7 - 2 - 3 ) 2 ( ) 3 Jan. 2009 / 1387IPS-E-CE-500(1) 15snowload(asgiveninTable2)orliveload(as giveninTable3andAppendixIB)shallbe assumed,andthesetwoneednotbeconsidered simultaneously. I - ( .7.2.4 Accumulation of snow If there is a possibility of accumulation of snow in someparts of the roofdue to its geometric shape, wind,etc.,thentheeffectofthisaccumulation shall be considered in the calculations. 7 - 2 - 4 .7.2.5 Unloaded portions Theeffectofremovinghalfthebalancedsnow loadfromanyportionoftheloadedareashallbe considered. 7 - 2 - 5 .Note 2: Inmanysituationsareductioninsnowloadona portion of a roof by wind scour, melting, or snow-removal operations will simply reduce the stresses inthesupportingmembers.However,insome casesareductioninsnowloadfromanareawill induceheavierstressesintheroofstructurethan occur when the entire roof is loaded. Cantilevered roofjoistsareagoodexample;removinghalfthe snowloadfromthecantileveredportionwill increasethebendingstressanddeflectionofthe adjacentcontinuousspan.Inothersituations adverse stress reversals may result. 2 : . . . . .7.2.6 Unbalanced roof snow loads Balancedandunbalancedloadsshallbeanalyzed separately.Windsfromalldirectionsshallbe accounted for when establishing unbalanced loads. 7 - 2 - 6 . .7.2.7 Drifts on lower roofs Roofsshallbedesignedtosustainlocalizedloads fromsnowdriftsthatforminthewindshadowof (a)higherportionsofthesamestructureand(b) adjacent structures and terrain features. 7 - 2 - 7 : ) ( ) ( . A) Lower roof of a structure.Snowthatformsdriftscomesfromahigher roofor,withthewindfromtheopposite direction,fromtheroofonwhichthedriftis located.Thesetwokindsofdrifts("leeward" and "windward respectively) are shown in Fig. 1.Thegeometryofthesurchargeloaddueto snowdriftingshallbeapproximatedbya triangleasshowninFig.2.Drift loadsshallbe ( . ) ( 1 . 2 Jan. 2009 / 1387IPS-E-CE-500(1) 16superimposedonthebalancedsnowload.If hc/hb,islessthan0.2,driftloadsarenot required to be applied. The magnitude of drift surcharge loads and the width of the drift shall bedetermined by using themethoddevelopedforlowerroofsin ASCE-7 section 7. . . hb / hc 2/0 . 7 ASCE-7 .B) Adjacent structures and terrain features. Therequirementsinsub-clauseashallalso beusedtodeterminedriftloadscausedbya higherstructureorterrainfeaturewithin6.1m (20ft)ofaroof.Theseparationdistance,s, betweentheroofandadjacentstructureor terrainfeatureshallreduceapplieddriftloads onthelowerroofbythefactor(6.1-s)/6.1 where s is in m. ( " " 1/6 ) 20 ( . s (6.1-s)/6.1 s . Fig. 1- DRIFTS FORMED AT WINDWARD AND LEEWARD STEPS 1 - Fig. 2- CONFIGURATION OF SNOW DRIFTS ON LOWER ROOFS 2 - Jan. 2009 / 1387IPS-E-CE-500(1) 17 7.2.8 Roof projections ThemethodinSection7.2.7(a)shallbeusedto calculate drift loads on all sides of roof projections andatparapetwalls.Theheightofsuchdrifts shallbetakenasthree-quartersthedriftheight determinedfromsection7ofASCE-7.Iftheside of a roof projection is less than 4.6 m (15 ft) long, adriftloadisnotrequiredtobeappliedtothat side. 7 - 2 - 8 7 - 2 - 7 ) ( . 7 ASCE-7 . 6/4 ) 15 ( .7.2.9 Sliding snow The load caused by snow sliding off a sloped roof onto a lower roof shall be determined for slippery upper roofs with slopes greater than 1/4 on 12, and forother(i.e.,non-slippery)upperroofswith slopes greater than 2 on 12. Thetotal sliding load perunitlengthofeaveshallbe0.4pfW,whereW isthehorizontaldistancefromtheeavetoridge for the sloped upper roof. The sliding load shall be distributeduniformlyonthelowerroofovera distance of 4.6 m (15 ft) from the upper roof eave. Ifthewidthofthelowerroofislessthan4.6m, the sliding load shall be reduced proportionally.

7 - 2 - 9 12 ) ( 2 12 . 0.4pfW W . 6/4 ) 15 ( . 6/4 .The sliding snow load shall not be further reduced unlessaportionofthesnowontheupperroofis blocked from sliding onto the lower roof by snow alreadyonthelowerrooforisexpectedtoslide clear of the lower roof. Slidingloadsshallbesuperimposedonthe balanced snow load . . 7.2.10 Extra loads from rain-on-snow Forlocationswheregroundsnowload,is0.96 kN/m2orless,butnotzero,allroofswithslopes (indegrees)lessthanW/15.2(whereWisthe horizontaldistancefromtheeavetoridgeinm) shallhavea0.24kN/m2rain-on-snowsurcharge. Thisrain-on-snowaugmenteddesignloadapplies onlytothebalancedloadcaseandneednotbe usedincombinationwithdrift,sliding, unbalanced, or partial loads. 7 - 2 - 10 96/0 ) ( W/15.2 ) W ( 24/0 . .7.2.11 Ponding instability Roofsshallbedesignedtoprecludeponding 7 - 2 - 11 ) ( . Jan. 2009 / 1387IPS-E-CE-500(1) 18instability.Forroofswithaslopelessthan1.2 degree, roof deflections caused by full snow loads shallbeinvestigatedwhendeterminingthe likelihoodofpondinginstabilityfromrain-on-snow or from snow melt-water. 2/1 .7.2.12 Rain loads A) Roof drainage Roofdrainagesystemsshallbedesignedin accordancewiththeprovisionsofthe IPS-E-CE-390:"EngineeringStandardfor Rain and Foul Water Drainage of Buildings". Secondary(overflow)drainsshallnotbe smaller than primary drains. 7 - 2 - 12 ( 390 - CE - E - IPS " " . ) ( .B) Ponding loads Roofsshallbedesignedtoprecludeinstability from ponding loads. ( .C) Blocked drains Eachportionofaroofshallbedesignedto sustaintheloadofallrainwaterthatcould accumulate on it if the primary system for that portionisblocked. Pondinginstabilityshallbe consideredinthissituation.Iftheoverflow drainageprovisionscontaindrainlines,such lines shall be independent of any primary drain lines. ( . .D) Controlled drainage Roofsequippedwithcontrolleddrainage provisionsshallbeequippedwithasecondary drainagesystematahigherelevationwhich preventspondingontheroofabovethat elevation.Suchroofsshallbedesignedto sustainallrainwaterloadsonthemtothe elevationofthesecondarydrainagesystem plus0.24kPa.Pondinginstabilityshallbe considered in this situation. ( . 24 / 0 . .7.2.13 Snow load in special cases Wheneversnowmaycompileoreffectthe intensityofotherloads(suchaswindloads)not mentionedinthisStandard,theseeffectsshallbe taken into account. 7 - 2 - 13 ) ( .

Jan. 2009 / 1387IPS-E-CE-500(1) 19MAP NO.1 -GROUND SNOW LOAD, FOR 50-YEAR MEAN RECURRENCE INTERVAL FOR VARIOUS REGIONS OF IRAN(COURTESY OF IRANIAN METEOROLOGICAL BUREAU) 1 50 ) (

Jan. 2009 / 1387IPS-E-CE-500(1) 207.3 Seismic (Earthquake) Loads 7.3.1 General Allbuildingsandstructuresshallbedesignedto withstandtheeffectsofseismicforcesaswellas windeffects.Windandseismicforcesare assumedtoactseparatelyandtheireffectsshall not be considered simultaneously. 7 - 3 ) (7 - 3 - 1 . .Generally,structuresandtheircomponentsshall be able to thoroughly withstand the greatest stress caused by wind and earthquake. .Structuresaredesignedindividuallyineitherone of the principal directions, without considering the otherdirection.Simultaneouseffectsofseismic forces in both directions need not be considered. . .Intheseismicdesignofstructures,onlythe horizontal component of the seismic force shall be considered and the vertical component shall not be taken into account, except for the following cases: :-Forcantileveredbalconiesandprojections (particularlythosecarryingconsiderabledead loadatthetip),andforbuildingsthathouse technicalinstrumentsorspecialequipments wheretheverticalcomponentmaycausea malfunction,thentheeffectofvertical component shall be considered. - ) ( .7.3.2 Lateral seismic forces Theminimumlateralseismicforceineach directionofastructureshallbecalculated accordingtotheprovisionsof"IranianNational Building Code-part 6 or ASCE-7. 7 - 3 - 2 " " ASCE-7 .Alsoasaguidelineusersarereferredto"Iranian SeismicCodeforOilIndustries"publishedby "MinistryofPetroleum-DeputyforEngineering and Local Manufacturing " " .7.3.3 Earthquake loads in industrial plants Forrequirementsgoverningthedesigningof structures in petroleum plants, see Appendix ID. 7 - 3 - 3 I - .8. DEAD LOADS 8.1 Definition Deadloadscomprisetheweightofallpermanent construction,includingwalls,floors,roofs, ceilings,stairways,andfixedserviceequipment, plus the net effect of prestressing. 8 - 8 - 1 : . Jan. 2009 / 1387IPS-E-CE-500(1) 21Moreoverthefollowingcomplementaryitems shall be considered as dead load: - fireproofing; - sprinkler system; - fixed partitions; -allfixedequipmentwiththerelevantfluid content; -theverticalandhorizontalpressuresdueto the stored liquid; - insulation weight. :- - - -

-

- 8.2 Weight of Materials and Constructions Inestimatingdeadloadsforpurposesofdesign, theactualweightsofmembersandconstructions materialsshallbeused,providedthatinthe absenceofdefiniteinformation,values satisfactory to the authority having jurisdiction are assumed. 8 - 2 . .Note: Forinformationondeadloads,seeAppendixIA, tables of Annex 1 and Annex 2. : I - 1 2 .8.3 Weight of Fixed Service Utilities Inestimatingdeadloadsforpurposesofdesign, theweightoffixedserviceutilities,suchas plumbingstacks andrisers, electricalfeeders,and heating,ventilating,andair-conditioningsystems, shallbeincludedwheneversuchequipmentis supportedbystructuralmembers.Itis recommendedtoutilizedataprovidedby manufacturers of such service utilities. 8 - 3 . .8.4 Special Considerations Engineers,architects,andbuildingownersare advisedtoconsiderfactorsthatmayresultin differences between actual and calculated loads. 8 - 4 .Experiencehasshown,thatconditionsare encounteredwhich,ifnotconsideredindesign, mayreducethefutureutilityofabuildingor reduce its margin of safety. Among them are: . :8.4.1 Dead loads There have been numerous instances in which the actualweightsofmembersandconstruction materials have exceeded the values used in design. Care is advised in the useof tabularvalues. Also, allowances should be made for such factors as the 8 - 4 - 1 . Jan. 2009 / 1387IPS-E-CE-500(1) 22influenceofformworkandsupportdeflectionson theactualthicknessofaconcreteslabof prescribed nominal thickness. .8.4.2 Future installations Allowanceshouldbemadefortheweightof futurewearingorprotectivesurfaceswherethere isagoodpossibilitythatsuchmaybeapplied. Special consideration should be given to the likely typesandpositionofpartitions,asinsufficient provisionforpartitioningmayreducethefuture utility of the building. 8 - 4 - 2 . .8.4.3 Occupancy changes Thepossibilityoflaterchangesofoccupancy involvingloadsheavierthanoriginally contemplatedshouldbeconsidered.Thelighter loadingappropriatetothefirstoccupancyshould not necessarily be selected. If so chosen , 8 - 4 - 3 . .Considerablerestrictionsmaybeplacedonthe usefulness of the building at a later date. .Attentionisdirectedalsotothepossibilityof temporarychangesintheuseofabuilding,asin thecaseofclearingadormitoryforany recreational purpose. .8.4.4 Additions to existing structures Whenanexistingbuildingorotherstructureis enlargedorotherwisealtered,allportionsthereof affected by such enlargement or alteration shall be strengthened, if necessary, so that all loads will be supportedsafelywithoutexceedingtheallowable stresses(orspecifiedstrengths,whenappropriate loadfactorsareapplied)forthematerialsof constructioninthestructuralmembersand connections. 8 - 4 - 4 . ) ( .8.4.5 Load tests Theauthorityhavingjurisdictionmayrequirea loadtestofanyconstructionwheneverthereis reasontoquestionitssafetyfortheintended occupancy or use. 8 - 4 - 5 . 8.5 Equipment Load, (Q) Theweightofequipment,suchaspumps, compressors,motors,etc.,shallbederivedasfar aspossiblefrommanufacturersdataandshall include controls, auxiliary machinery, piping, etc. 8 - 5 (Q) . Jan. 2009 / 1387IPS-E-CE-500(1) 239. LIVE LOADS 9.1 Definition Liveloadsarethoseloadsproducedbytheuse andoccupancyofthebuildingorotherstructure anddonotincludeenvironmentalloadssuchas windload,snowload,rainload,earthquakeload, or dead load. 9 - 9 - 1 .Live loads on a roof are those produced: 1)duringmaintenanceby workers,equipment, and materials2)duringthelifeofthestructurebymovable objects such as planters and by people. :1 ( .2 ( .9.2 Load Values 9.2.1Thelowestnominalvaluesofloadsdueto useandoccupancyaredefinedasthemost unfavorablevaluesforcertain(orexpected) conditions of normal use of a building. 9 - 2 9 - 2 - 1 ) ( .9.2.2Whendesigningfloorsforuniformly distributedloads,thelowestcharacteristicvalue shallnotbeprescribedlessthanthevaluesgiven inTable3.However,duetospecialconsideration of the projects, Company may apply higher values according to Iranian or international standards. 9 - 2 - 2 3 . .9.2.3Forseveralfloorzoneswhichareusedin conditionssimilartothoseinproductionand storage buildings, loads due to use and occupancy shallbedefinedaccordingtotherulesforthose buildings and facilities. 9 - 2 - 3 .9.2.4Besidesuniformlydistributedload,floors shallalsobedesignedforaconcentratedload appliedtotheelementofthefloortoproducethe most unfavorable effects. 9 - 2 - 4 .Ifdetaileddataforconcentratedloadsarenot available,theloadshallbeconsideredasapplied to a square area 0.1 m 0.1 m and its value taken equal to: 1/0 1/0 :a) Floors and staircases: 1,5 kN; b)Loftspacefloors,roofs,terracesand balconies: 1,0 kN; c) Roofs allowing movement of people only by footbridges: 0,5 kN. ( 5/1 ( 0/1 ( 5/0 9.2.5 The effect of significant dynamic loads shall 9 - 2 - 5 Jan. 2009 / 1387IPS-E-CE-500(1) 24betakenintoaccountbydynamicfactorsorby special dynamic analysis. For dynamic (vibration) loads, see clause 10.3. . ) ( 10 - 3 .9.2.6Table3doesnotcontainfloorloadsdueto partitions;theseshouldbeconsideredseparately. If it is necessary to take into account the effect of thepartitionsnotplannedforinthedesign(or movablepartitions),thesecanbeconsideredasa uniformlydistributedloadwithalowestnominal value0,5kPaiftheirweightdoesnotexceed2,5 kN/m.Inallothercases,theeffectofpartitions shall be determined as a function of their position, their weight and their jointing to other elements of the building. 9 - 2 - 6 3 . ) ( 5/2 5/0 . . Jan. 2009 / 1387IPS-E-CE-500(1) 25TABLE 3 - LOWEST NOMINAL VALUES OF UNIFORMLY DISTRIBUTED LOADS 3 - NO. BUILDINGSANDPREMISES Lowest Nominal ValuesOf Loads. kPa ) ( 1 2 3 4 5 6 7 8

9 10 11 12 RESIDENTIALFLATS,BEDROOMSINKINDERGARTENSANDSCHOOLS,DWELLINGS,HOTELROOMS,HOSPITALANDSANATORIUMWARDS,ETC.

OFFICESFORADMINISTRATION,TECHNICALANDSCIENTIFICSTAFF,CLASSROOMSINSCHOOLSANDCOLLEGES,CLOAK-ROOMS,SHOWER-BATHS, LAVATORIES IN INDUSTRIALANDPUBLICBUILDINGS

STUDYROOMSANDLABORATORIESINHEALTH,EDUCATIONORSCIENTIFICESTABLISHMENTS,ROOMSWITHDATAPROCESSINGEQUIPMENT,KITCHENSINPUBLICBUILDINGS,TECHNICALFLOORS,BASEMENTS,ETC. .

:HALLS: A) READING-ROOMS (WITHOUT BOOKSHELVES) ( ) (B) DINING-ROOMS (IN CAFES, RESTAURANTS,ETC.) ( ) ( ...C) CONFERENCE-HALLS, WAITING-ROOMS, THEATREANDCONCERTHALLS,GYMNASIA, BALL-ROOMS, ETC. ( .D) DEPARTMENT STORES ( E) EXHIBITION HALLS (IN ADDITION TO EQUIPMENT AND MATERIALS) ( ) (SHELVING IN LIBRARIES, OFFICES WITH FILING STORAGE, STAGES IN THEATRES, ETC. .STANDS: :A) WITH FIXED SEATS ( B) WITHOUT FIXED SEATS (

LOFTSPACE (INADDITIONTOTHEWEIGHTOFEQUIPMENTANDMATERIALS) ) (

:TERRACESANDROOFS: A) ZONESFORREST ( B) ZONESCROWDEDBYPEOPLELEAVINGHALLS, OFFICES, PRODUCTION BUILDINGS, ETC. (

: BALCONIES AND LOGGI A) STRIPUNIFORMLYLOADEDINANAREA0,8 mWIDEALONGTHEBARRIER ( 8 / 0 B) UNIFORMLYLOADEDOVERTHEWHOLEBALCONYAREA, IFITSEFFECTIS MOREUNFAVORABLETHANTHATINA) (

LOBBIES, FOYERS, CORRIDORS, STAIRCASES (WITHADJACENTPASSAGES), ADJOINING ) ( :PREMISESSPECIFIEDIN A) No. 1 ( 1B) Nos. 2 AND 3 ( 2 3 ( 4 5 C) Nos. 4 AND 5 D) No. 6 ( 6 PLATFORMSOFRAILWAYANDSUBWAYSTATIONS GARAGESANDCARPARKSFORPASSENGERCARSANDLIGHTVEHICLES (NOTFORTRUCKS) ) ( 1.5 2.0 2.0 2.0 2.0 4.0 4.0 2.5 5.0 4.0 5.0 0.7 1.5 4.0 4.0 2.0 2.5 3.0 4.0 5.0 4.0 2.5 Jan. 2009 / 1387IPS-E-CE-500(1) 26 Notes: 1)LoadsspecifiedinNo.8shallbetaken insteadofsnowloadsiftheygivemore unfavorable results. :1 ( 8 .2)Loads specified inNo. 9 shall betakeninto accountwhenanalyzingtheload-bearing elementsdirectlysupportingbalconies (loggias). 2 ( 9 ) ( .3)Loadsspecifiedinthetableincludesome allowanceforimpactarisingfromtheusual movement of people and furniture. 3 ( .4)Ifnecessary,somestandardsmayapply further subdivision to any floor zone for which a single load value is specified in this table. For example,someareasmaybeunloadedifthis produces a more unfavorable effect. 4 ( . .9.3 Reduction of Uniformly Distributed Loads 9.3.1 It is recommended that uniformly distributed loads(excepttheloadsduetostationary equipmentandstockedmaterials)arereducedfor analysis of: 9 - 3 ) ( 9 - 3 - 1 ) ( :a)Floorbeams-asafunctionoffloorzone dimensionssupportedbythebeams(tributary area); b) Columns, walls, bases and foundations, as in thepreviouscaseorasafunctionofthe numberoffloorssupportedabovethefloor under consideration. ( - ) . ( ( ) ( .When analyzing beams with load tributary area A (insquaremeters),theloadspecifiedinTable2, may be reduced: A ) ( 2 :a)ForpremisesspecifiedinNos.1and2of Table 3, multiplying by the factor: 1 = 0.3+PA3 (if A > 18 m2) (1) ( 1 2 3 :1 = 0.3+PA3 A>18m2 1 (b)forpremisesspecifiedinNo.4ofTable2, by multiplying by the factor: 2 = 0.5+PA3 (if A > 36 m2)(2) ( 4 2 :2 = 0.5+PA3 A>36m2 2 ( Jan. 2009 / 1387IPS-E-CE-500(1) 27 Whenanalyzingcolumns,walls,basesand foundations,theloadsgiveninTable3,maybe reduced: 3 :a) For premises specified in Nos. 1 and 2 of Table 2, by multiplying by the factor: 1 = 0.3 + Pn6 . 0 (for n>2) (3) ( 1 2 2 : 1 = 0.3+Pn6 . 0n > 2 3 (b)For premises specifiedinNo. 4ofTable3,by multiplying by the factor: 2 = 0.5 + Pn6 . 0 (for n>2) (4) ( 4 3 :2 = 0.5 + Pn6 . 0 n > 2 4 (Where: nisthenumbersofcompletelyloadedfloors consideredintheanalysis(overthecross-section considered): for n =1, 1= 1, and 2 =1. :n : ) ( n =1 = 11 1 =2Note: Nationalstandardsmayadmitothermethodsof reducingtheuniformlydistributedloadsas functionsofareadimensionsandnumberof storeys, provided the resulting load is not smaller thanthereducedloadderivedinaccordancewith this Standard. : . .9.4 Limitations on Live-Load Reduction Forliveloadsof4.8kPaorless,noreduction shall be made for areas to be occupied as places of publicassembly,forgaragesexceptasnoted below,forone-wayslabs,orforroofsexceptas permitted in Clause 9.5. For live loads that exceed 4.8kPaandingaragesforpassengercarsonly, designliveloadsonmemberssupportingmore than one floor may be reduced 20%, but live loads inothercasesshallnotbereducedexceptas permitted by the authority having jurisdiction. 9 - 4 8/4 ) ( ) 9 - 5 ( . 8/4 20 .9.5 Minimum Roof Live Loads (Lr) 9 - 5 ) Lr (9.5.1 General Roofs shall sustain, within stress limitation of this standard, all dead loads, plus unit live loads as set forthinthefollowingclauses,inwhichallroof slopesaremeasuredfromthehorizontalandall 9 - 5 - 1 . Jan. 2009 / 1387IPS-E-CE-500(1) 28loads are applied vertically. .9.5.2 Flat roofs Theimposedload,includingsnowload(1)onflat roofsandslopingroofsuptoandincluding10, whereaccess(inadditiontothatnecessaryfor cleaning and repair) is provided to the roof, is 1.5 kN/m2 measured on plan or a 1.8 kN concentrated load,whicheverproducesthegreaterstress. Wheredeflectionisthedesigncriterion,the concentrated load is assumed to act in the position which produces maximum deflection. Theimposedload,includingsnowload(1),onflat roofsandslopingroofsuptoandincluding10, where no access is provided to the roof (other than thatnecessaryforcleaningandrepair),is0.75 kN/m2 measured on plan or a 0.9 kN concentrated load,whicheverproducesthegreaterstress. Wheredeflectionisthedesigncriterion,the concentrated load is assumed to act in the position which produces maximum deflection. 9 - 5 - 2 ) 1 ( 10 ) ( 5/1 8/1 . . ) 1 ( 10 ) ( 75/0 9/0 . .9.5.3 Sloping roofs Theimposedloads,includingsnowload(1)on roofswithaslopegreaterthan10,whereno accessisprovidedtotheroof(otherthanthat necessary for cleaning and repair), are as follows: 9 - 5 - 3 ) 1 ( 10 ) ( : a)Foraroof-slopeof30orless:0.75kN/m2 measuredonplanora0.9kNconcentrated load, whichever produces the greater stress. Wheredeflectionisthedesigncriterion,the concentrated-loadisassumedtoactinthe position which produces maximum deflection. b) For a roof-slope of 75 or more: zero load. Forroofslopesbetween30and75the imposedloadmaybeobtainedbylinear interpolationbetween0.75kN/m2fora30 roof slope and zero for a 75 roof slope. ( 30 : 75/0 9/0 . . ( 75 : . 30 75 75/0 30 75 .Note: (1)Whenthedepthofsnowisnotuniform, owing to sliding, wind, melting or the shape of theroof,theresultingloadmaybeincreased :) 1 ( Jan. 2009 / 1387IPS-E-CE-500(1) 29locally. .9.5.4 Curved roofs Theimposedloadonacurvedroofiscalculated bydividingtheroofintonotlessthanfiveequal segments and by then calculating the load on each, appropriatetoitsmeanslope,inaccordancewith sub-clauses 9.5.2 and 9.5.3. 9 - 5 - 4 9 - 5 - 2 9 - 5 - 3 .9.5.5 Roof coverings Aloadof0.9kNonanysquarewitha125mm sideprovidesforloadsincidentaltomaintenance onall self-supporting roofcoverings ata slopeof lessthan45,i,e.thosenotrequiringstructural support over their whole area. No loads incidental to maintenance are appropriate to glazing. 9 - 5 - 5 ) ( 45 9/0 125 . .9.6 Special Considerations 9 - 6 9.6.1 Loads not specified Foroccupanciesorusesnotdesignatedinclause 9.2 , the live load shall be determined in a manner satisfactory to the authority having jurisdiction. 9 - 6 - 1 9 - 2 .Note: Foradditionalinformationonliveloads,seethe Appendix IB Tables IB/1 to IB/9. : I / 1 I / 9 I - .9.6.2 Partial loading The full intensity of the appropriately reduced live loadappliedonlytoaportionofthelengthofa structureormembershallbeconsideredifit produces a more unfavorable effect than the same intensityappliedoverthefulllengthofthe structure or member. 9 - 6 - 2 ) ( .9.6.3 Posting of live loads Ineverybuildingorotherstructure,orpart thereof,usedformercantile,business,industrial, orstoragepurposes,theownerofthebuilding shallensurethattheloadsapprovedbythe authority having jurisdiction are marked on plates ofapproveddesignandaresecurelyaffixedina conspicuousplaceineachspacetowhichthey relate. If such plates are lost, removed, or defaced, the owner shall have them replaced. 9 - 6 - 3 . .9.6.4 Restrictions on loading Thebuildingownershallensurethataliveload greaterthanthatforwhichafloororroofis 9 - 6 - 4 Jan. 2009 / 1387IPS-E-CE-500(1) 30approved by the authority having jurisdiction shall not be placed, or caused or permitted to be placed, onanyfloororroofofabuildingorother structure. .10. OTHER LOADS 10 - 10.1 Crane Loads and Moving Loads (C) Craneloadsshallbeassumedattheirmaximum valuesincludingliftingcapacityaswellasthe maximumhorizontalloadscausedbybrakingor acceleration. For the design of each structural element the most unfavorable position of the crane or other moving loadsshallbeconsidered.Formovingloadsan appropriate impact factor shall be applied. 10 - 1 . . .10.2 Differential Settlement, (ds) Thevariabilityofthesoilstratamayresultin differential settlement. Theresultingbendingmoments,shearandaxial forces shall be considered. 10 - 2 ) ds ( . .10.3 Dynamic (Vibration) Loads A detailed design and a vibration analysis shall be madeinaccordancewiththefollowing requirements: 10 - 3 ) ( : 10.3.1 Static deformation Thestaticdeformationforrotatingequipment foundationsshallbecalculatedandshowntobe within the limits stated by the manufacturer of the equipment. The calculations shall include, but not be limited to, the following causes of deformation: - Shrinkage and creep of concrete. -Temperatureeffectscausedbyradiationand convectionofheatorcoldgeneratedby machinery, piping and ducting. -Elasticdeformationcausedbychanging vapor pressure in condensers. - Elastic deformation caused by soil settlement or elastic compression of piles. 10 - 3 - 1 . :- - .- .- .10.3.2 Vibration analysis A three-dimensional vibration analysis for rotating equipmentfoundationsshallbemadeandshall show that the dynamic amplitudes will not exceed thelowerofthefollowingvalues;seealso (10.3.6): 10 - 3 - 2 10 - 3 - 6 : Jan. 2009 / 1387IPS-E-CE-500(1) 31-Themaximumallowablevaluestatedbythe manufacturer of the equipment. -Theamplitude(singleamplitude)which causestheeffectivevelocity*ofvibrationto exceed: a)2mm/satthelocationofthemachine-bearing housings. b) 2.5 mm/s at any location of the structure. - .- ) ( * : ( 2 . ( 5/2 .*Theeffectivevelocityisdefinedasthesquare rootoftheaverageofthesquareofthevelocity. Velocity beinga functionof time in the caseofa puresinusoidalfunctiontheeffectivevelocityis 0.71 times the peak value of the velocity. * . . 71/0 .10.3.3 Exciting force For the vibration analysis, the exciting forces shall be taken as the maximum values that according to themanufactureroftheequipmentwilloccur during the lifetime of the equipment. 10 - 3 - 3 .10.3.4 Schematic mechanical model Thevibrationcalculationshallbebasedona mechanicalmodelwhereintheweightsand elasticity of both structure and foundation and the weightoftheequipmentarerepresentedinan appropriate way. 10 - 3 - 4 .10.3.5 Frequencies Allnaturalfrequenciesbelow2timesthe operatingfrequencyforreciprocatingequipment andbelow1.5timestheoperatingfrequencyfor rotating equipment shall be calculated. Ofthenaturalfrequenciesbetween0.35and1.5 timestheoperatingfrequency,itshallbeshown that the amplitudes are within the allowable values even assuming that due to differences between the actual structure and the assumed model resonance doesoccur.Inthiscaseareasonableamountof damping should be estimated. 10 - 3 - 5 ) ( 2 5/1 . 35/0 5/1 ) ( . .10.3.6 Dynamic amplitudes Thedynamicamplitudesofanypartofthe foundation including any reciprocating compressor shall be less than 80 m single amplitude. 10 - 3 - 6 80 .10.4 Erection Loads, (er) Erectionloadsshallbedefinedastemporary forcescausedbyerectionofstructureor equipment. Allpossibleloadingconditionsduringerection 10 - 4 ) er ( . Jan. 2009 / 1387IPS-E-CE-500(1) 32shallbeconsideredandforanymemberofa structurethemostunfavorableshallbetakeninto account.Heavyequipmentloweredontoa supportingstructurecanintroduceextremepoint loadsonstructuralmembers,exceedingany operating or test load. After placing of equipment, the exact positioning (lining out and leveling) can alsointroduceextremepointloads.Theabove shouldbeinterpretedonthebasisofcontractors practicalexperienceandmanufacturers information. Beamsandfloorslabsinmulti-storeystructures, e.g.firedecks,shallbedesignedtocarrythefull constructionloadsimposedbytheprops supportingthestructureimmediatelyabove.A noteshallbeaddedontherelevantconstruction drawingstoinformthefieldengineerofthe adopted design philosophy. . . ) ( . .

. ) ( .For floor slabs and supports whose strength during constructionislessthantheirultimatedesign strength, the following extra loads for transporting concrete or other building materials shall be added according to the volume capacity of the bucket or other means of transport: - 0.75 kPa, for bucket of 75 lit. capacity - 1.50 kPa, " " 150 lit. - 2.50 kPa, " " 250 lit. :-75/0 75 -5/1 150 -5/2 250 10.5 Factored Loads FactoredLoadsaretheproductofthenominal load and a load factor. 10 - 5 .10.6 Fluid Loads (F) Fluid loads are the gravity loads of liquid or solid materialsinequipmentandpipingduring operationorhydrotest.Theyareconsideredlive loadswhenestablishingloadfactorsforultimate strength design. 10 - 6 ) F ( ) ( . .10.7 Horizontal Loads Minimalcharacteristicvaluesofhorizontalloads perunitlengthonthehand-railsandbalcony barriers shall be taken as follows: 10 - 7 :a)Forresidentialbuildings,kindergartens, hospitalsandotherhealthestablishments: 0.3 kN/m; ( :3/0 Jan. 2009 / 1387IPS-E-CE-500(1) 33b) For stands and gymnasia: 1.5 kN/m; c) For other buildings and premises: 0.8 kN/m. ( : 5/1 ( : 8/0 .Forserviceplatforms,foot-bridges,roofbarriers visitedonlybyindividuals,theminimum characteristicvalueofhorizontalconcentrated load on hand-rails and barriers shall be taken equal to0.3kN(atanypointalongthebarrier).The same value of horizontal concentrated load should be taken for lightweight partitions. 3/0 ) ( . .10.8 Hydrostatic Pressure, (H) 10 - 8 ) H (A) Pressure on Basement Walls Inthedesignofbasementwallsandsimilar approximatelyverticalstructuresbelowgrade, provision shall be made for the lateral pressure ofadjacentsoil.Dueallowanceshallbemade forpossiblesurchargefromfixedormoving loads.Whenaportionorthewholeofthe adjacentsoilisbelowafree-watersurface, computationsshallbebasedontheweightof thesoildiminishedbybuoyancy,plusfull hydrostatic pressure. B) Uplift on Floors Inthedesignofbasementfloorsandsimilar approximatelyhorizontalconstructionbelow grade,theupwardpressureofwater,ifany, shallbetakenasthefullhydrostaticpressure applied over the entire area. Thehydrostaticheadshallbemeasuredfromthe underside of the construction. ( . . . ( .

.10.9 Impact Loads, (I) Theliveloadsspecifiedinclause9shallbe assumedtoincludeadequateallowancefor ordinaryimpactconditions.Provisionshallbe madeinthestructuraldesignforusesandloads that involve unusual vibration and impact forces. 10 - 9 ) I ( 9 . .10.9.1 Elevators Allelevatorloadsshallbeincreasedby100%for impact,andthestructuralsupportsshallbe designed within the limits of deflection. 10 - 9 - 1 100 .10.9.2 Machinery Forthepurposeofdesign,theweightof machinery and moving loads shall be increased as follows to allow for impact: 10 - 9 - 2 : Jan. 2009 / 1387IPS-E-CE-500(1) 34(1)elevatormachinery,100%;(2)light machinery,shaftormotor-driven,20%;(3) reciprocatingmachineryorpowerdrivenunits, 50%;(4) hangers for floors or balconies, 33%. All percentages shall be increased if so recommended by the manufacturer. ) 1 ( 100 ) 2 ( 20 ) 3 ( 50 ) 4 ( 33 . .10.9.3 Crane ways Allcranewaysexceptthoseusingonlymanually poweredcranesshallhavetheirdesignloads increasedforimpactasfollows:(1)avertical forceequalto25%ofthemaximumwheelload; (2)alateralforceequalto20%oftheweightof the trolley and lifted load only, applied one-half at the top of each rail; and (3) a longitudinal force of 10%ofthemaximumwheelloadsofthecrane applied at the top of the rail. 10 - 9 - 3 ): 1 ( 25 ) 2 ( 20 ) 3 ( 10 .10.9.4 Vehicle barriers for car parks a)ThehorizontalforceF(inkN),normalto anduniformlydistributedoveranylengthof 1.5mofabarrierforacarpark,requiredto withstand the impact of a vehicle is given by: 10 - 9 - 4 ( . F ) kN ( 5/1 .o ob cVmF+=25 . 0 Where: m is the gross mass of the vehicle, in kg; V is the velocity of the vehicle, in m/s, normal to the barrier; oc is the deformation of the vehicle, in mm; ob is the deflection of the barrier, in mm. :m .V

oc .

ob .b) Where the car park has been designed on the basisthatthegrossmassofthevehiclesusing it will not exceed 2500 kg the following values are used to determine the force F: m = 1500 kg* v = 4.5 m/s oc= 100 mm unless better evidence is available. ( 2500 F :m = 1500 *= v 5/4 oc= 100 .Forarigidbarrier,forwhich obmaybetakenas zero,theforceFappropriatetovehiclesupto 2500 kg gross mass is taken as 150 kN. ob 2500 F 150 . Jan. 2009 / 1387IPS-E-CE-500(1) 35*Themassof1500kgistakenasbeingmore representativeofthevehiclepopulationthanthe extreme value of 2500 kg. * 1500 2500 . c)Wherethecarparkhasbeendesignedfor vehicles whose gross mass exceeds 2500 kg the followingvaluesareusedtodeterminethe force F: mistheactualmassofthevehicleforwhichthe car park is designed (in kg); V = 4.5 m/s oc= 100 mm unless better evidence is available. ( 2500 F :m ) ( V = 5/4 oc= 100 .d) The force determined as in (b) or (c) may be considered to act atbumper height. In thecase ofcarparksintendedformotorcarswhose gross mass does not exceed 2500 kg this height may be taken as 375 mm above the floor level. ( ) ( ) ( . 2500 375 .e) Barriers to access ramps of car parks have to withstandonehalfoftheforcedeterminedin (b) or (c) or acting at a height of 610 mm above the ramp. Oppositetheendsofstraightrampsintendedfor downward travel which exceed 20 m in length the barrier has to withstand twice the force determined in (b) or (c) or acting at a height of 610 mm above the ramp. ( ) ( ) ( 610 . 20 ) ( ) ( 610 .10.10 Maintenance Loads, (M) Maintenanceloadsshallbedefinedastemporary forcescausedbythedismantling,repairor painting of equipment. Structuresandfoundationssupportingheat exchangerssubjecttobundlepullingshallbe designedforalongitudinalforceappliedatthe centroidofthetubebundle.Thisforceshallbe equalto100%ofthebundleweight(mass).The shear force due to bundle pulling shall be assumed tobetransmittedsolelythroughthefixedshell support. 10 - 10 ) M ( . . 100 . .10.11 Thermal Loads (T) Thermalloadsshallbedefinedasthoseforces causedbyachangeintemperature.Suchforces shallincludethosebyvesselorpipingexpansion orcontraction,andexpansionorcontractionof structures. 10 - 11 . . Jan. 2009 / 1387IPS-E-CE-500(1) 36 10.11.1 Internal thermal forces and stresses Foundationsandstructureswhicharesubjectto temperatureeffectsshallnotonlybedesignedfor thevariousloadingconditionsbutalsoforany temperaturedifferencethatmayoccurinpartsof structural members. 10 - 11 - 1 .Note: Thetemperatureofthesurfaceoftheconcrete shall not exceed 100C. : 100 .Taking into account the wide range of temperature occurringinIranthroughouttheyear,expansion jointsshallbeprovidedatconvenientlocations andthefollowingdatashallbeusedinthermal loads calculation: :-Concreteandsteellinearexpansionfactor: a = 0.000011/C. -Thermalvariationforconcreteorsteel structuresdeltaTisdependentonthe maximumandminimumtemperatureswhich shouldbemeasuredatsitefortheperiodof construction. -Itshallbeselectedthethermalvariation (positive or negative) which produces the most severe thermal load for the structure. - : 000011 / 0 a= .- ) T ( .

- ) ( .10.11.2 Friction due to thermal expansion Whenthermalexpansionresultsinfriction between equipment and supports, the friction force shall be taken as the operating load on the support timestheapplicablefrictioncoefficientgivenin Table 4. 10 - 11 - 2 4 . TABLE 4 - FRICTION COEFFICIENT FOR VARIOUS MATERIALS 4 - SURFACES FRICTION COEFFICIENT - STEEL TO STEEL (NOT CORRODED) - ) (- TEFLON TO TEFLON - - GRAPHITE TO GRAPHITE- - STEEL TO CONCRETE- - TEFLON ON STAINLESS STEEL - 0.30 0.08 0.15 0.40 0.10 Inthedesignofpipesupportingbeams,the horizontalslipforcesexertedbyexpandingor Jan. 2009 / 1387IPS-E-CE-500(1) 37contractingpipesonsteelpiperacksshallbe assumed to be 15% of the operating weight on the beam. These slip forces shall not be distributed to the foundations. Aconcretepiperackbeamshallbedesignedfor an arbitrary horizontal pipe anchor force of 15 kN actingatmidspan,whichalsoshallnotbe distributed to the foundations. For pipe anchor forces transferred by longitudinal girders to structural anchors (bracing) an arbitrary forceof5%ofthetotalpipeloadperlayershall betakenintoaccount,unlessdesigncalculations dictateahigherforce,theseforcesshallbe distributed to the foundations. 15 . .

15 . . ) ( 5 ) ( . .10.12 Loads of Vessels, Columns, etc. Apartfromvesselsandcolumns,thiscategory alsoconsistsoffilters,settlers,heatexchangers, condensersandthelikecompletewiththeir piping. Inaccordance withthevarious loadcombinations forthecategoryofequipment,thefollowing weights/loads shall be included in the calculations. 10 - 12 .

.10.12.1 Empty weight, (Ve) Thisisthedeadweightofvessels,columns,etc. inclusiveofprotectivelayers,valves,etc.,and shall be derived from manufacturers data. 10 - 12 - 1 ) Ve ( : .10.12.2 Operating weight, (Vo) This is the empty weight of vessels, columns, etc., andtheweightoftheirmaximumcontentswhich will apply during operation of the plant. 10 - 12 - 2 ) Vo ( . 10.12.3 Hydrostatic test load, (Vt) When hydrostatic pressure testing of equipment is requiredatsite,theweightofthisequipment completely filled with water shall be incorporated inthedesignofthesupportingstructure.When morethanonevessel,etc.,issupportedbyone structure,thestructureneedonlybedesignedon thebasisthatonevesselwillbetestedatanyone time,andthattheotherswilleitherbeemptyor still in operation. 10 - 12 - 3 ) Vt ( . .11. COMBINATIONS OF LOADS11.1 General Buildingsandotherstructuresshallbedesigned usingtheprovisionsofeitherclause11.2or11.3. 11 - 11 - 1 Jan. 2009 / 1387IPS-E-CE-500(1) 38Either clause 11.2 or 11.3 shall be used exclusively forproportioningelementsofaparticular construction material throughout the structure. 11 - 2 11 - 3 . 11 - 2 11 - 3 .11.2CombinationsofLoadsUsingStrengthDesign 11 - 2 11.2.1 Applicability Theloadcombinationsandloadfactorsgivenin clause11.2.2shallbeusedonlyinthosecasesin whichtheyarespecificallyauthorizedbythe applicable material design standard. 11 - 2 - 1 11 - 2 - 2 .11.2.2 Basic combinationsStructures,components,andfoundationsshallbe designedsothattheirdesignstrengthequalsor exceedstheeffectsofthefactoredloadsinthe following combinations: 11 - 2 - 2 :1. 1.4(D + F) 2. 1.2(D+ F +T) + 1.6(L + H) + 0.5(Lr or S or R) 3. 1.2 D + 1.6(Lr or S or R) + (L or 0.8W) 4. 1.2D + 1.6W + L + 0.5(Lr or S or R) 5. 1.2D + 1.0E + L + 0.2S 6. 0.9D + 1.6W + 1.6H 7. 0.9D + 1.0E + 1.6H Exceptions: 1.TheloadfactoronLincombinations(3), (4),and(5)ispermittedtoequal0.5forall occupanciesinwhichdistributedlive load(tables IB/2-IB/9 appendix IB) is less than orequalto4.8kN/m2(100psf),withthe exceptionofgaragesorareasoccupiedas places of public assembly. :1 ( L ) 3 ( ) 4 ( ) 5 ( ) I- / 2 I- / 9 I- ( 8/4 ) 100 ( 5/0 .2.TheloadfactoronHshallbesetequalto zeroincombinations(6)and(7)ifthe structuralactionduetoHcounteractsthatdue to W or E. 2 ( H W E H ) 6 ( ) 7 ( .Where lateral earth pressure provides resistance to structural actions from other forces, it shall not be includedinHbutshallbeincludedinthedesign resistance. H .3.Incombination(2),(4),and(5),the companionloadSshallbetakenaseitherthe flat roof snow load (pf) or the sloped roof snow load (ps). 3 ( S ) 2 ( ) 4 ( ) 5 ( (pf) (ps) .Eachrelevantstrengthlimitstateshallbe . Jan. 2009 / 1387IPS-E-CE-500(1) 39investigated.Effectsofoneormoreloadsnot acting shall be investigated. The most unfavorable effects from both wind and earthquake loads shall beinvestigated,whereappropriate,buttheyneed notbeconsideredtoactsimultaneously.Referto Section12.4ofASCE-7forspecificdefinitionof the earthquake load effect E. . . E 12.4 ASCE-7 .11.3CombiningNominalLoadsUsing Allowable Stress Design 11 - 3 11.3.1 Basic combinations.Loadslistedhereinshallbeconsideredtoactin thefollowingcombinations;whicheverproduces themostunfavorableeffectinthebuilding, foundation,orstructuralmemberbeing considered.Effectsofoneormoreloadsnot acting shall be considered. 11 - 3 - 1 . . 1. D + F 2. D + H + F + L + T 3. D + H + F + (Lr or S or R) 4. D + H + F + 0.75 (L + T) + 0.75(Lr or S or R) 5. D + H + F + (W or 0.7E) 6. D + H + F + 0.75 (W or 0.7E) + 0.75L + 0.75(Lr or S or R) 7. 0.6D+ W + H 8. 0.6D + 0.7E +H Exception:Incombinations(4)and(6),the companionloadSshallbetakenaseithertheflat roofsnowload(pf)ortheslopedroofsnowload (ps). : S ) 4 ( ) 6 ( (pf) (ps) . Themost unfavorable effects from both wind and earthquakeloadsshallbeconsidered,where appropriate,buttheyneednotbeassumedtoact simultaneously.RefertoSection12.4ofASCE-7 forthespecificdefinitionoftheearthquakeload effect E. Increasesinallowablestressshallnotbeused withtheloadsorloadcombinationsgiveninthis standardunlessitcanbedemonstratedthatsuch anincreaseisjustifiedbystructuralbehavior caused by rate or duration of load. . . E 12.4 ASCE-7 .

.11.4Additionalprovisionsforcombinationsof loads are referred to section 2 of ASCE-7. 11 - 4 2 ASCE-7 . Jan. 2009 / 1387IPS-E-CE-500(1) 40APPENDICES APPENDIX IA BASES FOR DESIGN OF STRUCTURES ACTIONS DUE TO THE SELF-WEIGHT OF STRUCTURES, NON-STRUCTURAL ELEMENTS AND STORED MATERIALS-DENSITY I - IA.1 General I - - 1 IA.1.1Themostimportantvalueindetermining actionsduetotheself-weightofstructures,non-structuralelementsand/orthatofstoredmaterials is the density. I - - 1 - 1 .IA.1.2 For materials having all three dimensions of the same order of magnitude, the densities is expressed in kilograms per cubic meter (kg/m3). For roofing's (sheeting materials) having one dimension of smaller order of magnitude than the other two dimensions, the similar quantity will be surface density, expressed in kilograms per square meter (kg/m2) (mass related to surface area). I - - 1 - 2 ) kg/m3( . ) ( ) kg/m2 ( ) . (IA.1.3 In some countries roofing's are considered to be external load, causing pressure on the structure (for example, snow load) consequently these are expressed in Newton's per square meter (N/m2) or in PASCAL's*. For this reason, roofing's (see Annex 1 to this Appendix) are given as surface pressures, together with the values of surface density. * 1Pa = 1 N/m2 I - - 1 - 3 ) ( . ) N/m2 ( * . ) 1 ( . * . IA.1.4Densitiesofstoredmaterialssubstantially dependonhowtheyareplaced.Usuallytwo methods of stocking are distinguished: a) Disorderly storage of materials; b) Orderly storage of materials. Disorderlyorbulkystoredmaterialsarestored withoutbales,forminganaturalheap.Orderly storedmaterialsarestoredinstocksorpileswith or without bales. I - - 1 - 4 . : ( ( . .IA.2 Density Values I - - 2 IA.2.1Therepresentativevalueofthedensityof materialsand/orcomponentsofstructures,non-structuralelementsandstoredmaterialsisin I - - 2 - 1 Jan. 2009 / 1387IPS-E-CE-500(1) 41general determined by the mean value. Therepresentativevalueisgenerallyrepresented byauniquevalue.Inactualdesignsituations, densities may alter due to the difference in quality ofworkmanship,moisturecontent,etc.The representativevalueofthedensityofearthis representedinthesamemanner,bearing compactness in mind. . . . .IA.2.2Therepresentativevaluesofdensitiesof structures and non-structural elements are given in atableinAnnex1;therepresentativevaluesof densitiesofstoredmaterialsandtheiranglesof repose are similarly given in Annex 2. I - - 2 - 2 1 . 2 .IA.2.3Wherethetablesgiveonlyonedensity value for one material (or soil), this means that the correspondingnominalvaluesdonotnormally differsignificantly(upto5%)indifferent countriesandtheindicatedmeanvalueisthe averageofthenominalvalues.Therangeoftwo valuesofdensitiesgivenintheAnnexesforone materialindicatesthatthemeanvaluesof densitiesfordifferentcountriesvarybetweenthe indicated ones. This alsorefers totheanglesof repose.However, itshouldbeemphasizedthatinaccordancewith thenationalpracticeofdifferentcountries,angles ofreposedifferupto30%fromthoseindicated inAnnex2tothisAppendix.Thusvaluesof anglesofreposegiveninAnnex2are approximate. I - - 2 - 3 ) ( ) 5 ( . . . 2 30 . 2 .IA.2.4Forthetimebeing;onlylimitedstatistical data are available and the values given in Annexes 1 and 2 are based on relevant national practice. I - - 2 - 4 1 2 . Jan. 2009 / 1387IPS-E-CE-500(1) 42 ANNEX 1 TO APPENDIX IA REPRESENTATIVE VALUES OF DENSITIES OF STRUCTURAL AND OF NON-STRUCTURAL ELEMENTS (THIS ANNEX FORMS AN INTEGRAL PART OF THE STANDARD) 1 I - ) (

ThisAnnexgivesrepresentativevaluesofthe densitiesofstructuralandnon-structural elements in the form of a table. . Material Density kg/m3 Material

Density kg/m3 Wood and substitutes 1 (air- dried,a bout 15 % humidity) Hardwood ) 15 ( %Building bricks and blocks Beech tree (fagus sylvatica) ) ( Solid burnt clay brick Oak tree (Quercus ) 680 up to 14 Mpa (inclusive compressive strength) 14 1600 Peduncular oak (Quercus robur) 690 over 14 Mpa compressive strength 14 1800 Brazilian rosewood (Dalbergia nigra) 800 Perforated brick (holes through the brick exceed 25 % of its volume) ) 25 % (1600 Turkey oak (Quercus cerris) 640 to 770hollow brick 820 to 1350 Yew tree (Taxus baccata) 640perforated brick 1150 to 1450 Australian hardwood Lime-sand brick 1700 Box, grey (Eucalyptus microcarpa) 11211111120 Cob brick, adobe 1600 Penda, brown (Xanthostemon chry santhus) Softwood 570 Refractory brick for general purposes Black pine (Pinus laricio) 570fireclay 1850 Larch tree (Larix decidua) 550high-strength fireclay 2100 Norway spruce (picea) 430silica (dinas) 1800 Spruce fir (Pinus eccelsa) 380 to 440magnesite 2800 Scotch pine (Pinus silvestris) 490chrome magnesite 3000 White willow (Salix alba) 330corundum 2600 Giant poplar (Populus alba) 410Covering bricks Trembling poplar (Populus tremula) ocume (ocume) 450 410 inside wall-covering 1600 Conifers 400 to 600outside facade covering 1800 Extrude chipboard500 to 750outside facade covering 2000 Fibreboard clinker brick Hard 900 to 1 100Gas silicate block medium-hard 600 to850with 2 Mpa compressive strength 2 500 porous insulating 250 to400 with 5 Mpa compressive strength 5 700 Jan. 2009 / 1387IPS-E-CE-500(1) 43 Material Density kg/m3 Material Density kg/m3 Plywood 750 to850 with 7,5 Mpa compressive strength 5 / 7 900 Coreboard 450 to650Acid-resistant brick 2000 Natural building stones Tuff block with 5 Mpa compressive strength 5 1100 Magmatic plutonic rocks 2650 to 3000Glass brick, double-walled 870 to 1100 Magmatic vulcanites 2500 to 2850Mortars Volcanic tuffs 1400 to 2000Lime mortar 1200 to 1800 Sedimentary rocks Lime cement mortar ) (1750 to 2000 Sandstone 2700 Cement mortar (with 2,5 Mpa or greater compressive strength) ) 5 / 2 (2100 Marl2300Rock flour mortar 1200 to 1800 porous limestone 1700 to 2200Gypsum mortar 1900 fresh-water limestone 2400Fireclay mortar 2100 compact limestone 2650 to 2800Pearlite mortar Dolomite 2800lime340 Transformed rocks gypsum 370 clay slate 2600cement440 Marble 2700Bitumen mortar with river sand 1700 Crushed bock concrete C3-C35

2300 to 2500Concrete22 Blast furnace foam slag concrete C3-C10 1600 to 1900Gravel concrete 2250 to 2500 Aerated and gas concrete C1,5-C5 600 to 1500Basalt concrete 2300 to 2500 Expanded clay gravel concreteC1,5-C16 700 to 1700Metals for structures Perlite concrete C1,5-C2 350 to 700Structural steel 7850 Tuff concrete C3-C6 1400 to 1600Cast iron structure 7100 Lightweight aggregate concrete using sintered Aluminum 2700 Pulverized fuel ash aggregates 1600 to 1850 Covering and other building material Heat insulating gas concrete 300 to900Asphalt, pure 2200 Heat insulating pearlite brick and pipe shell 260Bitumen1000 to 1400 Aggregates and fillers Tar (pitch)1100 to 1400 Sand 1550 Asbestos cement roofing and covering board 1800 to 2100 Sand gravel of 0 to 40 mm grain size ) 40 ( 1700Asbestos cement corrugated board 1600 Jan. 2009 / 1387IPS-E-CE-500(1) 44 Material Density kg/m3 Material Density kg/m3 Gravel 1500 to 1600Asbestos cement pipe 1800 Blast furnace foam slag 1700Cellulose acetate panel 1300 Blast furnace slag, granulated 1200Cement tile 2400 Crushed slag stone of 5 to 40 mm grain size ) 5 40 ( 1500Mosaic tile 2200 Aerated silicate 1000Concrete flagstone 2200 pulverized fuel ash (pozzolan) for use as acementitious component in concrete (bulk density) 800 to 1050Tile1750 to 2000 Lightweight concrete aggregate (bulkdensity) ) (750 to 1000Face brick (hard facade brick) ) (2500 Lightweight aggregate using sintered pulverized fuelash/natural sand / 1700 to 2000Stoneware tile 2400 Masonry from natural stones Soft covering brick Rocks initial setting Holed 1350 basalt malphir, diorit, gabbro 3000Solid1600 Basalt lave 2400Epoxy resin Diabase 2900without filler ) ( 1150 granite, syngenit, porphyt 2800with mineral matter 2000 Trachyt ) ( 2600with fiberglass 1800 Sedimentary rock Fenoplast1500 graywacke, sandstone, puddingstone 2700Rubber floor 1800 dense limestone, dolomite, shell limestone and marble 2800Plastic tile 1100 limestone conglomerate Polyamide (e.g. diamid) ) : (1100 limestone conglomerate) : ( (e.g. travertin, etc.) 2600Polyester resin, without filler ) ( 1350 volcanic tuff

2000Polyethylene 930 Transformed rocks Polyisobutylene- base board 1350 gneiss, granulite 3000Polypropylene 1150 Jan. 2009 / 1387IPS-E-CE-500(1) 45 Material Density kg/m3 Material Density kg/m3 slate 2800Polypropylene 930 serpentine 2700PVC hardboard 1400 Brick masonry 3 3PVC flooring board 1600 Ordinary brick 1500PVC flooring tile 1700 Solid burnt clay brick Flat glass 2600 up to 14 Mpa (inclusive) compressive strength 14 1500 to 1700Armoured glass 3000 over 14 Mpa compressive strength 14 1900 1,5 to 2,5 Mpa compressive strength 5 / 1 5 / 2 600 to800 Walls made from brick with holes or ceramic blocks (depending on the type of brick and blocks used) ) (1150 to 1450 2,5 to 5Mpa compressive strength 5 / 2 5 800 to 1400 Tuff concrete, medium size building block 1200 5to 10Mpa compressive strength 5 10 900 to 1300 Gas silicate, medium size building bloc 10to 20Mpa compressive strength 10 20 1000 to 1600 Jan. 2009 / 1387IPS-E-CE-500(1) 46 Material Surface Pressure N / m2 Surface density kg / m2 Roof shells, roofings 4 4 Tile roofings flat tile, burnt clay 38038 pressed tile, burnt clay 48048 flat tile, single roofing 35035 flat tile, double roofing 70070 flat concrete roofing tile 60060 concrete tile, single roofing 400 to 50040 to 50 Metal plate roofings galvanized steel plate (tin plate) roofing, 0,53 mm thick, folded or battened 53 / 0 404 double standing welt roofing from galvanized steel sheet roofing, 0,63 mm thick 63 / 0 555,5 75 / 0 zinc-plate roofing, 0,75 mm thick, welded454,5 double-welt copper roof covering, 0,6 mm thick 6 / 0 606 Aluminum sheet roofing 0,6 mm thick 6 / 0 202 0,7 mm thick 7 / 0 252,5 lead-plate roofing, 2 mm thick, soldered 2 24024 steel pantile roofing (galvanized) ) (15015 sectional steel-plate roofing 75 to 2407,5 to 24 Other plate roofings soft plastic roofing, 1 mm thick 1909 Bitumenized board roofing 2 layer, nailed 808 3 layer with stuck gravel scattering 25025 Asbestos cement corrugated board roofing or reinforced with other fibres standard roofing and corrugated board roofing 20020 double board roofing 25025 plastic corrugated board roofing, 1,5 mm thick 5 / 1 202 Smeared and scattered roofing plastic-bitumen roofing, 4 mm thick coating - 4 505 synthetic glass roofing, 1 mm thick coating 1 606 flat glass roofing, 6 mm thick 620020 armoured glass roofing, 6 mm thick 6 25025 corrugated, armoured glass roofing, 6 mm thick 6 30030 Sectional glass roofing Single20020 Double40040 Jan. 2009 / 1387IPS-E-CE-500(1) 47Notes: :1)Thebodydensityofthewoodshouldbe increasedby120kg/m3 whereinastate saturatedwithwaterandby80kg/m3inthe caseofstructurestandingoutdoorsandnot protected against atmospheric humidity. 1 ( 120 80 .2) For concrete grades (C), see IPS-E-CE-200: "Concrete & Concrete Structures". The value of the density of reinforced concrete shallbethatasgivenfortheappropriate concreteincreasedby100kg/m3wherethe reinforcementpercentageis1,25orless. Appropriateadjustmentsshallbemadefor concrete reinforced to higher values. 2 ( ) C ( 200 - CE - E - IPS " " . 25/1 100 . .3)Themassdensityofthemasonryistaken withoutplasterbutwithmortar-filledvoids. Themassdensityofconcrete,lightweight concreteandreinforcedconcretewall correspondstothemassdensityvalueofthe materials supplied. 3 ( ) ( . .4)Thevaluesdonotincludethefixingand supporting structures of the shell. 4 ( .

Jan. 2009 / 1387IPS-E-CE-500(1) 48 ANNEX 2 TO APPENDIX IA REPRESENTATIVE VALUES OF DENSITIES AND ANGLES OF REPOSE OF STORED MATERIAL (THIS ANNEX FORMS AN INTEGRAL PART OF THE STANDARD) This Annex gives the representative values of densities and angles of repose of stored materials in the form of a table. - I 2 ) ( . Material Density 1 kg / m3 Angle of repose Degrees naturalheap 2 stack or pile 3 Building and construction materials Basalt flagstone __2750 to 3000__ Boulder clay __2100__ Brick sand, brick hardcore, brick chippings, moist earth 1500__25 to 40 Cement Clay 1100 to 12001300 to 160018 to 28 fluorfine, dry 1100____ heavy, air-dried 1600____ Cork grit __60__ Coke ash 750__25 Crushed foamed slag 900__35 Expanded clay gravel Light250__30 to 35 Medium400__30 to 35 heavy 550__30 to 35 Fiberglass __160 to180__ Foamed scoria, crushed, moist earth 1000__35 Glass wool __100to110__ Granite flagstone __2600to 2800__ Gravel and dry sand or moist earth 1800__30 to 36 Heat-insulating gas concrete __500__ Heat-insulating perlite brick __260__ Heat-insulating perlite pipe shell __260__ Lime hydrate 50060025 Lime Lumps 850 to 1300__45 Ground 600 to 13001000to 110025 Limestone powder __1300__ Jan. 2009 / 1387IPS-E-CE-500(1) 49 Material Density 1 kg / m3 Angle of repose Degrees natural heap 2

stack or pile 3 Magnesite (caustic magnesite), ground __1200__ Mineral wool and derivatives __75to260__ Plaster ) ( 10001100 to 150025 Plastics polyethylene, polystyrol, granulated __650__ polyvinylchloride, powdered __600__ polyester resin __1200__ Perlite__70to 250__ Reed sheet of roofing __150to220__ Powdered coal ash 9001000 to 120025 Silt__1800__ Slag wool __200to300__ Slag, granulated 1100__30 Slaked lime __ 1300 to 1400__ Trass, ground __ 1500__ Wood-wool __ 300to380 Combustibles and fuels Coal mineral coal 900 to 1 200__30to35 coke 450 to650__30to45 briquette eget 800__25 cornered coal 700__35 brown coal Dry 800__35 moist earth 1000__30 Briquette 800__30 Coke 1000__40 brown coal dust 500__25 Charcoal 250____ Oils__ fuel, diesel oil 800 to 1000____ crude oil 980____ Petrol (gasoline) 750to800____ Petroleum 800____ Jan. 2009 / 1387IPS-E-CE-500(1) 50 Material Density 1 kg / m3 Angle of repose Degrees natural heap 2 stack or pile 3 Liquid gas __ Propane500____ Butane580____ Wood (air-dried, about 15 % moisture) ) 15 (% hard wood Chopped400 to600 __ 45 Logs 500600to 70050 soft wood Chopped 25040045 logs 300400to600__ fire-wood 400 __ 45 Brush wood ___200__ Peat 300 to600500to900__ Foodstuffs and agricultural products Alcohol 800____ Barley 500to800__30 Barley in bags ___650to 750__ Beer in tanksin barrels 1050 __ __ __ Butter__900 in barrels __550__ cased or boxed __500to800__ Cocoa in bags __550__ Coffee in bags __550to700__ Cover-seed in bags __750__ Conserves in bottles or boxes __800__ Dry fodder Baled __50__ Ensiled 1000 __ __ Edible oil in barrels __750__ bottled, in crates __550__ Eggs in egg-stands __550__ Fat, boxed 800__ Jan. 2009 / 1387IPS-E-CE-500(1) 51 Material Density 1 kg / m3 Angle of repose Degrees natural heap 2 stack or pile 3 Fish in barrels Cased __ 600 800 __ Flax in bales __1300__ Flax-seed in bags __700__ Fruit (stored in prisms) ) ( 500 to700__25 Fruit crated in boxes __350to400__ Groundnuts __400__ Hay (baled) ) ( __150to200__ Hempseed 500__25 Hempseed in bags __450__ Honey in tanks 1300____ in cans __1000__ Bottled __600__ Leguminous plants 850____ Leguminous plants in bags __800__ Maize on ear 450____ Maize corn 700____ Margarine in barrels __550__ cased or boxed __700__ Meal 600____ Meal in bags __500to600__ Meat, refrigerated __400to700__ Milk in tanks 950to1000____ in cans __850__ bottled (in crates) __700__ Oat 450to600____ Oat, milled 750to800____ Onions in bags __550__ Crated __550__ Jan. 2009 / 1387IPS-E-CE-500(1) 52 Material Density 1 kg / m3 Angle of repose Degrees natural heap 2 stack or pile 3 Pickled cucumber in cases __700__ Pimiento __500__ Drinks Bottled __850__ bottled in cases __800__ bottled in crates __750__ Potatoes 700to76030 Potatoes in bags __500to700__ Rice (unmilled) ) ( 500____ Rice (unmilled) in bags (hulled) __ __ 800__ Rye 750____ Salt (rock-salt) ) ( __2200__ in piles (milled)( ) 1000____ in pile, pressed cattlesalt __1800__ Starch flour in bags __800__ Straw baled (standard bale) ) ( __170__ Straw baled , high-density __600__ Sugar powdered / granulated in paper bags __600__ in gunny sacks __800__ Lump sugar in paper bags __600__ boxed __700__ Tobacco, baled __300to500__ Wheat550to820__30 Wheat in bags __750__ Wine in tanks 1000____ in barrels __850__ Other materials 4 4 Aluminium2700____ Aluminium alloy 2800____ Bags, baled __500__ Bone splinters 700____ Books and papers in stacks __850__ Brass 8300to8500____ Broadcloth, in bolts __400__ Jan. 2009 / 1387IPS-E-CE-500(1) 53Material Density 1 kg / m3 Angle of repose Degrees natural heap 2 stack or pile 3 Bronze8400____ Carbolineum ) ( in tanks 1000____ in barrels __800__ Cellulose, baled __100__ Cellulose filiform baled ( ) __750__ pressed, baled ) ( __1200__ Cloth, baled __400__ Chemical fertilizer Phosphatic1200to1600____ kalimagnesia in bags __1300to1500__ Kalisulfate 1600____ nitrogenous in bags __2000__ Compost 1200____ Copper8700to8900____ Cotton, baled __700to1300__ Excrement 1200____ Felt in piles, baled __500__ Filament in piles, pressed, baled __1200__ Glass bottles, etc. __400__ sheets of glass, crated __1000__ Hemp, baled __400__ Iron, cast 7100to7250____ Iron ore 3000____ Ice (from water), in blocks ) ( __850to900__ Ice (from carbonic acid), in blocks ) ( __1700__ Jute, baled __700__ Lead 11400to 12000____ Leather, in piles (curried) ) ( __900to1000__ Linen, in bolts __600__ Linoleum: rolled-up flooring material __1300__ Magnesium 1850____ Jan. 2009 / 1387IPS-E-CE-500(1) 54 Material Density 1 kg / m3 Angle of repose Degrees natural heap 2 stack or pile 3 Nickel8900____ Oil paint and lacquer, canned or boxed __1100__ Paper in stacks, in sheets __1200__ in rolls __1100__ Raw hide in piles (dried) ) (__350__ in piles (salted) ) (__1100__ Rubber rolled-up flooring material __1300__ raw, baled __1000__ Steel 7850____ Steel rail 2600____ Textile, in bolts 1100____ Tin, rolled __ 7200to7400__ Wearing apparel, cased 300 ____ Wool Baled 700 ____ pressed, baled 1300 ____ Zinc Cast 6900 ____ Rolled 7200 ____ Soils 5 5 inorganic cohesive soils Soft1800to2000 __10to 24 stiff 1900to2050 __12to26 semi-solid 2000to2100 __17to27 Organic clay, soft 1400 __15 Organic silt 1700 ____ Sand moist earth Loose 1200to1500 __30 medium-dense 1500to1800 __30 Dense 1700to2000 __35 Saturated loose 1500to1800 __30 Jan. 2009 / 1387IPS-E-CE-500(1) 55Material Density 1 kg / m3 Angle of repose Degrees natural heap 2 stack or pile 3 medium-dense 1700to2000 __30 Dense 1800to2100 __35 under uplift Loose 900to1000 __30 medium-dense 1000to1200 __30 Dense 1100to1200 __35 Gravel moist earth Loose 1500to170