32
Dynamic stiffness of ageing rubber vibration isolators Leif Kari The Marcus Wallenberg Laboratory for Sound and Vibration Research

Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

Dynamic stiffness of ageing rubber vibration isolators

Leif Kari

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Page 2: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Structure-borne sound

Source Receiver

Page 3: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Physical principle

”Hard”

”Hard”

”Soft”

Page 4: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fwithout FwithFwithFwithout

Force transmissibility TF =

Page 5: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fwith

FwithFwithout

TF =Fwith

Fe

− ω2mue = Fe - Fwithue ≠ 0

Ideal isolator

k

k

m

Fwith = k ue

1

1−= ω2

ω02

ω02 = k /m

Page 6: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Fo

rce

tran

smis

sib

ilit

y

Frequency [Hz]

No isolatorIdeal isolator

Rigid foundation – ideal isolator

Page 7: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Fo

rce

tran

smis

sib

ilit

y

Frequency [Hz]

No isolatorIdeal isolator

η

Rigid foundation – ideal isolator

Page 8: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fwithout Fwith

Nonrigid foundation

Page 9: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

uf

Foundation stiffness

FfFf

uf

kf = Ff / uf → ∞)1(12

8ωi 2f

ff2ff ν

ρ

−=

Ehk

hf

Page 10: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Fo

rce

tran

smis

sib

ilit

y

Frequency [Hz]

No isolatorNonrigid foundationRigid foundation

Nonrigid foundation – Ideal isolator

Page 11: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Acoustic radiation

Wall

Wave fronts

1 W/m2 ⇔ 120 dB !

Page 12: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fideal

Fideal

ideal isolator

k

m

non-ideal isolator

Fin

Fout

m

uin uout

Page 13: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fideal

Fideal

ideal isolator

k

non-ideal isolator

Fin

Fout

uin uoutue

Fideal = k ueFin = kinin uin + kinout uoutFout = koutin uin+ koutout uout

with kinout = koutin

Page 14: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Spherical part

Constitutive preliminaries

tr � = 3���(, � �, �� �)div �

dev � = 2��(, � �, �� �) dev �� + � ��(, � �, �� �; � − �) �dev ��(�)�� d�� �

Deviatoric part

limt→∞ µ1 = 0

limt→∞ µ = µ∞

[Kari 2016a,b]

Page 15: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Equilibrium elastic modulus

Density

�� , � �, �� � = "#$"$ �� � �, �� � ,

ρT

(equlibrium)≈ (1 − α ∆T)ρ0

α = −1ρ

�ρ�

∆T = T − T0

Page 16: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Specific relaxation function

�� , � �, �� �; � = ∆() −∆ ��*+, �+#) ℎ(�)

() . =/ .0Γ(1 + β3)�

04$

+# = 10 67∆#689∆#

Non-dimensional relaxation intensity ∆ » 1

0 < β ≤ 1

[Kari 2016a,b]

Page 17: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Physical ageing

[Cangialosi et al Soft Matter 2013]

Page 18: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Physical ageing cont

Page 19: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling physical ageing

[Greiner & Schwarzl 1984, Kovacs 1963, Doolittle 1953, Cohen & Turnbull 1959]

:# = ;# − ;$;$:#� = limt→∞:# = ;#� − ;$;$

<# d:#d� = :#� − :#<# = <̂ exp @:#

:#� = :#A� + BC�D∆BC�D = BCEFF�CG − B D�HHG

Page 20: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling physical ageing modified

<# d:#d� = :#� − :# <# �I )D�) :# = :#� − :#

D�) :# = 1Γ(1 − K)� 1(� − �))�$

d(:#(�))d� d�

<# �I = <̂ exp @:# = <̂10MNOP

@Q = @log�$ e = @0.434294…

[Kari 2016a,b]

Page 21: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

WLF shift function

+# = 10 67∆#689∆#

:#� = :#A� + BC�D∆

<#� �I = <̂10 MNOPY

<#A� �I = <̂10MNOPAY

+# = <#� �I<#A� �I

Z� = @Q:#A� Z[ = :#A�BC�D

[Greiner & Schwarzl 1984, Kovacs 1963, Doolittle 1953, Cohen & Turnbull 1959]

Page 22: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Cont

+, � = <# �I<#� �I = 10

67 OPYOP �

<#� �I = �*+#∆�)

+, �+# = <# �I<#� �I

<#� �I<#A� �I =<# �I<#A� �I

�� , � �, �� �; � = ∆() −∆ ��*+, �+#) ℎ(�)

[Kari 2016a,b]

Page 23: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling chemical ageing

Scission of polymer chains

�� � �, �� � = 1 − \H]^ ��$<H]^ _D�`ab_ \H]^ = 1 − \H]^<H]^ = <̂H]^e cdefg#̀ ab

\H]^ = 1 − (_ − �� �<H]^_

Page 24: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling chemical ageing contPlus reformation of new polymer links

<C�h iD�`abi \C�h = 1 − \C�h<C�h = <̂H]^e cjbkg#̀ ab

\C�h = 1 − (i − �� �<C�hi

�� � �, �� � = 1 − \H]^ + \C�h\C�hl ��$

[Kari 2016a,b]

Page 25: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling chemical ageing cont

Scission and reformation of new polymer links

�� � �, �� � = (_ − �� �<H]^_ + 1 − (i − �� �<C�h

i \C�hl ��$

[Kari 2016a,b]

Page 26: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Vibration isolator

[Kari et al. 2001]

Page 27: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fideal

Fideal

ideal isolator

k

non-ideal isolator

Fin

Fout

uin uoutue

Fideal = k ueFin = kinin uin + kinout uoutFout = koutin uin+ koutout uout

with kinout = koutin

Page 28: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling approaches- Wave-guides

Traction free surface

Infinite beam

Wave equations Bessel

Trig.

Exp. harm.

Satisfy traction free B.C:s � Dispersion relation

[Kari 2001a,b, Östberg et al. 2011]

Page 29: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Forc

e tr

ansm

issi

bil

ity

Frequency [Hz]

No isolatorReal isolatorIdeal isolatorIdeal isolator − Rigid foundation

Nonrigid foundation – Real isolator

Page 30: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

DMTA measurements and modelling

[Kari et al. 2001]

Page 31: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Cont

101

102

103

104

103

104

105

106

107

a)

Tra

nsfe

r S

tiffn

ess [

N/m

] -60ºC

-25ºC

0ºC

+25ºC

+60ºC

101

102

103

104

102

104

106

b)

Drivin

g P

oin

t S

tiffn

ess [N

/m]

Frequency [Hz]

-60ºC

-25ºC 0ºC

+25ºC

+60ºC

[Kari et al. 2001]

Page 32: Dynamic stiffness of ageing rubber vibration isolators KTH.pdf · The Marcus Wallenberg Laboratory for Sound and Vibration Research References • Cangialosi, D., Boucher, V.M., Alegria,

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

References• Cangialosi, D., Boucher, V.M., Alegria, A., Colmenero, J.: Physical aging in polymers and polymer nanocomposites:

recent results and open questions. Soft Matter 9, 8619–8630 (2013)

• Cohen, M.H., Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959)

• Doolittle, A.K.: Studies in newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Phys. 22, 1471–1475 (1951)

• Greiner, R., Schwarzl, F.R.: Thermal contraction and volume relaxation of amorphous polymers. Rheol. Acta 23, 378–395 (1984)

• Kari, L.: On the waveguide modelling of dynamic stiffness of cylindrical vibraitnoso iltaors. Part I: The model, solution and experimental comparison. J. Sound. Vib. 244, 211–233 (2001a)

• Kari, L.: On the waveguide modelling of dynamic stiffness of cylindrical vibration isolators. Part I: The dispersion relation solution, convergence analysis and comparison with simple models. J. Sound. Vib. 244, 235–257 (2001b)

• Kari, L.: Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: Constitutive equations. Continuum Mech. Thermodyn. Submitted (2016a)

• Kari, L.: Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 2: Waveguide solution. Continuum Mech. Thermodyn. Submitted (2016b)

• Kari, L., Eriksson, P., Stenberg, B.: Dynamic stiffness of natural rubber cylinders in the audible frequency range using wave guides. Kaut. Gummi Kunstst. 54, 106–111 (2001)

• Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci., Part B: Polym Phys 17, 1097–1162 (1979)

• Odegard, G.M., Bandyopadhyay, A.: Physical aging of epoxy polymers and their composites. J. Polym. Sci., Part B: Polym Phys 49, 1695–1716 (2011)

• Östberg, M., Kari, L.: Transverse, tilting and cross-coupling stiffness of cylindrical rubber isolators in

• the audible frequency range—the wave-guide solution. J. Sound. Vib. 330, 3222–3244 (2011)