Dynamic Analysis Using FEM

Embed Size (px)

Citation preview

  • 8/19/2019 Dynamic Analysis Using FEM

    1/47

     ANALYSIS USING FEMANALYSIS USING FEM

     iman asu

  • 8/19/2019 Dynamic Analysis Using FEM

    2/47

    Text Book “D namics of Structures” b

    Prof A K Chopra Text Book “D namics of Structures” b

    Prof J L Humar

      “

    Analysis” by T Y Yang

     taken from the course materials prepared

    ,

  • 8/19/2019 Dynamic Analysis Using FEM

    3/47

    REVIEW OF DYNAMICS AND

    SEISMIC EXCITATION

  • 8/19/2019 Dynamic Analysis Using FEM

    4/47

    Single Degree of Freedom (SDOF) System• One variable is required to describe the deformation• For example: Mass-Spring-Dashpot System

    Newton’s Law of Motion• Resultant force

    • Resultant Force  t ,

    Force offered by spring,

    Force resisted by dashpot,

    kx

    cx

  • 8/19/2019 Dynamic Analysis Using FEM

    5/47

    Equation of Motion

    • Second order, Non-homogeneous, Ordinary

    ( )mx cx kx f t  + + =

     •

    Initial Conditions:

    Provided system parameters satisfy

    certain condition

  • 8/19/2019 Dynamic Analysis Using FEM

    6/47

    Multi-De rees of Freedom

    5-Storied Building with

    • Columns axially inextensible

     

    • Beams are rigid

    5 independent displacements are

    required to specify the lateral

    deformation profile

    5 DOFs, one at each floor 

    5 (linearly) independent

    Mode-1 Mode-2 Mode-3  Mode-4 Mode-5

    12345

    12345

    12345

    0

    1

    2

    3

    4

    01234

    0 0.25 0.5 0.75 1  -1.5 -1 -0.5 0 0.5 1   -1.5 -1 -0.5 0 0.5 1   -2-1.5-1 -0.5 0 0.5 1  -4 -3 -2 -1 0 1 2 3

    Any instantaneous deformation profile is a linear combination of theseshapes

  • 8/19/2019 Dynamic Analysis Using FEM

    7/47

     

     with a mass- spring-dashpot

    assembly

    • Floor mass contributes to the

    mass

    • Columns contribute to the

    spring stiffness

    • Dashpot accounts for theinherent damping

      e equ va ence o an gures — pr ngs

    and dashpots are acting laterally

  • 8/19/2019 Dynamic Analysis Using FEM

    8/47

     Dynamic Equilibrium of MDOF

    [ ]{ } [ ]{ } [ ]{ } { }u C u K u P  + + = System

    [ ]

    [ ]

    [ ]

    Mass Matrix (Diagonal here)

    Damping Matrix (Tri-diagonal here)

    Stiffness Matrix (Tri-diagonal here)

     M 

     K 

    =

    =

    =

    { }   Excitation Vector  P   =

    [M] (and [C]) has the similar

    Force EquilibriumApplied Force=Resistive Force

     i

     

  • 8/19/2019 Dynamic Analysis Using FEM

    9/47

    Under Seismic Excitation

    Spatially Uniform

    Ground Motion

    [ ]{ } [ ]{ } [ ]{ } { }

    { } [ ]{ }   g 

    u C u K u P  

     P M u

    + + =

    = −

  • 8/19/2019 Dynamic Analysis Using FEM

    10/47

     0.1

    0.2

      a   t   i  o  n   (  g   )

    0 10 20 30 40Time sec

    -0.2

    -0.1   A  c  c  e   l  e

    0

    0.1

    .

      c  e   l  e  r

      a   t   i  o  n   (  g   )

    NS

    0 10 20 30 40Time (sec)

    -0.2

    - .   A

    0.2

    -0.1

    0

    0.1

      c  c  e   l  e  r  a   t   i  o  n   (  g   )

    Vertical

    0 10 20 30 40

    Time (sec)

    -0.2

  • 8/19/2019 Dynamic Analysis Using FEM

    11/47

    ( ) ( ) g mx cx kx f t mu t  + + = = − Response Spectrum

    ( )22

    ( , )

    n n g 

    n

     x x x u t 

    S MaxR T 

    ξω ω

    ξ

    + + = −

    =

    0.4

    .

       l  e  r  a   t   i  o  n

       (  g   )

    0.2

      p  e  c   t  r  a   l

      a  c  c

    0 2 4 6Period (sec)

    0

    0.4

    .

       l  e  r  a   t   i  o  n

       (  g   )

    0.2

      p  e  c   t  r  a   l  a  c  c

      e

    Vertical

    0 2 4 6Period (sec)

    0

  • 8/19/2019 Dynamic Analysis Using FEM

    12/47

    REVIEW OF ANALYTICAL MECHANICS

  • 8/19/2019 Dynamic Analysis Using FEM

    13/47

    Generalized Coordinate andGeneralized Coordinate and

    Constraint EquationsConstraint Equations

    1 2, ,...i i N 

    ii j

     y f q q

     yq s 

    =

    ∂= ∑

     j   j=

    Virtual Displacement

    1 1 1

     M M N i

    i i i j

    i i j   j

     y F y F q

    = = =

    ∂=

    ∂∑ ∑ ∑

     Work done = ZERO

    1 1 1

    Generalized Force

     N M N i

    i j j j

     j i j j

     y F q Q q

    = = =

    ⎛ ⎞∂   ⎟⎜   ⎟= =⎜   ⎟⎜   ⎟⎜   ∂⎝ ⎠∑ ∑ ∑

    1

     Equilibrium M 

    i j i

    i   j

     yQ F zero for  

    q=

    ∂= =

    ∂∑

  • 8/19/2019 Dynamic Analysis Using FEM

    14/47

     L

     y q q j

    ⎛ ⎞⎟⎜= −   ⎟⎜

    2 1 22

     L y q a q j

    ⎝ ⎠⎛ ⎞⎡ ⎤ ⎟⎜= − −⎢ ⎥   ⎟⎜   ⎟⎜   ⎢ ⎥⎝ ⎠⎣ ⎦

    Relation between Generalized and

    Constraint Coordinate3 1

    4 1 22

     L y q q j⎛ ⎞⎟⎜= +   ⎟⎜   ⎟⎜⎝ ⎠⎡ ⎤

     

    ( )

    1 2 1 21

    2

    1 2

    2

    22

    mg q

     L P aq L

    k k 

    −⎪ ⎪+ − − ⎪ ⎪⎧ ⎫⎪ ⎪⎢ ⎥   ⎪ ⎪⎪ ⎪ =   ⎛ ⎞⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎟⎜⎪ ⎪ ⎪ ⎪−⎢ ⎥   ⎟⎜⎪ ⎪⎩ ⎭   ⎪ ⎪⎟⎜− −   ⎝ ⎠⎪ ⎪⎢ ⎥   ⎩ ⎭⎣ ⎦

    qu r um quat on

    obtained by equating

    generalized forces to zero

    Constraint Equations

    ( )( )

    1 1 2

    2 1 2

    , ,..., 0, ,..., 0

     g y y t  g y y t 

    ==

    Holonomic constraints

  • 8/19/2019 Dynamic Analysis Using FEM

    15/47

    Exam le of Constraint in Buildin Anal sis

    3 Dofs Per Floor Level

  • 8/19/2019 Dynamic Analysis Using FEM

    16/47

    ’’In Generalized Coordinate

    ( )1 2 1 2, ,...., , ,....T T q q q q=   Kinetic Energy

     1 2, ,.... o en a nergy

    Lagrange’s Equation

    0 j j j j

    d T T V  Q

    dt q q q

    ⎛ ⎞∂ ∂ ∂⎟⎜   ⎟− + − =⎜   ⎟⎜   ⎟⎜∂ ∂ ∂⎝ ⎠

     jQ   = Those forces that cannot be derived from a scalarfunction, e.g., damping force, externally applied forces

    etc.

  • 8/19/2019 Dynamic Analysis Using FEM

    17/47

    STATIC ANALYSIS TO DYNAMIC

    ANALYSIS

  • 8/19/2019 Dynamic Analysis Using FEM

    18/47

     Potential Energy = Strain EnergyV U  =

    22

    2

    02

     L

     EI v dx x

    ⎛ ⎞∂   ⎟⎜   ⎟⎜   ⎟⎜   ⎟⎜∂⎝ ⎠∫ 

    2 L

    mass density

    = area

      =0

    Kinetic Energy2

    T v x dx= ⎣ ⎦

    0 jd T T V  

    Qdt 

    ⎛ ⎞∂ ∂ ∂⎟⎜   ⎟− + − =⎜   ⎟⎜   ⎟⎜∂ ∂ ∂ Lagrange Equation

    ( ) ( )2 2

    1   2 2

    1 1 1 10 0

    22

     L Ld T V d A v v

    Y v x v x dx EI dxdt v v dt v x v x

     ρ    ⎛ ⎞⎛ ⎞   ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎟⎜⎟   ⎟ ⎟⎜   ⎜ ⎜⎟⎜   ⎡ ⎤ ⎡ ⎤ ⎟⎟ ⎜   ⎟ ⎟= + = +⎜   ⎟   ⎜ ⎜⎟⎜⎟   ⎟ ⎟⎜⎟ ⎣ ⎦ ⎣ ⎦⎜   ⎜ ⎜⎟⎜   ⎟ ⎟⎟   ⎜ ⎜⎜   ⎝ ⎠⎜   ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠   ⎝ ⎠∫ ∫ 

    11 1 12 1 13 2 14 2 11 1 12 1 13 2 14 2m v m m v m K v K K v K  θ θ θ θ  = + + + + + + +

    ( ) ( )'' ''

    0

     L

    ij i j K EI f x f x dx⎡ ⎤=   ⎢ ⎥⎣ ⎦∫ 

    ( ) ( )0

     L

    ij i jm A f x f x dx ρ   ⎡ ⎤=   ⎢ ⎥⎣ ⎦∫ 

  • 8/19/2019 Dynamic Analysis Using FEM

    19/47

    2 2

    1 1

    2 2

    12 6 12 6

    156 22 54 13 6 64 2

     L L L LY v L L

    ⎡⎢   −

    ⎧ ⎫ ⎧ ⎫⎡ ⎤−⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪   −⎪ ⎪ ⎪ ⎪1v

    ⎤⎥⎢ ⎥

    ⎢ ⎥⎧ ⎫⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪1 1

    2 2

    2 22 2

    2 2

    54 13 156 22 12 6 12 6420

    13 3 22 4

    6 62 4

    Y v L L   L

     L L L L M    L L L L   θ 

    −⎪ ⎪ ⎪ ⎪⎢ ⎥= +⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪⎢ ⎥   − − −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪− − −⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭−

    1

    2

    2

    v

    θ 

    ⎪ ⎪⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪⎩ ⎭⎢ ⎥⎢ ⎥

     L L⎣   ⎦

    Consistent Mass Matrix

    • Damping Terms can be added separately

    • Element Equilibrium Equations can be assembled to form

    Global structural e uilibrium

  • 8/19/2019 Dynamic Analysis Using FEM

    20/47

    USE of FEM in DYNAMIC ANALYSIS

  • 8/19/2019 Dynamic Analysis Using FEM

    21/47

      Divide the continuum into a finite number of sub-

    re ions elements  of sim le eometr

    Select key points on the elements to serve as nodes,where conditions of equilibrium and compatibility are tobe enforced.

      -   -relationships within a typical element

    Determine stiffnesses and equivalent nodal loads for a

    typical element using work or energy principles

    dx dy  dz

    Develop equilibrium equations for the node ofdiscretized continuum in terms of the elementcontributions

     

    { }u⎡ ⎤⎣ ⎦ { }u

     

    displacements Calculate stresses at selected points within the elements

    Determine support reactions at restrained nodes ifes re

  • 8/19/2019 Dynamic Analysis Using FEM

    22/47

    Overview of FEM for DynamicOverview of FEM for Dynamic

    LoadsLoads Divide the continuum into a finite number of sub-regions of

    Select key points on the elements to serve as nodes, whereconditions of equilibrium and compatibility are to be enforced.

      - -

    a typical element

    Determine stiffness, mass, damping and equivalent nodal

    dynamic loads for a typical element using work or energyprinciples

    Develop dynamic equilibrium equations for the node of

    discretized continuum in terms of the element contribution

     

    dx  y 

    o ve t ese equi i rium equations or t e no a isp acements Calculate stresses at selected points within the elements

    Determine support reactions at restrained nodes if desired

    { }dV u ρ   

    { }cdV u   { }u

  • 8/19/2019 Dynamic Analysis Using FEM

    23/47

     Displacement formulation

    ( , , , ) f f u u x y z t  =

    Displacement field is function of timedx dy  dz

    Nodal displacements are functions of time

    u u t =

    The spatial interpolation is unchanged

    { }   [ ]{ }( , , , ) ( , , ) ( ) f u x y z t N x y z u t  = 

  • 8/19/2019 Dynamic Analysis Using FEM

    24/47

     { } ρdV u

    cdV u

    dx dy  dz For general volumetric loads

    Infinitesimal element in 3D( ). .

    e n l 

     N cu u dV  ρ = − −∫  

     • e spa a n erpo a on

    { } ( ) ( ){ }, ,u N x y z u t  ⎡ ⎤= ⎣ ⎦

    . .

    . .

    T T 

    e n l 

    V V 

    e n l 

     f cN NdVu N NdVu

     f cu mu

     ρ = − −

    = − −

    ∫ ∫

    { } ( ) ( ){ }, ,

    , ,

    u N x y z u t  

    u N x z u t  

    ⎡ ⎤= ⎣ ⎦

    ⎡ ⎤=

    Apply D’Alembert’s principle

    ku t = +. .

    ( )mu cu ku p t  + + =

     

  • 8/19/2019 Dynamic Analysis Using FEM

    25/47

     Equation of motion for system is ( )mu cu ku p t  + + =

     

    dy dzp(t)

    Special case is seismic load in 3-Dimension

    + + = − − − mu cu ku m u m u m u

    Resultant force vector

    = − − − x xg y yg z zg  p m u m u m udx

    dy dz

    ig u

    is the ground acceleration in direction i and mi  is a column matrix which

    represents the sum of all columns in the mass matrix m associated with

    ig u

     

    This definition is valid only if the vector is defined as the displacement relative to

    the displacement at the base of the structure

  • 8/19/2019 Dynamic Analysis Using FEM

    26/47

    Overview of Dynamic Problems andOverview of Dynamic Problems and

    Analysis TypesAnalysis TypesProblems Analysis

    Rigid body vs elasticmotion

     

    Real eigen valueanalysis

     

    Eigen value

     vibration

    Loadin t e

    analysis

    Fre uenc res onseo Harmonic

    o Periodic

    Transient response

    Random response

    Response

    o ransiento Stationary random

    o random

  • 8/19/2019 Dynamic Analysis Using FEM

    27/47

     

    Infinite degree of freedom Equation of motion is PDE

     x

    Finite Element Model

    Continuous mass is discretized

    u x,

    ODE   x1

     

    Finite degree of freedom

    Assumed displacement field

     

    u(x1 ,t)ODE

    qua on o mo on s

    Discretization of mass can be done

    usin two formulations

     x3

    u(x1 ,t)

     x1   x2

    Consistent Mass

    Lumped Mass

    u(x3 ,t) ,

  • 8/19/2019 Dynamic Analysis Using FEM

    28/47

     General approach for element mass matrix

    V m N NdV   ρ = ∫

     Alternativel

    1 1T 

    m h g gdVh ρ − −= ∫     where = geometric matrix

     g 

     f u gc

    u hc

    =

    =

    1c h u−=

      1 f u gh u−=

    = un erm ne cons an s

    = displacement field 

    =

     f u

    u

    1 N gh−=

     

    = shape function N 

    For different types of elements, geometric matrix is different andhence equivalent mass matrix is also different

  • 8/19/2019 Dynamic Analysis Using FEM

    29/47

    For 1D flexure beam element, considering thetranslational inertia only

    1 1T m h g gdVh ρ − −= ∫   V 

    2 31 g x x x⎡ ⎤= ⎣ ⎦

      2 3 41 1 1

    2 3 4 L L L L

    ⎡ ⎤⎢ ⎥⎢ ⎥   3 0 0 0 L⎡ ⎤

    2 3 4

    2 3 5 6

     x x x

     x x x x g g 

     x x x x

    ⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥

    2 3 4 5

    3 4 5 60

    2 3 4 5

    1 1 1 1

    3 4 5 6

     L

     L L L L

     g gdx

     L L L L

    ⎢ ⎥⎢ ⎥

    = ⎢ ⎥⎢ ⎥

    ⎢ ⎥

    3

    1

    3   2 2

    0 0 01

    3 2 3

     Lh

     L   L L L L

    ⎢ ⎥⎢ ⎥=⎢ ⎥− −

    ⎢ ⎥−

     x x x x   4 5 6 71 1 1 1

    4 5 6 7 L L L L⎢ ⎥

    ⎣ ⎦

    Consistent Element Mass Matrix

    Beam

    2 222 4 13 3

    54 13 156 22420

     L L L L ALm

     L L

     ρ    ⎢ ⎥−⎢ ⎥=⎢ ⎥−

    2 213 3 22 4 L L L L− − −⎣ ⎦

  • 8/19/2019 Dynamic Analysis Using FEM

    30/47

    For 1D flexure beam element, considerin the rotationalinertia only

    where1 1T m h g g dVh ρ − −=  2

    ,   0 1 2 3 x g x x⎡ ⎤=, ,V   

    0 0 0 0⎡ ⎤   2 30 0 0 0⎡ ⎤

    ⎢ ⎥2

    , ,   2 3

    2 3 4

    0 1 2 3

    0 2 4 6

    0 3 6 9

     x x

     x x g g 

     x x x

     x x x

    ⎢ ⎥=⎢ ⎥

    ⎢ ⎥

    2 3 4, ,

    0

    4 30

    3 2

    3 9

     L

     x x g g dx   L L L⎢ ⎥= ⎢ ⎥

    ⎢ ⎥

    2 5⎢ ⎥⎣ ⎦

    Rotational Mass 36 3 36 3 L L−⎡ ⎤

    Beam

    Matrix forBeam Element

    2 2

    2 2

    3 4 336 3 36 330

    r  L L L I m L L L

     ρ    −⎢ ⎥=⎢ ⎥− − −⎢ ⎥

    Element− − −

  • 8/19/2019 Dynamic Analysis Using FEM

    31/47

     1 3 5

    6Two beam elements with three

    1 2 3

     

    Assembly of stiffness matrix

    [ ]

    2 2

    2 2 2 23

    12 6 12 6 0 0

    6 4 6 2 0 0

    12 6 12 12 6 6 12 6

    6 2 6 6 4 4 6 2

     L L

     L L L L

     L L L L EI  K 

     L L L L L L L L L

    −⎡ ⎤⎢ ⎥−⎢ ⎥⎢ ⎥− − + − + −

    =   ⎢ ⎥

    − + + −⎢ ⎥

    123

    4

    Similarly, Assembly of Mass (consistent) matrix

    2 20 0 6 2 6 4 L L L L

    − − −⎢ ⎥

    −⎣ ⎦56

    1 2 3 4 5 6

    2 2

    156 22 54 13 0 0

    22 4 13 3 0 0

    54 13 156 156 22 22 22 13

     L L

     L L L L

     L L L L L AL ρ 

    −⎡ ⎤⎢ ⎥−⎢ ⎥⎢ ⎥+ − + − −

    =   ⎢ ⎥32

    1

    2 2

    0 0 54 13 156 22

    0 0 13 3 22 4

     L L

     L L L L

    − − − + + − −⎢ ⎥⎢ ⎥−⎢ ⎥

    − − −⎣ ⎦5 6431 2

    6

    5

  • 8/19/2019 Dynamic Analysis Using FEM

    32/47

     Exclude rigid body modes (typical for civil engineering problems)

    For example, in two element cantilever beam, Node 3 is restrained nodeso DOFs 5 & 6 can be eliminated1 3 5

    1

    22 2156 22 54 13 L L−⎡ ⎤

    Mass matrix for constrained beam

    1 2 3

    2 4

    3

    4

    1 2 3 4

    2 2

    54 13 312 0420

    13 3 0 8

    m L

     L L L

     ρ    −⎢ ⎥=⎢ ⎥⎢ ⎥− −⎣ ⎦

    Stiffness matrix for constrained beam

    LL

    L1

    3

    2

    1

    2 2

    3

    12 6 12 6

    6 4 6 2

     L L

     L L L L EI k 

    − −⎡ ⎤⎢ ⎥−⎢ ⎥=

    431 2

    42 26 2 0 8 L L L

    − −⎢ ⎥⎣ ⎦

  • 8/19/2019 Dynamic Analysis Using FEM

    33/47

    Reduction of Size for DynamicReduction of Size for Dynamic

    AnalysisAnalysisStiffness (static) reduction

     RR RT R RR RT R R

    TR TT T TR TT T T  

    m m u u

    m m u k k u F  

    =+ =

    ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

     RR R RT T u u+ =  1

     R RR RT T u k k u−= −

    1 2

    23

    4

    Hence, from the second equation

    where

    TT T T  =

    1 2 3

    1 0TT RR TR RR RT  

    k k k k k  ∗ −= − =

  • 8/19/2019 Dynamic Analysis Using FEM

    34/47

    Mass (dynamic) reduction1−

    TT T T  m T mT  =

      RR RT  

    T  I 

    −= ⎢ ⎥⎣ ⎦

     

    3

    1.7143 4.2857

    4.2857 13.714TT 

     EI k 

     L

    ∗   −⎡ ⎤=   ⎢ ⎥−1

    2 2

    2 2

    4 2 6 6

    2 8 6 0 RR RT 

     L L L

    k k    L L L EI ⎡ ⎤−⎢ ⎥

    ⎡ ⎤ ⎢ ⎥=

    2

    4

    1 33

    6 6 12 12

    6 0 12 24

    TR TT  k k    L   L L

     L

    ⎣ ⎦⎢ ⎥− −⎢ ⎥⎣ ⎦

      1

    3

    2   4   1   3

    Similarly, applying mass reduction2 2

    2 2

    4 3 22 13 L L L L⎡ ⎤−⎢ ⎥

    21

    420   22 13 156 54

    13 0 54 312

     RR RT 

    TR TT  m m   L L

     L

    − −

    =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦

    1

    3

    . .

    0.17566 0.89096TT m AL ρ ∗ =   ⎢ ⎥⎣ ⎦

    1 3

    3

    3142

  • 8/19/2019 Dynamic Analysis Using FEM

    35/47

    Vibration of a CantileverVibration of a Cantilever

    Free vibration of a uniform cantilever beam

    L

    4 2

      0u u

     EI AL x t 

     ρ + =∂ ∂

      ( ) ( ),   ni t nu x t x eω 

    φ =

    ( )n   xφ  = characteristic function (nth mode)

    L=1000mm, A=(20x5)mm2

    E = 2.1x105 N/mm 2

    ( )( )

    4

    4

    4  0

    n

    n n

    d x x

    dx

    φ  β φ − =

    4

    n β   2 /n L EI  ρ ω =

    ( )2 4/n nl EI mω β =General solution is = natural re uenc o nth mode

    ( )   1 2 3 4sinh cosh sinh coshn   x c x c x c x c xφ β β β β  = + + +

    A l in BCs and solvin the characteristic e uation natural fre uencies of

    ω1

      ω2

      ω3

     

    beam can be obtained

    12

    43.156

      EI 

    mL

    ⎛ ⎞⎜ ⎟

    ⎝ ⎠

    12

    422.03

      EI 

    mL

    ⎛ ⎞⎜ ⎟

    ⎝ ⎠

    2

    461.70

      EI 

    mL

    ⎛ ⎞⎜ ⎟⎝ ⎠

  • 8/19/2019 Dynamic Analysis Using FEM

    36/47

    Equation of motion for undamped system is

      ∗  ∗

    ( ) cosu t t φ ω =

    =

      2 0k mω φ ⎡ ⎤− =⎣ ⎦  

     TT 

      TT 

    2 21,11 11 12 12

    2 2

    0ii ik m k m   φ ω ω ⎡ ⎤ ⎡ ⎤− −   ⎡ ⎤=⎢ ⎥ ⎢ ⎥   ⎢ ⎥− −  ,21 21 22 22   ii i   ,

    Solving above equation and substituting L = L1/2

    1   2

    1

    3.5222

    1

     L A

     EI 

    ω  ρ 

    =

    1.0000 1.0000⎡ ⎤2   2

    1

    .

     L A ρ   1 2

    0.3395 0.6991−⎣ ⎦

  • 8/19/2019 Dynamic Analysis Using FEM

    37/47

      Simpler model for inertia properties for

    (1) (2) 

    Various approaches Tributary masses are lumped at the nodes of

    L

    m

    LL1m2

    1

     

    Lumped mass matrix m( 1)/2

    m( 2)/2

    1

    2

    0 ... 0 ... 0

    0 ... 0 ... 0

    ... ... ... ... ... ...

    m

    m⎢ ⎥⎢ ⎥⎢ ⎥

    ( )( ) ( 1)1

    2i i im m m += +

    0 0 ... ... 0

    ... ... ... ... ... ...

    im m= ⎢ ⎥⎢ ⎥⎢ ⎥

    where nn = number of nodes

    mi = tributary masses lumped at node i 

    0 0 ... 0 ...nn

    m⎢ ⎥⎣ ⎦

  • 8/19/2019 Dynamic Analysis Using FEM

    38/47

    Using the same and Lumped Mass Matrix (LMM)

    different set of ω and Ф are obtainedTT k ∗

      LTT m

      ∗

    mm2

    1 0.5 00 1.0

    TT m AL ρ ∗   ⎡ ⎤=   ⎢ ⎥

    1

    3

    2 21,11 11 12 12  0ii ik m k m   φ ω ω ⎡ ⎤ ⎡ ⎤− −   ⎡ ⎤

    =⎢ ⎥ i = 1 2

    L11 3

    2,21 21 22 22   ii im mω ω − − 

    Solving above equation and substituting L = L1/2

    1   2

    1

    13.156   EI  L A

    ω  ρ 

    =

    1.0000 1.0000⎡ ⎤

    2   2

    1

    16.2584 A

    ω  ρ 

    =   1 2 0.3273 1.5272= =

    −⎣ ⎦

  • 8/19/2019 Dynamic Analysis Using FEM

    39/47

     Lumped Mass MatrixConsistent Mass Matrix

    1   21

    1

    3.156

      I 

     Aω   ρ =1   21

    1

    3.5222

      EI 

     Aω   ρ =

    2   2

    1

    16.2584 A

    ω  ρ 

    =

    1 2

    1.0000 1.0000⎡ ⎤Φ = Φ Φ =

    2   2

    1

    22.28 A

    ω  ρ 

    =

    1 2

    1.0000 1.0000⎡ ⎤Φ = Φ Φ = . .−. .−

    (0.327)LM

    (0.339)CM

     

    ω1

      ω2

    (-1.53)LM

    (1.0)CM,LM

    12 EI 

    12 EI 

     

    (-0.699)LM (1.0)CM,LM

    4.

    mL⎝ ⎠  4

    .mL⎝ ⎠

  • 8/19/2019 Dynamic Analysis Using FEM

    40/47

     

    Lumped mass matrix (LPM)

    L

    L=1000mm,

     A=(20x5)mm2

    • More number of elements – 

    better solution

    E = 2.1x10^5 N/mm2

    Consistent mass matrix (CMM)• LPM -lower bound solution,

    CMM - upper bound solution

    • For same number of element

    CMM shows better results

  • 8/19/2019 Dynamic Analysis Using FEM

    41/47

     Proportionally Damped System

    Equation of motion can be dynamically uncoupled by the eigenvectors of the

    undamped system

    0+ + = mu c u ku

    α β = +  P c m k 

    Rayleigh Damping

    c = αm+βkζr

    2 i jω ω α ζ =

      2 β ζ =

     =

    c = βk

    i j   i j

    ζ = damping ratio

    ω ω  = natural re uenc o i  th and th mode Transform to normal coordinates

    ωr

    [ ]   2T  P P r r r C c M φ φ ζ ω  = =

     

  • 8/19/2019 Dynamic Analysis Using FEM

    42/47

     u C u K u P  + + =

    Governing Equation

    { } [ ]{ }   g  P M u= −  

  • 8/19/2019 Dynamic Analysis Using FEM

    43/47

     

  • 8/19/2019 Dynamic Analysis Using FEM

    44/47

     

    0.15

    0.2

    -0.05

    0

    0.05

    0.1

    0 5 10 15 20 25 30 35 40  e   l  e  r  a   t   i  o  n

       (  g   )

    -0.2

    -0.15

    -0.1   A  c

    Time (sec)

    Ground Motion Along Y-direction

  • 8/19/2019 Dynamic Analysis Using FEM

    45/47

     

    In KN

  • 8/19/2019 Dynamic Analysis Using FEM

    46/47

     

    In mm

  • 8/19/2019 Dynamic Analysis Using FEM

    47/47

    THANK YOUTHANK YOU