Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

  • Upload
    lomewcx

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    1/43

    Rotons in Bose-Einstein Condensates:

    Duncan ODell University of Sussex, England

    Stefano Giovanazzi University of St Andrews, Scotland

    Gershon Kurizki Weizmann Institute, Israel

    Engineering the correlations of a QuantumGas Using Light

    Tohelp protectyour privacy, PowerPointprevented thisexternalpicture frombeing automatically downloaded.To download anddisplay thispicture,click OptionsintheMessageBar,and then click Enableexternalcontent.

    laser

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    2/43

    Rotons in a BEC: plan of the talk1. Introduction to BEC: 1st order coherence

    2. The current paradigm (dogma?) for BEC: short-range interactions

    3. Laser-induced dipole-dipole interactions4. Electrostriction of a BEC by dipole-dipole forces

    5. Superfluid helium: rotons

    6. Rotons in a gaseous BEC: a quantum gas vs. a

    quantum fluid7. Squeezing

    8. Conclusions

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    3/43

    1. Introduction to BEC:1st order coherence

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    4/43

    Tohelp protectyour privacy, PowerPointprevented thisexternalpicturefrom being automatically downloaded.Todownload and display thispicture, click Optionsin theMessageBar, and then click Enableexternalcontent.

    BEC is a phase transition:

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    5/43

    1st order coherence: ','',G1 rrrrrr V!==!

    Field operator: rarar ii

    iJJ {

    !=0

    00

    Macroscopic

    occupation of

    ground state:000

    Naa }} (C-number)

    Single particle

    density matrix

    NN }0

    rNrr 000 )( J!=p= Condensate wavefunction/orderparameter

    '',0

    *

    00

    1 rrNrrG JJ!

    GIANT MACROSCOPIC MATTER-WAVE

    BEC is a phase transition of the

    first order correlation function:

    Off-diagonal long-range order

    (O. Penrose & L. Onsager 1956)

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    6/43

    and when two BECs overlap

    Double BEC

    (centre images)

    M.R. Andrews et al,

    Science 275, 637 (1997)

    After expansion and

    overlap matter wave

    interference!

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    7/43

    Wolfgang Ketterle

    MIT, January 1997

    Interference

    1+1 = 0

    and1+1 = 4

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    8/43

    2nd order coherence:

    rrrrrr ====! ''',G2

    2nd order correlation = particle-particle correlation

    = density-density correlation=entanglement

    ??

    Answer: for a conventional BEC 2nd order coherence isgenerally very poor

    Reason: very short range interactions

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    9/43

    2. The current paradigm:short-range interactions

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    10/43

    Low energy scattering between atoms with short range interactions

    rkf

    kririk

    scate),(e~ U]

    For any FINITE range potential:

    UHU H cossine12

    ),( li

    0

    ll

    l

    Pk

    lkf

    g

    !

    !

    Low energy limit :ka

    k ll

    !

    ! {

    0

    12

    0

    H

    H0pk akf p@ ),( U

    Scattering length a gives the range of the potential

    4T

    kr

    kRkrsincf. hard-sphere scattering:

    kR!0

    H

    R=a

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    11/43

    S-wave scattering at low temperatures is a universalfeature

    offinite ranged potentials

    van der Waals potential falls off as 1/r6

    Alkalis typically have a~nm

    interatomic separation in a BEC l~db~100nm

    Atomic BECs are very dilute, nearly ideal, quantum GASES

    Pseudo-potential approximation: )'(4

    )'(2

    rr

    g

    m

    arrV ! H

    T

    J

    ! )'()'()('][ 21 rrrVrdrdrE VVV

    )()(4

    )(2

    )(2

    22

    2

    rrNm

    ar

    mr ]]

    T]Q]

    JJ! Gross-Pitaevskii eqn.

    Interaction energy functional

    CURRENT PARADIGM FOR INTERACTIONS IN A BEC:

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    12/43

    Current paradigm continued: Excitation spectrum

    Theory (N.N. Bogoliubov 1947) Experiment (J. Steinhauer, R. Ozeri,

    N. Katz and N. Davidson, PRL 88,

    120407 (2002))

    JJ

    J

    J

    Q

    [

    [

    Q

    QVT

    [

    !

    !

    !!

    !!

    !

    m

    p

    p

    p

    pck

    p

    mm

    ac

    cpm

    pp

    2)(

    :largeFor

    (phonons))(

    :smallFor

    energyfield-mean

    potentialchemical

    4where

    2)(

    2

    s

    2

    2

    s

    2

    s

    2

    2

    2

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    13/43

    General comments concerning correlations in systems with

    short-range vs long-range interactions

    Dilute system:1/3-n:spacingcleinterparti-mean

    :lengthscattering a

    Long-range interaction(Coulombic) :

    1/3-

    22

    0

    n:spacingcleinterparti-mean

    /4:radiusBohr meaB

    JTI!

    Correlations propagated by particles:e.g. density wave (phonons).

    Interaction plays minor role.

    G(r-r)

    Correlations propagated by

    interaction:

    Particle motion plays minor role.

    V(r-r)

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    14/43

    3. Laser-induced dipole-dipole

    interactions

    j

    jj

    ij

    ii

    d

    rErrGErE0

    dd

    ret0 )()()( IE! {

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    15/43

    Dipole-dipole interaction is a 4th order QED process:

    forward scattering of a laser photon by an atom pair.

    Energy shift of pair: E

    I2

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    16/43

    5S1/2

    5P3/2

    F

    2

    1

    5D5/2

    MF

    1234

    0 1 2 3 4-4 -3 -2 -1

    3

    2

    1

    0

    5P1/2

    1

    2

    377.11 THz (D1)

    384.23 THz (D2)

    Rubidium 87, I=3/2

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    17/43

    ? AqrrqrrqrqrqrrrrV

    qVeec

    IU

    jiijjiijji

    jijidd

    cossincos3

    1

    cos,4

    22

    3

    2

    0

    2

    !

    !

    HH

    IT

    Erqrr

    E(q) = dynamical polarizability of atoms

    I = laser field intensity

    q = laser field wave vector

    e = laser field polarization

    Vij = retarded dipole-dipole interaction tensor

    ray+J4

    3 rate of single atom spontaneousRayleigh scattering

    Craig & Thirunamachandran,Molecular Quantum

    Electrodynamics (Academic Press, London, 1984)

    Treat atom-field interaction

    classically (a very large

    detuning from all atomic

    resonance and very small

    saturation parameter) whilstmaintaining quantum nature

    of the external atomic state.

    Fully retarded (laser-induced) dipole-dipole interaction

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    18/43

    Insert Udd into mean-field equationfor atomic order parameter (r,t)

    *=!x

    =xH

    H totH

    tiJ

    kinetic energy (negligible in the Thomas-Fermi limit)

    22 ,2/ trdrmHkin =!

    J

    external potentialenergy (harmonic trap)

    2/;, 222

    rmVtrVdrH rhohoho [!=! dipo

    le-dipo

    lein

    ter

    actio

    nene

    rgy

    22

    ,'','2/1 trrrUtrdrdrH dddd ==! s-wavescattering 42 ,/2 trdrmaH

    s=! JT

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    19/43

    *=!

    x=x

    H

    H totH

    tiJ

    ')'()'()(

    )()(4

    )()(2

    )(

    32dd

    22

    trap2

    2

    rdrrrUrN

    rrNm

    a

    rVrm

    r

    !

    ]]

    ]]T

    ]]Q]

    J

    J

    Generalised Gross-Pitaevskii Equation

    (mean-field equation for the condensate)

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    20/43

    4. Electrostriction and self-binding of aBEC by dipole-dipole forces

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    21/43

    Single off-resonant linearly polarized laser

    Gaussian ansatz for the

    condensate wave function

    Light polarization along z axis: Rayleigh

    scattering forbidden in z direction.

    `Superradiant collective Rayleigh

    scattering and hence collective atomic

    recoil suppressed.

    Dipolar interaction causes a

    compression of the condensatealong the z axis, and can cause

    its self-trapping in the z direction

    compression

    self-trapping

    A harmonically trapped cigar-shaped BEC is

    tightly confined in the radial plane (the radial

    size is equal or less than a wavelength)

    x(

    z(

    ? AkrrkkrkrrV

    kyVc

    IrU

    zz

    zz

    cossinsinkrcoscos311

    cos),(4

    )(

    22223

    2

    0

    2

    UU

    IT

    E

    !

    ! rk

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    22/43

    ')'()'()()()(4

    )()(2)(32

    dd

    22

    trap2

    2

    rdrrrUrNrrNm

    arVrmr ! ]]]]

    T]]Q]

    JJ

    Parameter determining ratio

    of dipole-dipole interaction

    to s-wave scattering

    (dimensionless intensity):

    Generalized Gross-Pitaevskii eqn.

    Collapse forI> 3/2 due to

    instability caused by static r-3part

    of dipole-dipole interactionac

    mI

    22

    0

    2

    8

    I

    JTI

    E!

    Single off-resonant linearly polarized laser

    Gaussian ansatz for the

    condensate wave function

    compression

    self-trapping

    A harmonically trapped cigar-shaped BEC is

    tightly confined in the radial plane (the radial

    size is equal or less than a wavelength)

    x(

    z(

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    23/43

    Radial dependence of the

    angularly averaged laser-

    induced potential

    r

    u

    rV !)(

    More laser beams: Electromagnetically induced `gravity(at least 3 orthogonal beams) to force an angular average in the NEAR ZONE

    r

    u

    Self-gravity

    Bose star

    White dwarfam

    c

    II 2

    2

    0

    2

    0 7

    48

    E

    IT J

    !"

    m

    nu

    p

    T[

    42 !

    D. OD, S. Giovanazzi,

    G. Kurizki and V. Akulin

    PRL 84, 5687 (2000)

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    24/43

    5. Superfluid helium: rotons

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    25/43

    Crucially, the range of the

    interaction in helium is

    approximately the same as

    interatomic separation.

    Superfluid helium:

    a quantum fluid .

    Tohelp protect your privacy,PowerPointprevented thisexternal picturefrom being automatically downloaded.To download and display thispicture,click Optionsin theMessageBar, and then click Enableexternalcontent.

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    26/43

    The static structure factorS(q)

    BEC

    Scattering of light or a massive

    particle (neutron)

    NqSM

    EEMr

    r

    mm

    cqm

    cq

    qkkiHfM

    kpkp

    f

    ifif

    fiqf

    f

    ffii

    )(

    )condensateofstatefinalaboutcaret(don'

    )(2

    :rateTransition

    )(ofF.T.where

    E,E,bosonsN

    ,,ParticlestateFinalstateInitial

    22

    2

    2

    i

    22

    int

    2

    fii

    fi

    O

    [HT

    VV

    HJVJO

    JJ

    II

    !

    !

    !

    !!

    !!

    JJ

    JJ

    Scattering experiment

    measures S(q)directly

    (total intensity scattered

    in direction given by q)

    mkqm

    qmk

    qk aaH

    ,,

    in t cc

    ! O

    ii

    2

    i

    1)( JVVJ

    JVJ

    !|

    qq

    f

    qf

    NN

    qS

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    27/43

    The Feynman dispersion relation

    )(2)(

    22

    kmS

    k

    k

    JJ

    ![

    Conventional wisdom:

    no rotons in gaseous BEC

    Tohelp protectyour privacy, PowerPointprevented thisexternalpicturefrom being automatically downloaded.To download and display thispicture,click Optionsin the MessageBar, and then click Enableexternalcontent.

    cf.

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    28/43

    6. Rotons in a gaseous BEC: aquantum gas vs. a quantum fluid

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    29/43

    Setup:

    1. No collective (`superradiant) Rayleigh scattering

    2. Tightly trapped in radial direction (e.g. wr=1.5Laser)

    effectively 1D system (radial excitations frozen out)

    Ioffe-Pritchard trap + light

    polarization-polarized atoms

    Effective 1D interatomic potential

    Assume radial wavefunction is a Gaussian (ground state oftrap) and integrate out radial coordinate.

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    30/43

    Tohelp protectyour privacy, PowerPointprevented thisexternalpicturefrom being automatically downloaded.To download and display thispicture,click Optionsin the MessageBar, and then click Enableexternalcontent.

    1D reduced potential:

    laserlaserrecoil /4),(

    PakEkwU

    zr

    z

    3.0,5.1 !! Iwr

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    31/43

    Static structure function (a measure

    of pair correlation) for various laser

    intensitiestunable correlations!

    Roton minimum in dispersion

    relation due to atom-atom

    correlations induced by the

    dipole-dipole interactions.

    D. OD, S. Giovanazzi and G. Kurizki

    PRL 90

    , 110

    40

    2 (200

    3)

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    32/43

    7. Squeezing

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    33/43

    Bogoliubov ground state contains pairing correlations (depletion)

    -

    -

    -

    -

    -

    !!!!!

    !!!!!

    !!!!!

    !!!!!!

    !!!!!!!

    !!!!!!

    !!!!!!

    !!!!!

    1,1,1,1,4

    0,0,2,2,4

    0,0,1,1,2

    0,0,0,0,0

    2211021

    22110

    2

    1

    22110

    1

    22110B

    kkkkkkk

    kkkkkk

    kkkkkk

    kkkkk

    nnnnNn

    nnnnNn

    nnnnNn

    nnnnNn

    FF

    F

    F

    2

    s

    222s 2)(mc

    mkmckUV

    k

    kk

    JJ !! [Fwhere

    This is perfect two-mode squeezing due to kpairing.

    | kkkkk bVbUc :transf.BogoliubovN.B.

    M M

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    34/43

    ? AU^ iexp)()( krk !Squeezing parameter:

    Two-mode squeezing operator:

    ? A

    s | kkkkk cckcckS

    )()(exp)( *

    ^^^

    ? A ? A ? A TUU^^ p!! ss ,r(k)sinhiexpr(k)cosh)()( kkkkkk ccScSb

    0,)(000

    0B !g!4! {!s

    {kkk

    knnS ^Bogoliubov ground state

    ? A

    1

    1tanh

    2

    0

    22

    0recoil

    !

    !!z

    z

    z

    zzz

    kzkS

    kS

    kk

    kkkEkkr

    z

    [F

    JThen:

    And using 122 !kk

    VU

    )(2

    1)(

    kS

    kSUk

    !

    )(2

    1)(

    kS

    kSVk

    !

    ,

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    35/43

    Squeezing parameter

    ? Azk kz ^F tanh!

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    36/43

    Application: sub-quantum noise atom interferometry

    rnrnn

    NN

    n

    N2211

    1 1

    ;;2

    1

    1

    JJ!

    !=

    Tohelp protectyour privacy, PowerPointprevented thisexternalpicturefrom being automatically downloaded.To download and display thispicture,click Optionsin the MessageBar, and then click Enableexternalcontent.

    1122z2112

    S,, aaaaaaSaaS

    !!!

    2-state system:

    n1=0 n1=N

    N

    1}(N

    N

    1

    !(N

    Uncorrelated:

    Correlated:

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    37/43

    8. Static dipole-dipole interactions

    S i Di l Di l I i

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    38/43

    Magnetic dipole-dipole interaction:

    the magnetic moments of the atoms

    are aligned with a strong magnetic

    field [Goral, Rzazewski, and Pfau, 2000]

    Electrostatic dipole-dipole interaction:

    (i) permanent electric moments (polar

    molecules); (ii) electric moments

    induced by a strong electric fieldE[Yi and You 2000; Santos, Shlyapnikov, Zoller

    and Lewenstein 2000]

    -

    !

    3

    2

    0

    22 cos31

    4)(

    r

    ErU

    dd

    U

    TI

    E

    -

    !

    3

    22

    0cos31

    4)(

    rrUdd

    U

    T

    QQ

    tunability

    +

    -

    +

    -

    +

    -favourable

    un-

    favourable

    long-range +

    anisotropic

    the atomic cloud likes

    to be cigar-shaped

    Static Dipole-Dipole Interactions

    Two current experiments with

    chromium BEC:

    Tilman Pfau at Stuttgart

    John Doyle at Harvard

    EorH

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    39/43

    Controlling dipole-dipole interactions by rapidly

    rotating the external field

    [Giovanazzi, Gorlitz & Pfau PRL 89, 130401 (2002)]

    The sign of the interaction

    can be reversed, or theinteraction can even be

    averaged out completely

    when

    _ a? A

    trapLarmor

    0

    where

    t)sin(t)cos()sin()cos()(

    [[

    NN

    "";""

    ;;! yxzBtB3

    222

    0cos31

    2

    1cos3

    4 rU

    tdd

    .NT

    QQ

    !

    angle'`magicthe7.54 r!N r.

    N

    z

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    40/43

    -

    !

    3

    2

    dddd

    cos31

    4

    )(

    r

    CrU

    U

    T

    long-range:

    short-range: )()(4

    )(2

    rgrm

    arUs HH

    T|!

    J

    gC3

    dddd |I

    collapse1dd "I

    007.0dd !I

    004.0dd !I

    089.0dd !I

    360.0dd !I

    Magnetic dipole-dipole:87Rb

    Na

    52Cr

    50Cr

    Dipole-dipole vs s-wave

    MOLECULES?.dipole moment 1 Debye.

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    41/43

    Coulomb-like interactions in quasi 1-D cigar

    -

    !

    22

    2dd2

    z

    tot

    2

    13121

    2)(

    R

    kRR

    gkU

    z

    zI

    T

    Effective 1-D potential in

    cigar with dipole-dipole

    interactions

    z

    Rr

    r

    /2e

    4

    1

    TF.T. of

    R

    m

    pgn

    m

    pE

    22

    2

    22

    2

    Bog

    !

    Bogoliubov

    dispersion relation

    (s-wave only)

    2

    4

    k

    u

    r

    u T

    m

    nu

    p

    T[

    42 !Coulombinteraction:

    Plasmon gap

    Choose sign ofIddby rotating field

    2

    22

    Bog2

    pm

    pE [

    !

    Trap cutoff2

    1

    k

    1

    12k

    E

    k

    p[

    Reduced phase noise

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    42/43

    `Roton-minimum in quasi 1-D BEC with static

    dipole-dipole interactionsz

    R

    Rotons in a pancake shaped BEC with static dipole-dipole interactions

    Santos, Shlyapnikov, and Lewenstein PRL 90, 250403 (2003)

    See also:

    E[h[trap]

    k [1/R]

    Repulsive dipole-dipole:

    5.4dd !I [J!)0(gn

    Tohelp protectyour privacy, PowerPointprevented thisexternalpicturefrom being automatically downloaded.Todownload and display thispicture, click Optionsin theMessageBar, and then click Enableexternalcontent.

    liquid helium)(2

    )(22

    kmS

    kk

    JJ ![

  • 8/3/2019 Duncan O'Dell et al- Rotons in Bose-Einstein Condensates: Engineering the Correlations of a Quantum Gas Using Light

    43/43

    Conclusions

    Induced dipole-dipole interactions are very

    long-range, which is novel in a BEC

    Easily tunable via laser intensity andpolarisation, spatial configuration of a number

    of lasers etc.

    Introduce long-range (laser wavelength)correlations

    Quantum gas quantum liquid : rotons