28
September 2013 Doc ID 10879 Rev 3 1/28 1 VND830SP-E Double channel high-side driver Features ECOPACK ® : lead free and RoHS compliant Automotive Grade: compliance with AEC guidelines Very low standby current CMOS compatible input On-state open-load detection Off-state open-load detection Thermal shutdown protection and diagnosis Undervoltage shutdown Overvoltage clamp Output stuck to V CC detection Load current limitation Reverse battery protection Electrostatic discharge protection Description The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any kind of load with one side connected to ground. Active V CC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open-load condition both is on-state and off-state. Output shorted to V CC is detected in the off-state. Device automatically turns-off in case of ground pin disconnection. Type R DS(on) I OUT V CC VND830SP-E 60 mΩ (1) 1. Per each channel. 6A (1) 36 V 1 10 PowerSO-10 Table 1. Device summary Package Order codes Tube Tape and reel PowerSO-10 VND830SP-E VND830SPTR-E www.st.com

Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

September 2013 Doc ID 10879 Rev 3 1/28

1

VND830SP-E

Double channel high-side driver

Features

■ ECOPACK®: lead free and RoHS compliant

■ Automotive Grade: compliance with AECguidelines

■ Very low standby current

■ CMOS compatible input

■ On-state open-load detection

■ Off-state open-load detection

■ Thermal shutdown protection and diagnosis

■ Undervoltage shutdown

■ Overvoltage clamp

■ Output stuck to VCC detection

■ Load current limitation

■ Reverse battery protection

■ Electrostatic discharge protection

DescriptionThe VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any kind of load with one side connected to ground.

Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open-load condition both is on-state and off-state. Output shorted to VCC is detected in the off-state. Device automatically turns-off in case of ground pin disconnection.

Type RDS(on) IOUT VCC

VND830SP-E 60 mΩ(1)

1. Per each channel.

6 A(1) 36 V

1

10

PowerSO-10

Table 1. Device summary

PackageOrder codes

Tube Tape and reel

PowerSO-10 VND830SP-E VND830SPTR-E

www.st.com

Page 2: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Contents

Doc ID 10879 Rev 3 2/28

Contents

1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 18

3.1.1 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 18

3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 19

3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.1 PowerSO-10 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 PowerSO-10 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 PowerSO-10 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Page 3: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E List of tables

Doc ID 10879 Rev 3 3/28

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Table 4. Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 5. Power output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Table 6. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 7. VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 8. Status pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Table 9. Switching (VCC = 13 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 10. Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 11. Logic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 12. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 13. Electrical transient requirements on VCC pin (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Table 14. Electrical transient requirements on VCC pin (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Table 15. Electrical transient requirements on VCC pin (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Table 16. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Table 17. PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Table 18. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Page 4: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E List of figures

Doc ID 10879 Rev 3 4/28

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 4. Status timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 5. Switching time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 7. Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 8. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 10. Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 11. Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 12. Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 13. On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 14. On-state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 15. Open-load on-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 16. Open-load off-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 17. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 18. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 19. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 20. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 21. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 22. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 23. ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 24. PowerSO-10 maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . 17Figure 25. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 26. Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 27. PowerSO-10 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 28. Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 21Figure 29. Thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 30. Thermal fitting model of a double channel HSD in PowerSO-10 . . . . . . . . . . . . . . . . . . . . 22Figure 31. PowerSO-10 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 32. PowerSO-10 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 33. PowerSO-10 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Figure 34. PowerSO-10 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Page 5: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Block diagram and pin description

Doc ID 10879 Rev 3 5/28

1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin Status N.C. Output Input

Floating X X X X

To ground — X —Through 10 KΩ

resistor

OVERTEMP. 1

Vcc

GND

INPUT1OUTPUT1

OVERVOLTAGE

LOGIC

DRIVER 1

STATUS1

VccCLAMP

UNDERVOLTAGE

CLAMP 1

OPEN-LOAD ON 1

CURRENT LIMITER 1

OPEN-LOAD OFF 1

OUTPUT2DRIVER 2

CLAMP 2

OPEN-LOAD ON 2

OPEN-LOAD OFF 2

OVERTEMP. 2

INPUT2

STATUS2

CURRENT LIMITER 2

123456

78910

11

OUTPUT 1OUTPUT 1N.C.OUTPUT 2OUTPUT 2

GROUNDINPUT 1STATUS 1STATUS 2INPUT 2

VCC

Page 6: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 6/28

2 Electrical specifications

2.1 Absolute maximum ratingsStressing the device above the rating listed in Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document.

Table 3. Absolute maximum ratings

Symbol Parameter Value Unit

VCC DC supply voltage 41 V

-VCC Reverse DC supply voltage -0.3 V

-IGND DC reverse ground pin current -200 mA

IOUT DC output current Internally limited A

-IOUT Reverse DC output current -6 A

IIN DC input current +/-10 mA

ISTAT DC status current +/-10 mA

VESD

Electrostatic discharge (Human Body Model: R = 1.5 KΩ; C = 100 pF)

– INPUT– STATUS

– OUTPUT

– VCC

4000

4000

50005000

V

V

VV

EMAX

Maximum switching energy(L = 1.8 mH; RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150 °C;IL = 9 A)

100 mJ

Ptot Power dissipation TC = 25 °C 73.5 W

Tj Junction operating temperature Internally limited °C

Tc Case operating temperature -40 to 150 °C

Tstg Storage temperature -55 to 150 °C

Page 7: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 7/28

2.2 Thermal data

2.3 Electrical characteristicsValues specified in this section are for 8 V < VCC < 36 V; -40 °C < Tj < 150 °C, unless otherwise stated.

(Per each channel)

Figure 3. Current and voltage conventions

1. VFn = VCCn - VOUTn during reverse battery condition.

Table 4. Thermal data (per island)

Symbol Parameter Value Unit

Rthj-case Thermal resistance junction-case 1.7 °C/W

Rthj-amb Thermal resistance junction-ambient 51.7(1) 37(2) °C/W

1. When mounted on a standard single-sided FR-4 board with 0.5 cm2 of Cu (at least 35 µm thick). Horizontal mounting andno artificial air flow.

2. When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 µm thick). Horizontal mounting and noartificial air flow.

Table 5. Power output

Symbol Parameter Test conditions Min. Typ. Max. Unit

VCC(1) Operating supply voltage 5.5 13 36 V

VUSD(1) Undervoltage shutdown 3 4 5.5 V

VOV(1) Overvoltage shutdown 36 V

RON On-state resistanceIOUT = 2 A; Tj = 25 °C 60 mΩ

IOUT = 2 A; VCC > 8 V 120 mΩ

IS

IGND

OUTPUT 2

VCC

GNDSTATUS 2

INPUT 2 IOUT2

IIN2

ISTAT2

VSTAT2

VIN2

VCC

VOUT2

OUTPUT 1IOUT1

VOUT1

INPUT 1

IIN1

STATUS 1

ISTAT1VIN1

VSTAT1

VF1 (1)

Page 8: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 8/28

IS(1) Supply current

Off-state; VCC = 13 V; VIN = VOUT = 0 V

12 40 µA

Off-state; VCC = 13 V; VIN = VOUT = 0 V; Tj = 25°C

12 25 µA

On-state; VCC = 13 V 5 7 mA

IL(off1) Off-state output currentVIN = VOUT = 0 V; VCC = 36 V; Tj = 125 °C

0 50 µA

IL(off2) Off-state output current VIN = 0 V; VOUT = 3.5 V -75 0 µA

IL(off3) Off-state output currentVIN = VOUT = 0 V; VCC = 13 V; Tj = 125 °C

5 µA

IL(off4) Off-state output currentVIN = VOUT = 0 V; VCC = 13 V; Tj = 25 °C

3 µA

1. Per device.

Table 6. Protections(1)

1. To ensure long term reliability under heavy overload or short circuit conditions, protection and relateddiagnostic signals must be used together with a proper software strategy. If the device is subjected toabnormal conditions, this software must limit the duration and number of activation cycles.

Symbol Parameter Test conditions Min. Typ. Max. Unit

TTSD Shutdown temperature 150 175 200 °C

TR Reset temperature 135 °C

Thyst Thermal hysteresis 7 15 °C

tSDLStatus delay in overload conditions

Tj > TTSD 20 µs

Ilim Current limitationVCC = 13 V 6 9 15 A

5.5 V < VCC < 36 V 15 A

Vdemag Turn-off output clamp voltage

IOUT = 2 A; L = 6 mH VCC - 41 VCC - 48 VCC - 55 V

Table 7. VCC - output diode

Symbol Parameter Test conditions Min. Typ. Max. Unit

VF Forward on voltage -IOUT = 1.3 A; Tj = 150 °C — — 0.6 V

Table 8. Status pin

Symbol Parameter Test conditions Min. Typ. Max. Unit

VSTAT Status low output voltage ISTAT = 1.6 mA 0.5 V

ILSTAT Status leakage current Normal operation; VSTAT = 5 V 10 µA

CSTAT Status pin input capacitance Normal operation; VSTAT = 5 V 100 pF

Table 5. Power output (continued)

Symbol Parameter Test conditions Min. Typ. Max. Unit

Page 9: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 9/28

VSCL Status clamp voltageISTAT = 1 mA 6 6.8 8 V

ISTAT = -1 mA -0.7 V

Table 9. Switching (VCC = 13 V)

Symbol Parameter Test conditions Min. Typ. Max. Unit

td(on) Turn-on delay time RL = 6.5 Ω from VIN rising edge to VOUT = 1.3 V

— 30 — µs

td(off) Turn-off delay time RL = 6.5 Ω from VIN falling edge to VOUT = 11.7 V

— 30 — µs

dVOUT/dt(on) Turn-on voltage slopeRL = 6.5 Ω from VOUT = 1.3 V to VOUT = 10.4 V

—See

Figure 21— V/µs

dVOUT/dt(off) Turn-off voltage slopeRL = 6.5 Ω from VOUT = 11.7 V to VOUT = 1.3 V

—See

Figure 22— V/µs

Table 10. Open-load detection

Symbol Parameter Test conditions Min. Typ. Max. Unit

IOL Open-load on-state detection threshold

VIN = 5 V 50 100 200 mA

tDOL(on)Open-load on-state detection delay

IOUT = 0 A 200 µs

VOL Open-load off-state voltage detection threshold

VIN = 0 V 1.5 2.5 3.5 V

tDOL(off)Open-load detection delay at turn-off

1000 µs

Table 11. Logic input

Symbol Parameter Test conditions Min. Typ. Max. Unit

VIL Input low level 1.25 V

IIL Low level input current VIN = 1.25 V 1 µA

VIH Input high level 3.25 V

IIH High level input current VIN = 3.25 V 10 µA

VI(hyst) Input hysteresis voltage 0.5 V

VICL Input clamp voltageIIN = 1 mA 6 6.8 8 V

IIN = -1 mA -0.7 V

Table 8. Status pin (continued)

Symbol Parameter Test conditions Min. Typ. Max. Unit

Page 10: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 10/28

Figure 4. Status timings

Table 12. Truth table

Conditions Input Output Sense

Normal operationL

H

L

H

H

H

Current limitation

L

H

H

L

X

X

H

(Tj < TTSD) H

(Tj > TTSD) L

OvertemperatureL

H

L

L

H

L

UndervoltageL

H

L

L

X

X

OvervoltageL

H

L

L

H

H

Output voltage > VOLL

H

H

H

L

H

Output current < IOLL

H

L

H

H

L

VINn

VSTATn

tDOL(off)

OPEN LOAD STATUS TIMING (with external pull-up)

VINn

VSTATn

OVER TEMP STATUS TIMING

tSDLtSDL

IOUT < IOLVOUT > VOL

tDOL(on)

Tj > TTSD

Page 11: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 11/28

Figure 5. Switching time waveforms

Page 12: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 12/28

Table 15. Electrical transient requirements on VCC pin (part 3)

Table 13. Electrical transient requirements on VCC pin (part 1)

ISO T/R7637/1

test pulse

Test levels

I II III IV Delays and impedance

1 -25 V -50 V -75 V -100 V 2 ms, 10 Ω

2 +25 V +50 V +75 V +100 V 0.2 ms, 10 Ω

3a -25 V -50 V -100 V -150 V 0.1 µs, 50 Ω

3b +25 V +50 V +75 V +100 V 0.1 µs, 50 Ω

4 -4 V -5 V -6 V -7 V 100 ms, 0.01 Ω

5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2 Ω

Table 14. Electrical transient requirements on VCC pin (part 2)

ISO T/R7637/1

test pulse

Test levels results

I II III IV

1 C C C C

2 C C C C

3a C C C C

3b C C C C

4 C C C C

5 C E E E

Class Contents

C All functions of the device are performed as designed after exposure to disturbance.

EOne or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

Page 13: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 13/28

Figure 6. Waveforms

OPEN-LOAD without external pull-up

STATUSn

INPUTn

NORMAL OPERATION

UNDERVOLTAGE

VCC

VUSD

VUSDhyst

INPUTn

OVERVOLTAGE

VCC

VCC > VOV

STATUSn

INPUTn

STATUSn

STATUSn

INPUTn

STATUSn

INPUTn

OPEN-LOAD with external pull-up

undefined

OVERTEMPERATURE

INPUTn

STATUSn

TTSDTR

Tj

OUTPUT VOLTAGEn

VCC<VOV

OUTPUT VOLTAGEn

OUTPUT VOLTAGEn

OUTPUT VOLTAGEn

OUTPUT VOLTAGEn

OUTPUT CURRENTn

VOUT > VOL

VOL

Page 14: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 14/28

2.4 Electrical characteristics curves

Figure 7. Off-state output current Figure 8. High level input current

Figure 9. Input clamp voltage Figure 10. Status leakage current

Figure 11. Status low output voltage Figure 12. Status clamp voltage

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

IL(off1) (uA)

Off stateVcc=36V

Vin=Vout=0V

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iih (uA)

Vin=3.25V

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

Vicl (V)

Iin=1mA

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

0.01

0.02

0.03

0.04

0.05

Ilstat (uA)

Vstat=5V

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vstat (V)

Istat=1.6mA

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

Vscl (V)

Istat=1mA

Page 15: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 15/28

Figure 13. On-state resistance vs Tcase Figure 14. On-state resistance vs VCC

Figure 15. Open-load on-state detection threshold

Figure 16. Open-load off-state detection threshold

Figure 17. Input high level Figure 18. Input low level

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

20

40

60

80

100

120

140

160

Ron (mOhm)

Iout=2AVcc=8V; 13V & 36V

5 10 15 20 25 30 35 40

Vcc (V)

0

10

20

30

40

50

60

70

80

90

100

110

120

Ron (mOhm)

Iout=5A

Tc= - 40°C

Tc=25°C

Tc=150°C

-50 -25 0 25 50 75 100 125 150 175

Tc (ºC)

50

60

70

80

90

100

110

120

130

140

150

Iol (mA)

Vcc=13VVin=5V

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Vol (V)

Vin=0V

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Vih (V)

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Vil (V)

Page 16: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 16/28

Figure 19. Input hysteresis voltage Figure 20. Overvoltage shutdown

Figure 21. Turn-on voltage slope Figure 22. Turn-off voltage slope

Figure 23. ILIM vs Tcase

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Vhyst (V)

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

30

32

34

36

38

40

42

44

46

48

50

Vov (V)

-50 -25 0 25 50 75 100 125 150 175

Tc (ºC)

0

100

200

300

400

500

600

700

800

dVout/dt(on) (V/ms)

Vcc=13VRl=6.5Ohm

-50 -25 0 25 50 75 100 125 150 175

Tc (ºC)

200

250

300

350

400

450

500

550

600

dVout/dt(off) (V/ms)

Vcc=13VRl=6.5Ohm

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

0

2

4

6

8

10

12

14

16

18

20

Ilim (A)

Vcc=13V

Page 17: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Electrical specifications

Doc ID 10879 Rev 3 17/28

2.5 Maximum demagnetization energy

Figure 24. PowerSO-10 maximum turn-off current versus load inductance

VIN, IL

t

Demagnetization Demagnetization Demagnetization

A = single pulse at TJstart = 150 °C

B= repetitive pulse at TJstart = 100 °C

C= repetitive pulse at TJstart = 125 °C

1

10

100

0,1 1 10 100L(mH)

I LM AX (A)

A

BC

Conditions:VCC= 13.5 V

Note:Values are generated with RL = 0 Ω.In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Page 18: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Application schematic

Doc ID 10879 Rev 3 18/28

3 Application schematic

Figure 25. Application schematic

3.1 GND protection network against reverse battery This section provides two solutions for implementing a ground protection network against reverse battery.

3.1.1 Solution 1: a resistor in the ground line (RGND only)

This can be used with any type of load.

The following show how to dimension the RGND resistor:

1. RGND ≤ 600 mV / IS(on)max

2. RGND ≥ (-VCC) / (-IGND)

where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power dissipation in RGND (when VCC < 0 during reverse battery situations) is:

PD = (-VCC)2/ RGND

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices.

VCC

OUTPUT2

Dld

+5V

Rprot

OUTPUT1

STATUS1

INPUT1

+5V

STATUS2

INPUT2

GND

+5V

μC Rprot

Rprot

Rprot

DGND

RGNDVGND

Page 19: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Application schematic

Doc ID 10879 Rev 3 19/28

Please note that, if the microprocessor ground is not shared by the device ground, then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high-side drivers sharing the same RGND.

If the calculated power dissipation requires the use of a large resistor, or several devices have to share the same resistor, then ST suggests using solution 2 below.

3.1.2 Solution 2: a diode (DGND) in the ground line

A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

3.2 Load dump protection Dld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the VCC maximum DC rating. The same applies if the device is subject to transients on the VCC line that are greater than those shown in the ISO T/R 7637/1 table.

3.3 MCU I/O protectionIf a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the microcontroller I/O pins from latching up.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os:

-VCCpeak / Ilatchup ≤ Rprot ≤ (VOHμC - VIH - VGND) / IIHmax

Example

For the following conditions:

VCCpeak = -100 V

Ilatchup ≥ 20 mA

VOHμC ≥ 4.5 V

5 kΩ ≤ Rprot ≤ 65 kΩ.

Recommended values are:

Rprot = 10 kΩ

Page 20: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Application schematic

Doc ID 10879 Rev 3 20/28

3.4 Open-load detection in off-stateOff-state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

1. no false open load indication when load is connected: in this case we have to avoidVOUT to be higher than VOlmin; this results in the following condition

VOUT = (VPU / (RL + RPU))RL < VOlmin.

2. no misdetection when load is disconnected: in this case the VOUT has to be higher thanVOLmax; this results in the following condition RPU < (VPU - VOLmax) / IL(off2).

Because IS(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-up resistor RPU should be connected to a supply that is switched OFF when the module is in standby.

Figure 26. Open-load detection in off-state

Page 21: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Package and PCB thermal data

Doc ID 10879 Rev 3 21/28

4 Package and PCB thermal data

4.1 PowerSO-10 thermal data

Figure 27. PowerSO-10 PC board

Note: Layout condition of Rth and Zth measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness = 2 mm, Cu thickness = 35 µm, Copper areas: from minimum pad lay-out to 8 cm2).

Figure 28. Rthj-amb vs PCB copper area in open box free air condition

Page 22: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Package and PCB thermal data

Doc ID 10879 Rev 3 22/28

Figure 29. Thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

Figure 30. Thermal fitting model of a double channel HSD in PowerSO-10

ZTHδ RTH δ ZTHtp 1 δ–( )+⋅=

where δ tp T⁄=

T_amb

Pd1

C1

R4

C3 C4

R3R1 R6R5R2

C5 C6C2

Pd2

R2

C1 C2

R1

Tj_1

Tj_2

Page 23: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Package and PCB thermal data

Doc ID 10879 Rev 3 23/28

Table 16. Thermal parameters

Area / island (cm2) Footprint 6

R1 (°C/W) 0.15

R2 (°C/W) 0.8

R3 (°C/W) 0.7

R4 (°C/W) 0.8

R5 (°C/W) 12

R6 (°C/W) 37 22

C1 (W.s/°C) 0.0006

C2 (W.s/°C) 2.1E-03

C3 (W.s/°C) 0.013

C4 (W.s/°C) 0.3

C5 (W.s/°C) 0.75

C6 (W.s/°C) 3 5

Page 24: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Package and packing information

Doc ID 10879 Rev 3 24/28

5 Package and packing information

5.1 ECOPACK® packagesIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

5.2 PowerSO-10 package information

Figure 31. PowerSO-10 package dimensions

DETAIL "A"

PLANESEATING

α

L

A1F

A1

h

A

D

D1= == =

E4

0.10 A

E

CA

B

B

DETAIL "A"

SEATING PLANE

E2

10

1

e B

H E

0.25

Page 25: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Package and packing information

Doc ID 10879 Rev 3 25/28

Table 17. PowerSO-10 mechanical data

DIM.mm.

Min. Typ. Max.

A 3.35 3.65

A(1)

1. Muar only POA P013P.

3.4 3.6

A1 0 0.10

B 0.40 0.60

B(1) 0.37 0.53

C 0.35 0.55

C(1) 0.23 0.32

D 9.40 9.60

D1 7.40 7.60

E 9.30 9.50

E2 7.20 7.60

E2(1) 7.30 7.50

E4 5.90 6.10

E4(1) 5.90 6.30

e 1.27

F 1.25 1.35

F(1) 1.20 1.40

H 13.80 14.40

H(1) 13.85 14.35

h 0.50

L 1.20 1.80

L(1) 0.80 1.10

α 0° 8°

α(1) 2° 8°

Page 26: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Package and packing information

Doc ID 10879 Rev 3 26/28

5.3 PowerSO-10 packing information

Figure 34. PowerSO-10 tape and reel shipment (suffix “TR”)

Figure 32. PowerSO-10 suggested pad layout

Figure 33. PowerSO-10 tube shipment (no suffix)

B

A

C

All dimensions are in mm.

Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1)Casablanca 50 1000 532 10.4 16.4 0.8

Muar 50 1000 532 4.9 17.2 0.8

CA

B

MUARCASABLANCA

Base Q.ty 600Bulk Q.ty 600A (max) 330B (min) 1.5C (± 0.2) 13F 20.2G (+ 2 / -0) 24.4N (min) 60T (max) 30.4

Tape dimensionsAccording to Electronic Industries Association(EIA) Standard 481 rev. A, Feb. 1986

All dimensions are in mm.

Tape width W 24Tape Hole Spacing P0 (± 0.1) 4Component Spacing P 24Hole Diameter D (± 0.1/-0) 1.5Hole Diameter D1 (min) 1.5Hole Position F (± 0.05) 11.5Compartment Depth K (max) 6.5Hole Spacing P1 (± 0.1) 2

Topcovertape

End

Start

No componentsNo components Components

500mm min

500mm minEmpty components pocketssaled with cover tape.

User direction of feed

Reel dimensions

Page 27: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

VND830SP-E Revision history

Doc ID 10879 Rev 3 27/28

6 Revision history

Table 18. Document revision history

Date Revision Changes

01-Oct-2004 1 Initial release.

07-Feb-2011 2Document reformatted and restructured.Updated Features list.

Updated Table 16: Thermal parameters

26-Sep-2013 3 Updated Disclaimer.

Page 28: Double channel high-side driver · 2021. 7. 10. · The VND830SP-E is a monolithic device made by using STMicroelectronics™ VIPower™ M0-3 technology, intended for driving any

DocID10879 Rev 3 28/28

VND830SP-E

28

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFESUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONSOR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS ATPURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT ISEXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRYDOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED AREDEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com