11
doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp. Slide 1 N am e A ffiliations A ddress Phone em ail M inyoung Park IntelCorp. [email protected] Eldad Perahia IntelCorp. Tom Tetzlaff IntelCorp. thomas.a.tetzlaff@ intel.com Em ily Q i IntelCorp. [email protected] Thom asK enney IntelCorp. Y ong Liu M arvell H ongyuan Zhang M arvell Raja Banerjea M arvell Y ongho Seok LG Electronics Seunghee H an LG Electronics Jinsoo Choi LG Electronics JeongkiKim LG Electronics Jinsam Kw ak LG Electronics ChaoChun W ang M ediaTek Jam esW ang M ediaTek Jianhan Liu M ediaTek V ish Ponnam palam M ediaTek Jam esY ee M ediaTek M atthew Fischer Broadcom Eric W ong Broadcom

Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

Embed Size (px)

DESCRIPTION

doc.: IEEE /1230r1 Submission Introduction In 11/1230r0, we introduced a high level channel access concept that gives a sensor type of STAs the highest channel access priority. This presentation is a follow up presentation with simulation results that supports the proposed channel access concept. May 2012 Minyoung Park, Intel Corp.Slide 3

Citation preview

Page 1: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

802.11ah Channel Access Improvement

Date: 2012-05-14Authors:

May 2012

Minyoung Park, Intel Corp.Slide 1

Name Affiliations Address Phone email Minyoung Park Intel Corp. [email protected]

Eldad Perahia Intel Corp.

Tom Tetzlaff Intel Corp. [email protected]

Emily Qi Intel Corp. [email protected]

Thomas Kenney Intel Corp.

Yong Liu Marvell

Hongyuan Zhang Marvell

Raja Banerjea Marvell

Yongho Seok LG Electronics

Seunghee Han LG Electronics

Jinsoo Choi LG Electronics

Jeongki Kim LG Electronics

Jinsam Kwak LG Electronics

ChaoChun Wang MediaTek

James Wang MediaTek

Jianhan Liu MediaTek

Vish Ponnampalam MediaTek

James Yee MediaTek

Matthew Fischer Broadcom

Eric Wong Broadcom

Page 2: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

Name Affiliations Address Phone email Simone Merlin Qualcomm 5775 Morehouse Dr,

San Diego, CA 8588451243 [email protected]

Alfred Asterjadhi Qualcomm

Amin Jafarian Qualcomm

Santosh Abraham Qualcomm

Hemanth Sampath Qualcomm

VK Jones Qualcomm

Menzo Wentink Qualcomm

Osama Aboul-Magd Huawei Edward Au Huawei Lin Cai Huawei Kim Chang Huawei Yunsong Yang Huawei Sun, Bo ZTE [email protected] Lv, Kaiying ZTE [email protected] Huai-Rong Shao Samsung [email protected] Chiu Ngo Samsung [email protected] Minho Cheong ETRI [email protected] Jae Seung Lee ETRI [email protected] Heejung Yu ETRI [email protected] Hyoung Jin Kwon ETRI [email protected]

Sayantan Choudhury Nokia

Taejoon Kim Nokia

Klaus Doppler Nokia

Chittabrata Ghosh Nokia

Esa Tuomaala Nokia

Authors:

May 2012

Minyoung Park, Intel Corp.Slide 2

Page 3: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

Introduction

• In 11/1230r0, we introduced a high level channel access concept that gives a sensor type of STAs the highest channel access priority.

• This presentation is a follow up presentation with simulation results that supports the proposed channel access concept.

May 2012

Minyoung Park, Intel Corp.Slide 3

Page 4: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

802.11ah Use Case Categories [1]

• 802.11ah defines three use case categories– Use Case 1 : Sensors and meters– Use Case 2 : Backhaul sensor and meter data– Use Case 3 : Extended range Wi-Fi

• Use Case 1 and 3 have different traffic characteristics– Use Case 1: small packet size and low duty-cycle– Use Case 3: large packet size and high duty-cycle

• Coexistence issue between Use Case 1 and Use Case 3

May 2012

Minyoung Park, Intel Corp.Slide 4

Page 5: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

Coexistence Issue between Use Case 1 and Use Case 3

• A low duty-cycle STA (Use Case 1) suffers from high duty-cycle STA (Use Case 3)– When the channel utilization is high due to hotspot or cellular

offloading applications, sensors may experience a long channel access delay power consumption increases

Data-Ack

Sensor STA wakes up and tries to send a packet

DIFSCW back-off =3

1) STA-2 waits until the channel is idle(Idle Channel Wait Time)

DIFS

Data-Ack

2) STA-2 loses contention and waits again until the channel is idle

CW back-off =4

STA-1(hotspot: high duty-cycle traffic)

STA-2(sensor: low duty-cycle traffic)

May 2012

Minyoung Park, Intel Corp.Slide 5

Page 6: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

• Give the highest priority to low duty-cycle (sensor) traffic for channel access– Sensor traffic has a very low duty-cycle compared to other hotspot or cellular offloading

applications does not hurt high-duty cycle applications– Reducing the channel access delay is critical to sensors for a long battery life– Redefine/remap EDCA access categories (AC) to give sensor traffic the highest priority

Data-Ack

Proposed Channel Access Enhancement

Data-Ack

Data-Ack

1) Sensor STA wakes up and tries to send a packet

DIFS

CW back-off =3

2) STA-2 waits until the channel is idle(Idle Channel Wait Time)

DIFS

3) STA-2 wins the contention

CW back-off =4

STA-1(hotspot: high duty-cycle traffic)

STA-2(sensor: low duty-cycle traffic)

AIFS[non-sensor]

AIFS[sensor]

DIFS

4) Sensor STA goes back to sleep until next packet transmission time

5) Hotspot STA continues transmissions

May 2012

Minyoung Park, Intel Corp.Slide 6

Page 7: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

Simulation Setup• Sensor + Extended Wi-Fi Scenario with more traffic flows (STAs)

– Extended range Wi-Fi traffic flows: 1~3 • Full-buffered traffic• 1500 bytes MPDU back-to-back • Packet Tx time: ~20 msec @ 600 Kbps• Use EDCA[BE] parameters with CWmin=15

– Sensor traffic flows: 5• Low duty-cycle traffic• 256 bytes MPDU transmission at t ~ Uniform(10 sec), average Tx period = 5 sec

– Note: 5 sensor STAs with the average Tx period of 5 sec is equivalent to 30 sensor STAs with the average Tx period of 30 sec (the simulation results in the backup slide).

• Packet Tx time: ~3.7 msec @ 600 Kbps• Use EDCA[Sensor]=EDCA[VO] parameters with CWmin=15

• PHY/MAC parameters– PHY rate: 600 Kbps– Preamble: 240 usec (6 symbols x 40 usec)– SIFS: 64 usec– Slot-time: 45 usec (5usec+4usec x10)– EDCA[Sensor]: AIFSN[VO]=2, CWmin[VO]=3, CWmax[VO]=7– EDCA[BE] for Extended range Wi-Fi: AIFSN[BE]=3~6, CWmin[BE]=15, CWmax[BE]=1023

May 2012

Minyoung Park, Intel Corp.Slide 7

Page 8: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

Simulation Results • Tx delay [Sensor] and aggregated MAC throughput [BE]

– Case 4: 5 Sensor STAs, 1 BE STA– Case 5: 5 Sensor STAs, 2 BE STAs– Case 6: 5 Sensor STAs, 3 BE STAs

• AIFSN[BE]=5 or 6 for the 2 or 3 BE STAs case– 20% ~ 26% Tx delay reduction gain for the low duty-cycle traffic (sensor) compared to AIFSN[BE]=3– Less than 0.8 % MAC throughput drop for the best effort (BE) high duty-cycle traffic (Extended Wi-Fi)

BE MAC throughput

Sensor Tx delay

BE MAC throughput drop

Sensor Tx delay reduction

May 2012

Minyoung Park, Intel Corp.Slide 8

Page 9: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

Summary

• 802.11ah Use Case 1 (sensor) and Use Case 3 (extended range Wi-Fi) have different traffic characteristics

• Need to address the coexistence issue between the sensor use case and the extended range Wi-Fi use case

• We propose to redefine/remap EDCA access categories (AC) to give sensor traffic the highest priority– AIFSN[BE]=5 or 6 for the 2 or 3 BE STAs case

• 20% ~ 26% Tx delay reduction gain for the low duty-cycle traffic (sensor) compared to AIFSN[BE]=3

• Less than 0.8 % MAC throughput drop for the best effort (BE) high duty-cycle traffic (Extended Wi-Fi)

May 2012

Minyoung Park, Intel Corp.Slide 9

Page 10: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

Straw Poll

• Do you support that the sensor type of STAs to have the highest channel access priority?

May 2012

Minyoung Park, Intel Corp.Slide 10

Page 11: Doc.: IEEE 802.11-11/1230r1 Submission 802.11ah Channel Access Improvement Date: 2012-05-14 Authors: May 2012 Minyoung Park, Intel Corp.Slide 1

doc.: IEEE 802.11-11/1230r1

Submission

References

[1] Rolf de Vegt, “Potential Compromise for 802.11ah Use Case Document,” 11-11/457r0.

[2] Minyoung Park, et. al., “802.11ah Channel Access Improvement,” 11-11/1230r0

May 2012

Minyoung Park, Intel Corp.Slide 11